Revista: | Boletim de ciencias geodesicas |
Base de datos: | PERIÓDICA |
Número de sistema: | 000457328 |
ISSN: | 1413-4853 |
Autores: | Ruffhead, Andrew Carey1 |
Instituciones: | 1University of East London, School of Architecture, Computing and Engineering, Londres. Reino Unido |
Año: | 2022 |
Volumen: | 28 |
Número: | 1 |
País: | Brasil |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico, descriptivo |
Resumen en inglés | Multiple regression equations (MREs) provide an empirical direct method of transforming coordinates between geodetic datums. Since they offer a means of modelling distortions, they are capable of a more accurate fit to datum-shift datasets than more basic direct methods. MRE models of datum shifts traditionally consist of polynomials based on relative latitude and longitude. However, the limited availability of low-power terms often leads to high-power terms being included, and these are a potential cause of instability. This paper introduces three variations based on simple partitions and 2 or 4 smoothly conjoined polynomials. The new types are North/South, East/West and Four-Quadrant. They increase the availability of low-order terms, enabling distortions to be modelled with fewer side effects. Case studies in Great Britain, Slovenia and Western Australia provide examples of partitioned MREs that are more accurate than conventional MREs with the same number of terms |
Disciplinas: | Geociencias |
Palabras clave: | Geodesia, Ecuaciones de regresión múltiple, Polinomios de superficie, Transformaciones de datos |
Keyword: | Geodesy, Multiple regression equations, Surface polynomials, Datum transformations |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |