Procedimientos actuales para la extracción y purificación de flavonoides cítricos

Current procedures for extraction and purification of citrus flavonoides

Andrés Alejandro Damián-Reyna^{*}, Juan Carlos González-Hernández^{**}, Ma. del Carmen Chávez-Parga^{*,***}

DOI: 10.15446/rev.colomb.biote.v18n1.57724

Resumen

En la industria alimenticia, los agentes microbicidas son usados para preservar la calidad y seguridad de los alimentos procesados. Los flavonoides encontrados en extractos cítricos han mostrado capacidad de inhibición del crecimiento celular de un gran grupo de microorganismos infecciosos, por lo tanto, éstos compuestos pueden ser útiles como agentes antivirales, antifúngicos y antibacteriales. Los flavonoides que se pueden encontrar principalmente en varias de las especies cítricas son hesperetina, hesperidina, luteolina, naringenina, naringina, narirutina, neohesperidina, nobiletina y tangeretina. A continuación se resumen los procesos utilizados recientemente para extraer, purificar y analizar los flavonoides principales en frutas cítricas.

Ya optimizado el medio de cultivo se procedió a realizar una cinética confirmatoria con base a las condiciones encontradas pero evaluando el crecimiento celular por conteo en cámara de Neubauer y la producción de etanol mediante método enzimático (Procedimiento de ensayo K-ETOH, Megazyme) para confirmar los valores.

Palabras clave: flavonoides, polifenoles, purificación, cítricos, microbicida.

Abstract

In the food industry, antimicrobial agents are used for preserving the quality and safety of processed food. Flavonoids found in citrus extracts inhibit cell growth of a large group of infectious microorganisms, therefore, these compounds may be useful as antiviral, antifungal and antibacterial agents. Hesperetin, hesperidin, luteolin, naringenin, naringin, narirutin, neohesperidin, nobiletin and tangeretin are some of the main flavonoids found in various citrus fruits. The processes used in recent years to extract, purify and analyze typical flavonoids from citrus species are reviewed.

Key words: flavonoids, polyphenol, purification, citrus, antimicrobial.

Recibido: agosto 10 de 2015 Aprobado: abril 25 de 2016

Introduction

Flavonoids are a group of polyphenols that are found in fruit, vegetables, nuts, seeds, stems and flowers as well as tea, wine, propolis and honey (Tham & Liew, 2014). Some flavonoids are responsible for fruit coloration. Most of flavonoids are structured basically by 3 rings, two of them are aromatic benzene rings (called rings A and B), connected by an oxygen pyrane ring (called ring C), as shown in figure 1, and there is the

 ^{*} Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Francisco J. Mújica S/N, Col.
 Felicitas del Río, 58030, Morelia, Michoacán, México. Correo electrónico: pandamian77@hotmail.com.

^{**} Laboratorio de Bioquímica del Departamento de Ing. Bioquímica del Instituto Tecnológico de Morelia, Av. Tecnológico # 1500, Colonia Lomas de Santiaguito, 58120, Morelia, Michoacán, México. Correo electrónico: jcgh1974@yahoo.com.

^{***} Correo electrónico: cparga@umich.mx

Figure 1. Flavonoids general structure.

characteristic presence of hydroxyl groups in one or more R positions.

Especially abundant in citrus fruits, there are some flavonoids that can be found in almost all citrus fruits (table 1), like hesperidin, which consolidate a group called citrus flavonoids. Their concentration in peels is higher than in juice and seeds (Codoñer & Valls, 2010) as a result of flavonoids role for fruit coloration.

Citrus flavonoids are well known for their antioxidant (Asikin *et al.*, 2015; Yu *et al.*, 2014; Barreca *et al.*, 2011a; Barreca *et al.*, 2011b; Pekal *et al.*, 2011; Procházková *et al.*, 2011; Ye *et al.*, 2011; Kelebek, 2010) antifungal (Buer *et al.*, 2010; Montes, 2009), and antimicrobial effect (Celiz & Audisio, 2011; Cushnie & Lamb, 2011;

Vikram *et al.*, 2010), and even for accelerating wound and disease healing (Wang *et al.*, 2014; Arab & Liebes-kind, 2010; Codoñer & Valls, 2010; Neves *et al.*, 2010).

For nourishment purposes, research has concluded that consumers in theory are ready to accept food rich in flavonoids, by informing them about the scientific benefits (Zang et al., 2014; Zhang et al., 2014a; Jung et al., 2011; Lampila et al., 2009). In Europe, an average adult person spends up to €454.7 per year in flavonoids contained in cardiovascular drugs (Sanfelix et al., 2010).

Raw materials

Citrus fruits contain a range of key nutrients such as vitamin C, folate, dietary fiber, minerals and phytochemicals, which attributes to their health-promoting properties (Ledesma & Luque, 2014). It is believed that vitamin C is a major contributor to the anti-oxidant capacity of citrus. However, the major contribution of citrus anti-oxidant activity comes from the combination of phytochemicals and from their synergistic action with vitamin C. The major phytochemicals in citrus fruits are the terpenes and phenolic compounds, which possess anti-inflammatory and anti-carcinogenic activity (Wang et al., 2014; Natarajan et al., 2011; Codoñer & Valls, 2010).

The main citrus fruits in flavonoids research have been orange (*C. sinensis*), lemon (*C. limon*), grapefruit (*C. paradisi*) and tangerine (*C. reticulata*), for at least the past 30 years. Nowadays, native varieties are of special

	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸
Flavanones								
Hesperidin	Н	ОН	Н	O-rut	Н	OH	OCH₃	Н
Naringin	Н	ОН	Н	O-nh	Н	Н	OH	Н
Neohesperidin	Н	ОН	Н	O-nh	Н	OH	OCH₃	Н
Narirutin	Н	ОН	Н	O-rut	Н	Н	OH	Н
Flavones								
Hesperetin	Н	ОН	Н	OH	Н	OH	OCH₃	Н
Naringenin	Н	ОН	Н	OH	Н	Н	OH	Н
Flavone Aglycon								
Luteolin	Н	ОН	Н	OH	Н	OH	OH	Н
Polymethoxyflavones								
Nobiletin	Н	OCH₃	OCH ₃	OCH ₃	OCH ₃	OCH ₃	OCH₃	Н
Tangeretin	Н	OCH₃	OCH ₃	OCH₃	OCH ₃	Н	OCH₃	Н

Table 1. Substitution in the general structure for some of the main citrus flavonoids (Barreca et al., 2011a; Gonzalez et al., 2010)

rut: rutinose; nh: neohesperidose.

interest. Tough Citrus species are harvested all around the world (Lorente et al., 2014), some species are better developed than others, depending on climate conditions, and its availability varies from one country to another or even regions within the same country (Roussos, 2011). This influences the research on specific Citrus species (table 2), where the main citrus producing countries have more studies on a wider variety

 Table 2. Citrus species used in recent flavonoid research.

of species, exploring even the wild varieties found in unique locations.

Raw material conditioning

Citrus have been collected and extracted in early springtime or late winter (Sandoval et al., 2012; Barreca et al., 2010), and about 2-5 months after the flowering

Citrus species	Country	References	Citrus species	Country	References
C. aurantifolia	Italy	Costa et al., 2014	C. paradisi	China	Xi et al., 2014a
		Loizzo et al., 2013			Sun et al., 2013
	Spain	Guimaraes et al., 2010			Zhang et al., 2011
C. aurantium	Algeria	Lagha & Madani, 2013		Spain	Abad et al., 2014
	China	Sun et al., 2013			Guimaraes et al., 2010
	Italy	Barreca <i>et al.,</i> 2011a		Turkey	Kelebek, 2010
	Tunisia	Moulehi et al., 2012	C. poonensis	China	Xi et <i>al.,</i> 2014b
C. bergamia	Italy	DiDonna <i>et al.,</i> 2011			Sun et al., 2013
	Mauritius	Ramful et al., 2011			Ye et al., 2011
C. clementina	China	Xi et al., 2014b	C. reticulata	China	Xi et <i>al.,</i> 2014b
	Colombia	Alvarez et al., 2012			Zhang et al., 2014c
C. daoxianensis	Mauritius	Ramful et al., 2011		Colombia	Londoño et al., 2010
C. erythrosa	China	Ye et al., 2011		Croatia	Levaj <i>et al.,</i> 2008
C. grandis	China	Duan <i>et al.,</i> 2014		Italy	Barreca et al., 2013
		Li et al., 2014		Mauritius	Ramful et al., 2011
		Xi et al., 2014		Slovenia	Makovsek et al., 2012
		Zhang et al., 2014b		Spain	Abad et <i>al.,</i> 2014
		Sun et al., 2013		Tunisia	Moulehi <i>et al.,</i> 2012
		Zhang et al., 2011		Turkey	Kelebek & Selli, 2014
	South Korea	Yoo et al., 2009	C. sinensis	Algeria	Lagha & Madani, 2013
C. jambhiri	Egypt	Hamdan <i>et al.,</i> 2011		China	Pan et al., 2014
C. junos	South Korea	Yoo et al., 2009			Sun et al., 2013
C. latifolia	Colombia	Londoño et al., 2010		Colombia	Londoño et al., 2010
C. limetta	México	Rodriguez et al., 2014		Mauritius	Ramful et al., 2011
	Italy	Barreca et al., 2011c		Italy	Barreca <i>et al.,</i> 2014
C. limon	China	Sun et al., 2013		Spain	Abad et al., 2014
	Spain	Abad et al., 2014			Andreu <i>et al.,</i> 2010
		Gonzalez et al., 2010			Guimaraes et al., 2010
		Guimaraes et al., 2010		Taiwan	Chen et al., 2011
C. maxima	Mauritius	Ramful et al., 2011	C. succosa	China	Ye et al., 2011
C. medica	Italy	Menichini et al., 2011a	C. suavissima	China	Ye et al., 2011
		Menichini et al., 2011b	C. tardiferax	China	Ye et al., 2011
C. meyeri	Mauritius	Ramful et al., 2011	C. unshiu	China	Xi et al., 2014b
C. microcarpa	Singapore	Cheong et al., 2012			Sun et al., 2013
C. mitis	Taiwan	Yu et al., 2013			Ye et al., 2011
C. myrtifolia	Italy	Protti et al., 2015		Croatia	Levaj et <i>al.,</i> 2008
		Barreca <i>et al.,</i> 2011b		Korea	Jung et al., 2011
		Scordino et al., 2011		Mauritius	Ramful et al., 2011
		Barreca <i>et al.,</i> 2010		South Korea	Yoo et al., 2009
				Spain	Abad et <i>al.,</i> 2014
				Turkey	Kelebek & Selli, 2014

period (Barreca *et al.*, 2011a; Chen *et al.*, 2011; Yoo *et al.*, 2009). Even though most compounds are found in the peel, as indicated before, studies also have been made to obtain extracts rich in flavonoids from the juice and the seeds. In order to facilitate the extraction of the components, raw material must be ground to a small particle size, improving extract transport from the solid matrix towards the solvent phase.

Raw material can be used either fresh or dry (Ye et al., 2011), the use of fresh raw materials involves the presence of an aqueous phase in the extract, and a further separation, like decantation, must be carried out.

When dry raw material is used, it must be conditioned first, in order to permit cells to stretch back to their original size and shape, allowing the components to transfer through the cell's structure into solvent bulk. Juices, peels and other tissues can be separated manually (Barreca *et al.*, 2011a) or using commercial extractors.

Preliminary Separation

Organic solvents are often used for the extraction of citrus compounds. There are two main operations to extract the compounds from the citrus matrix. One is simple maceration, with solvents extracting the compounds by diffusion from the citrus matrix (Yoo *et al.*, 2009), where methanol is a frequently used solvent (table 3). The second one is centrifugation of the juices, eliminating aqueous phases (Barreca *et al.*, 2011a).

Citrus species	Separation Technique	Solvents	References	Citrus species	Separation Technique	Solvents	References
C. aurantifolia				C. myrtifolia			
Juice	Centrifuged, filtered and evaporated	EASSE	Costa et al., 2014	Albedo	Centrifuged and filtered	DMF	Barreca et <i>al.,</i> 2011b
	Lyophilized, disolved in water	Water	Guimaraes et al., 2010	Flavedo	Centrifuged and filtered	DMF	Barreca et <i>al.,</i> 2011b
Peel	Lyophilized, stirred and filtered	мон	Guimaraes et al., 2010	Juice	Centrifuged and filtered	DMF	Barreca et <i>al.,</i> 2010
	Macerated, filtered and evaporated	MWC	Brito <i>et al.,</i> 2014				Barreca et <i>al.,</i> 2011b
	Maceration	MWH	Loizzo et al., 2013		Stirred, centrifuged and filtered	MFA	Scordino et al., 2011
Pulp	Macerated, filtered and evaporated	MWC	Brito <i>et al.,</i> 2014	Membrane	Centrifuged and filtered	DMF	Barreca et <i>al.,</i> 2011b
C. aurantium				Pulp	Stirred, centrifuged and filtered	MFA	Scordino et al., 2011
Juice	Centrifuged and filtered	DMF	Barreca et al., 2011a	Seeds	centrifuged and filtered	DMF	Barreca et <i>al.,</i> 2011b
Peels	Macerated, centrifuged and filtered	MAW	Lagha & Madani, 2013	Whole	Dried, vortexed, centrifuged and evaporated	мон	Protti et al., 2015
Seeds	Ground, macerated, filtered and evaporated	мон	Moulehi et al., 2012	C. paradisi			
Whole	Dried, UB30, centrifuged	MDS	Sun <i>et al.,</i> 2013	Juice	Centrifuged and filtered	None	Kelebek, 2010
C. bergamia					Freeze-dried, centrifuged and filtered	MWA	Abad et al., 2014
Albedo	MWE	Water	DiDonna et al., 2011		Lyophilized, disolved in water	Water	Guimaraes et al., 2010
C. daoxianensis					Macerated, disolved	EAM	Zhang et al., 2011
Peel & Pulp	Dried, UB30, centrifuged	мон	Xi et al., 2014b	Peel	Dried, UB30, centrifuged	мон	Xi et al., 2014a
C. erythrosa					Lyophilized, stirred and filtered	мон	Guimaraes et al., 2010
Whole	Dried, UB30, centrifuged	MDS	Ye et al., 2011	Pulp	Dried, UB30, centrifuged	мон	Xi et al., 2014a

Table 3. Solvents used for flavonoids extraction in citrus species.

Citrus species	Separation Technique	Solvents	References	Citrus species	Separation Technique	Solvents	References
C. grandis					Ground, macerated, centrifuged, disolved	мон	Zhang et al., 2011
Epicarp	Dried, UB30, centrifuged	мон	Li et al., 2014	Whole	Dried, UB30, centrifuged	MDS	Sun <i>et al.,</i> 2013
Flavedo	UB30, centrifuged, evaporated	мон	Zhang et al., 2014b	C. poonensis			
Juice	Macerated, disolved	EAM	Zhang et al., 2011	Peel	Dried, UB30, centrifuged	мон	Xi et al., 2014b
	UB30, centrifuged, evaporated	мон	Zhang et al., 2014b	Pulp	Dried, UB30, centrifuged	мон	Xi et al., 2014b
Peel	Dried, UB30, centrifuged	мон	Xi et al., 2014a	Whole	Dried, UB30, centrifuged	MDS	Sun et al., 2013
Pulp	Dried, UB30, centrifuged	мон	Xi et al., 2014a				Ye et al., 2011
	Ground, macerated, centrifuged, disolved	мон	Zhang et al., 2011	C. reticulata			
Whole	Dried, UB30, centrifuged	MDS	Sun <i>et al.,</i> 2013	Juice	Centrifuged and filtered	DMF	Barreca et al., 2013
		мон	Duan <i>et al.,</i> 2014		Filtered	None	Kelebek & Selli, 2014
			Li et al., 2014		Freeze-dried, centrifuged and filtered	MWA	Abad et al., 2014
C. jambhiri				Peel	Dried, macerated and evaporated	WEA	Makovsek et al., 2012
Peel	Rectificated	MWPCE	Hamdan <i>et al.,</i> 2011		Dried, UB30, centrifuged	мон	Xi et al., 2014b
Seeds	Dried, deffated, rectificated	PMWD	Hamdan <i>et al.,</i> 2011		Dried, ultrasonic bath	Water	Londoño <i>et al.,</i> 2010
C. junos					Lyophilized, macerated, centrifuged	мон	Zhang et al., 2014c
	Freeze-dried, UB30, filtered	MDS	Yoo et al. 2009	Pulp	Dried, UB30, centrifuged	мон	Xi et al., 2014b
C. latifolia					Freeze-dried, macerated and centrifugated	мон	Ramful et <i>al.,</i> 2011
Peel	Dried, ultrasonic bath	Water	Londoño et al., 2010	Seeds	Ground, macerated, filtered and evaporated	мон	Moulehi et al., 2012
C. limetta				C. sinensis			
Juice	Centrifuged and filtered	DMF	Barreca et al., 2011c	Juice	Centrifuged and filtered	DMF	Barreca et al., 2014
Peels	Macerated, filtered and evaporated	мон	Rodriguez et al., 2014		Filtered and diluted	Water	Andreu et al., 2010
C. limon					Freeze-dried, centrifuged and filtered	MWA	Abad <i>et al.,</i> 2014
Juice	Freeze-dried, centrifuged and filtered	MWA	Abad <i>et al.,</i> 2014		Lyophilized, disolved in water	Water	Guimaraes et al., 2010
	Lyophilized, disolved in water	Water	Guimaraes et al., 2010	Pulp	Freeze-dried, macerated and centrifugated	EAA	Pan et al., 2014
Peel	Lyophilized, stirred and filtered	мон	Guimaraes et al., 2010			мон	Ramful et al., 2011
	Macerated, filtered and evaporated	MWC	Brito <i>et al.,</i> 2014	Peel	Dried, stirred and filtered	MDS	Chen <i>et al.,</i> 2011
Pulp	Macerated, filtered and evaporated	MWC	Brito et al., 2014		Dried, ultrasonic bath	Water	Londoño et al., 2010

Citrus species	Separation Technique	Solvents	References	Citrus species	Separation Technique	Solvents	References
Whole	Dried, UB30, centrifuged	MDS	Sun <i>et al.,</i> 2013		Lyophilized, stirred and filtered	мон	Guimaraes et al., 2010
C. maxima				Peels	Macerated, centrifuged and filtered	MAW	Lagha & Madani, 2013
Pulp	Freeze-dried, macerated and centrifugated	мон	Ramful et al., 2011	Whole	Dried, UB30, centrifuged	MDS	Sun et al., 2013
C. medica				C. suavissima			
Endocarp	Stirred, rotavaporated	EOH	Menichini et al., 2011b	Whole	Dried, UB30, centrifuged	MDS	Ye <i>et al.,</i> 2011
Mesocarp	Stirred, rotavaporated	EOH	Menichini et al., 2011b	C. tardiferax			
Peel	Stirred, rotavaporated	EOH	Menichini et al., 2011a	Whole	Dried, UB30, centrifuged	MDS	Ye <i>et al.,</i> 2011
C. meyeri	-			C. unshiu	-		
Pulp	Freeze-dried, macerated and centrifugated	мон	Ramful <i>et al.,</i> 2011	Juice	Filtered	None	Kelebek & Selli, 2014
C. mitis					Freeze-dried, centrifuged and filtered	MWA	Abad et al., 2014
Peels	Ground, macerated, filtered and evaporated	EAW	Yu et al., 2013				

DCF: Diluted, centrifuged and filtered; DMSO: Dimethyl sulfoxide; DMF: dimethylformamide; EAA: Ethanol and ammonium acetate; EAM: Ethyl acetate and methanol; EASSE: Ethyl acetate, sodium sulfate and ethanol; EAW: Ethyl acetate and water; EOH: Ethanol; MAW: Methanol, acetone and water; MDS: Methanol and dimethyl sulfoxide; MFA: Methanol and formic acid; MOH: Methanol; MWE: Microwave-assisted extraction; MWA: Methanol, water and acetic acid; MWC: Methanol, water and HCl; MWH: Methanol, water and n-hexane; MWPCE: Methanol, water, light petroleum, chloroform and ethyl acetate; PMWD: Light petroleum, methanol, water and dichloromethane; UB30: ultrasonic bath; WEA: Water, ethanol and acetone.

Purification

The mixtures obtained from extraction are quite complex, showing many species from the different tissues in the fruit. In order to obtain a higher concentration of some compounds, it's necessary to carry out a further purification.

Compound purification has been carried out by column chromatography, allowing high single concentration of compounds (Levaj *et al.*, 2008). Purification through adsorption is versatile, simple and low cost, which makes it attractive for the selective recovery of a variety of phenolics and polyphenols. Adsorption shows other advantages like selectivity, environmental impact and toxicological effects. Studies on the characterization of the detailed interactions between resins and individual plant phenolics are needed for design (Soto *et al.*, 2011).

High speed countercurrent chromatography (HSCC) is also used to extract and purify flavonoids using two-phase solvent systems, flowing simultaneously in opposite directions. In addition, HSCC also realizes multiple forms of the gradient elution process; thus it can be used not only to remove impurities from crude extract of raw materials but also to purify the final product. Moreover, some pure compounds can even be

obtained through one step from crude extract without sample pretreatment (Duo *et al.*, 2011).

Even tough, there is few available data for citrus flavonoids purification processes, i.e. the one used for purifying hesperidin, naringin, and narirutin with a Zorbax C18 column and a mobile phase of citric acid and ammonium acetate in water and methanol 60:40 (Levaj et al., 2008). Also, preparative high performance liquid chromatography (HPLC) using an instrument equipped with a UV-vis detector has not been employed widely in the isolation of flavonoid compounds. Most mobile phases consisted of a linear gradient of acetonitrile in H₂O. Crude juice is diluted with DMF, flavonoids are collected in the HPLC course range time of 5-30 min. The fractions collected are joined, evaporated to dryness in a rotary evaporator and redissolved to regenerate the original concentration of analytes in crude juice (Barreca et al., 2011d).

Analysis methods

Once the extract is obtained, it's important to analyze it, to know if the procedure was correct and the present species were separated as expected.

Qualitative methods

Thin layer chromatography (TLC) continues to be an important method for qualitative investigation of plant compounds because of its inherent advantages— many samples can be analyzed simultaneously and quickly and multiple separation techniques and detection procedures can be applied. TLC is one of the most powerful and general analytical tools used for qualitative purposes, indicating the presence of specific flavonoids in a simpler way than HPLC. It follows from numerous publications that, owing to large polarity differences, it is difficult to find a TLC system which separates similar structure molecules on a single chromatogram.

Most common stationary phase is silica gel, using a mobile phase of mixtures ethyl acetate – methanol – formic acid (Mohammad *et al.*, 2010). Conventional separation on silica gel with moderately polar mobile phases consisting of small amounts of methanol with less polar solvents has been successfully used for the polyphenolic compounds. The retention factor (Rf) values of the different compounds reflects their polarity, given by the number of -OH groups, wich displays much more affinity for the stationary phase.

Using the Folin—Ciocalteu reaction, the phenolic compounds form blue complexes with the phosphomolyb-

dic— phosphotungstic reagent at high pH. The analysis is simple, highly reproducible under carefully controlled conditions, and, therefore, widely used. The Folin method represents a classic approach to estimate total phenolic compounds in a variety of matrices. Although the method is nonspecific, it is frequently applied as a measure of total phenolics in biochemical, animal, and clinical trials (Soto *et al.*, 2012). Fluorescence detection of the flavonoids is also used to identify the effective separation of individual flavonoid compounds (Andreu *et al.*, 2010).

Quantitative methods

High performance liquid chromatography (HPLC) is widely used to quantify the amount of flavonoid compounds in the obtained extracts, and there are several methods reported for HPLC sets (table 4). For every method, it must be considered the polarity of the species to be analyzed, so the correct column and mobile phase may be chosen. The hypothesis proposes that the difference in the orientation of the -OH could result in different affinities of the two isomers for the stationary phase and hence their separation. Good characterization of mobile-phase systems can be achieved by determination of relationships between retention and mobile-phase composition.

T I I A			c	a	· · ·		• .	
Table 4.	HPLC	sets	tor	flavon	olds	ın	citrus	species.

Citrus species	Column	Mobile phase	Detection	Flavonoids	Authors
C. aurantifolia					
Juice	Ascentis Express C18 50x4.6 mm	(A) H ₂ O / HCOOH (99.9:0.1, v/v), (B) H ₂ O / CH ₃ CN/ 2-propanol/ HCOOH (39.9:20:40:0.1, v/v)	UV-DAD, 190 - 370 nm	Hd	Costa et al., 2014
Peel	Phenomenex Luna C18, 250x 4.60 mm	(A) 0.1% HCOOH in H₂O, (B) MeOH	UV-Vis, 280 nm	Ne, Ni, Ht, Hd, Nb	Loizzo et al., 2013
	Purospher star-C18 250 x 5 mm	(A) 10% HCOOH in H ₂ O, (B) CH ₃ CN	HPLCMS	Hd, Lu, Ni	Brito et al., 2014
Pulp	Purospher star-C18 250 x 5 mm	(A) 10% HCOOH in H ₂ O, (B) CH ₃ CN	HPLCMS	Hd, Lu, Ni	Brito et al., 2014
C. aurantium					
Juice	Discovery C ₁₈ 250x4.6 mm	CH ₃ CN / H ₂ O 0-100%	HPLCMS	Nr, Ni, Nh	Barreca et al., 2011a
Seeds	Hypersil ODS C18 250x4.6 mm	(A) CH ₃ CN, (B) 0.2% H ₂ SO ₄ in H ₂ O.	UV-Vis, 280 nm	Ni, Hd, Nh	Moulehi et al., 2012
Whole	Diamonsil C18 250x4.6 mm	(A) MeOH, (B) 4% AcOH (v/v)	UV-DAD, 200 – 400 nm	Nr, Ni, Hd, Nb, Tg	Sun <i>et al.,</i> 2013
C. bergamia					
Albedo	Luna C18 (2) 250 x 4.6 mm	(A) 0.1% HCOOH in H ₂ O, (B) MeOH	UV-Vis, 280 nm	-	DiDonna et al., 2011
C. daoxianensis					
Pulp	Zorbax SB-C18, 250×4.6 mm	(A) 0.1% HCOOH in H_2O , (B) MeOH	UV-DAD, 283 – 367 nm	Nr, Hd, Nb	Xi et al., 2014b

Citrus species	Column	Mobile phase	Detection	Flavonoids	Authors
C. erythrosa					
Whole	TSK-gel ODS-80TS	H ₃ PO ₄ : MeOH (80:20 – 55:45)%	UV-DAD, 200 – 400 nm	Nr, Hd, Nb, Tg	Ye et al. 2011
C. grandis					
Epicarp	Phenomenex Kinetex 100x2.1 mm	(A) MeOH, (B)0.1% HCOOH in $H_2O(v/v)$	HPLCMS	Ni, Ne	Li et al., 2014
Flavedo	Zorbax SB C-18 250 x4 mm	(A) H ₂ O / AcOH (99:1, v/v), (B) CH ₃ CN / AcOH (99:1,v/v).	HPLCMS	Ni, Nh	Zhang et al., 2011
	Zorbax SB C-18 250 x4 mm	(A) H ₂ O / AcOH (99:1, v/v), (B) CH ₃ CN / AcOH (99:1,v/v).	HPLCMS	Ni	Zhang <i>et al.,</i> 2014b
Juice	Zorbax SB C-18 250 x4 mm	(A) H ₂ O / AcOH (99:1, v/v), (B) CH ₃ CN / AcOH (99:1,v/v).	HPLCMS	Ni	Zhang et al., 2011
	Zorbax SB C-18 250 x4 mm	(A) H ₂ O / AcOH (99:1, v/v), (B) CH ₃ CN / AcOH (99:1,v/v).	HPLCMS	Ni	Zhang et al., 2014b
Peels	Acquity UPLC BEH C18 100x2.1 mm	(A) 0.2% AcOH in H ₂ O, (B) MeOH	UPLC-PDA	Nr, Ni, Nh, Ne	Xi et <i>al.,</i> 2014a
Pulp	Acquity UPLC BEH C18 100x2.1 mm	(A) 0.2% AcOH in H₂O, (B) MeOH	UPLC-PDA	Nr, Ni, Nh, Ne	Xi et <i>al.,</i> 2014a
Whole	Diamonsil C18 250x4.6 mm	(A) MeOH, (B) 4% AcOH in H ₂ O	UV-DAD, 200 – 400 nm	Nr, Ni, Hd, Nh, Nb, Tg	Sun et al., 2013
	Agilent Zorbax SB- C18 50x4.6 mm	(A) 0.1% HCOOH in H₂O, (B) CH₃CN	HPLCMS	Nr, Ni, Ne	Duan <i>et al.,</i> 2014
	Phenomenex Kinetex 100x2.1 mm	(A) MeOH, (B) 0.1% HCOOH in H ₂ O (v/v)	HPLCMS	Ni, Ne	Li et al., 2014
C. jambhiri					
Peel	LiChro CART 250x 4 mm	(A) H ₂ O – HCOOH (99.5: 0.5, v/v), (B) CH ₃ CN	HPLCMS	Nr, Ni, Hd, Nh	Hamdan <i>et al.,</i> 2011
C. junos					
Juice	Hypersil GOLD C18	MeOH:9% HAc aqueous, (5:95- 40:60)%	UV-Vis, 280 nm	Hd, Ni, Nh, Ne, Lu, Ht	Yoo et al. 2009
C. latifolia					
Peel	Hypersil BDS (C8) 250x 4.6 mm	(A) 0.1% HCOOH in H₂O, (B) CH₃CN, 75% A and 25% B.	HPLCMS	Hd, Nh	Londoño et al., 2010
C. limetta					
Juice	Diamonsil C ₁₈	MeOH : CH ₃ CN:PBS (10:40:39, v/v)	UV-Vis, 210 nm	Hd	Barreca <i>et al.,</i> 2011c
Peels	ProntoSIL C18Aq 250x2.00 mm	(A) H ₂ O, (B) CH ₃ CN	HPLCMS	Hd	Rodriguez et al., 2014
C. limon					
Juice	Phenomenex Luna C18(2) 150x4.6 mm	(A) AcOH – H ₂ O (0.5:99.5, v/v), (B) MeOH	UV-DAD, 280 – 370 nm	Ht, Ne	Abad et <i>al.,</i> 2014
Peel	Purospher star-C18 250 x 5 mm	(A) 10% HCOOH in H ₂ O, (B) CH ₃ CN	HPLCMS	Hd, Lu, Ni	Brito et al., 2014
Pulp	Purospher star-C18 250 x 5 mm	(A) 10% HCOOH in H ₂ O, (B) CH ₃ CN	HPLCMS	Hd, Lu, Ni	Brito <i>et al.,</i> 2014
Whole	Diamonsil C18 250x4.6 mm	(A) MeOH, (B) 4% AcOH in $H_2O(v/v)$	UV-DAD, 200 - 400 nm	Nr, Hd, Nb	Sun <i>et al.,</i> 2013
C. maxima					
Pulp	Waters Spherisorb ODS-2 150x4.6 mm	(A) H ₂ O – CH ₃ CN (90:10, v/v), (B) CH ₃ CN	UV-DAD, 280-330 nm	Ni, Nh, Nr	Ramful <i>et al.,</i> 2011

Citrus species	Column	Mobile phase	Detection	Flavonoids	Authors
C. medica					
Endocarp	Phenomenex Luna C18, 250x 4.60 mm	(A) 0.1% HCOOH in H ₂ O, (B) MeOH	UV-Vis, 280 nm	Hd,	Menichini et al., 2011b
Mesocarp	Phenomenex Luna C18, 250x 4.60 mm	(A) 0.1% HCOOH in H ₂ O, (B) MeOH	UV-Vis, 280 nm	Ni, Hd	Menichini et al., 2011b
Peel	Phenomenex Luna C18, 250x 4.60 mm	(A) 0.1% HCOOH in H ₂ O, (B) MeOH	UV-Vis, 280 nm	Ni, Ht, Nb	Menichini et al., 2011a
C. mitis					
Peel	Merck RP-18 250x4.6 mm	(A) 2% AcOH in H₂O (v/v), (B) 0.5% AcOH in H₂O / CH₃CN (1:1, v/v)	UV-DAD, 220 – 350 nm	Ni, Hd, Nb, Tg	Yu et al., 2013
C. myrtifolia					
Albedo	Discovery C ₁₈ 250x4.6 mm	CH ₃ CN / H ₂ O 0-100%	HPLCMS	Nr, Ni, Nh, Nb, Tg	Barreca et al., 2011b
Flavedo	Discovery C ₁₈ 250x4.6 mm	CH ₃ CN / H ₂ O 0-100%	HPLCMS	Nr, Ni, Nh, Nb, Tg	Barreca et al., 2011b
Juice	Discovery C ₁₈ 250x4.6 mm	CH ₃ CN / H ₂ O 0-100%	HPLCMS	Nr, Nh, Ni	Barreca et al., 2010 Barreca et al., 2011b
	Phenomenex Luna C18, 250x 4.60 mm	(A) 0.3% HCOOH in H2O, (B) 0.3% formic acid in CH3CN	HPLCMS	Ni, Nh, Nb, Tg	Scordino et al., 2011
Membrane	Discovery C ₁₈ 250x4.6 mm	CH ₃ CN / H ₂ O 0-100%	HPLCMS	Nr, Ni, Nh	Barreca et al., 2011b
Pulp	Phenomenex Luna C18, 250x 4.60 mm	(A) 0.3% HCOOH in H2O, (B) 0.3% formic acid in CH3CN	HPLCMS	Ni, Nh, Nb, Tg	Scordino et al., 2011
C. paradisi					
Flavedo	Zorbax SB C-18 250 x4 mm	(A) H ₂ O / AcOH (99:1, v/v), (B) CH ₃ CN / AcOH (99:1,v/v).	HPLCMS	Ni, Hd, Nh	Zhang et al., 2011
Juice	Beckman Ultrasphere ODS 205x4.6mm	(A) H ₂ O / HCOOH (95:5; v/v), (B) CH ₃ CN /(A) (60:40; v/v)	UV-DAD, 200 – 600 nm	Nr, Ni, Hd, Nh	Kelebek, 2010
	Zorbax SB C-18 250 x4 mm	(A) H ₂ O / AcOH (99:1, v/v), (B) CH ₃ CN/ AcOH (99:1,v/v).	HPLCMS	Ni, Hd, Nh	Zhang et al., 2011
	Phenomenex Luna C18(2) 150x4.6 mm	(A) AcOH – H₂O (0.5:99.5, v/v), (B) MeOH	UV-DAD, 280 – 370 nm	Ht, Ne	Abad et <i>al.,</i> 2014
Peel	Acquity UPLC BEH C18 100x2.1 mm	(A) 0.2% AcOH in H₂O, (B) MeOH	UPLC-PDA	Nr, Ni, Hd, Nh, Ne, Ht	Xi et <i>al.,</i> 2014a
Pulp	Acquity UPLC BEH C18 100x2.1 mm	(A) 0.2% AcOH in H₂O, (B) MeOH	UPLC-PDA	Nr, Ni, Hd, Nh, Ne, Ht	Xi et <i>al.,</i> 2014a
Whole	Diamonsil C18 250x4.6 mm	(A) MeOH, (B) 4% AcOH in $H_2O(v/v)$	UV-DAD, 200 - 400 nm	Nr, Ni, Hd, Nh, Nb, Tg	Sun <i>et al.,</i> 2013
C. poonensis					
Pulp	Zorbax SB-C18, 250×4.6 mm	(A) 0.1% HCOOH in H ₂ O, (B) MeOH	UV-DAD, 283 – 367 nm	Nr, Hd, Nb	Xi et al., 2014b
Whole	TSK-gel ODS-80TS	H ₃ PO ₄ : MeOH (80:20 – 55:45)%	UV-DAD, 200 – 400 nm	Nr, Hd, Nb, Tg	Ye et al. 2011
	Diamonsil C18 250x4.6 mm	(A) MeOH , (B) 4% AcOH in H ₂ O (v/v)	UV-DAD, 200 – 400 nm	Nr, Hd, Nb, Tg	Sun et al., 2013
C. reticulata					
Juice	Discovery C ₁₈ 250x4.6 mm	CH ₃ CN / H ₂ O 0-100%	HPLCMS	Nr, Hd, Nb, Tg	Barreca et al., 2010 Barreca et al., 2011b

Citrus species	Column	Mobile phase	Detection	Flavonoids	Authors
	Phenomenex Luna C18(2) 150x4.6 mm	(A) AcOH / H ₂ O (0.5:99.5, v/v), (B) MeOH	UV-DAD, 280 – 370 nm	Ht, Ne	Abad et al., 2014
	Beckman Ultrasphere ODS 250x4.6 mm	(A) H ₂ O / HCOOH (95:5; v/v), (B) CH ₃ CN /(A) (60:40; v/v)	UV-DAD, 200-600 nm	Nr, Hd	Kelebek & Selli, 2014
Peel	Hypersil BDS (C8) 250x 4.6 mm	(A) 0.1% HCOOH in H₂O, (B) CH₃CN, 75% A and 25% B.	HPLCMS	Hd, Nh	Londoño et al., 2010
	Chromsep SS C-18 250×4.6 mm	(A) MeOH, (B) 2% AcOH in H ₂ O (v/v)	UV-DAD, 282-330 nm	Hd, Nb, Tg	Makovsek et al., 2012
	Zorbax SB-C18, 250×4.6 mm	(A) 0.1% HCOOH in H2O, (B) MeOH	UV-DAD, 283 – 367 nm	Nr, Ni, Hd, Nh, Ne, Lu, Nb, Tg	Zhang et al., 2014c
Pulp	Waters Spherisorb ODS-2 150x4.6 mm	(A) H ₂ O – CH ₃ CN (90:10, v/v), (B) CH ₃ CN	UV-DAD, 280-330 nm	Hd, Nr	Ramful <i>et al.,</i> 2011
	Zorbax SB-C18, 250×4.6 mm	(A) 0.1% HCOOH in H ₂ O, (B) MeOH	UV-DAD, 283 – 367 nm	Nr, Ni, Hd, Nh, Nb	Xi et al., 2014b
Seeds	Hypersil ODS C18 250x4.6 mm	(A) CH ₃ CN, (B) 0.2% H ₂ SO ₄ in H ₂ O	UV-Vis, 280 nm	Ni, Hd	Moulehi <i>et al.,</i> 2012
C. sinensis					
Juice	Onyx monolithic C ₁₈ , 100x4.6 mm	Ternary mixture of 0.15 mol L ⁻¹ acetic buffer, pH 4.0, CH ₃ CN and MeOH.	SLM Aminco AB2 luminescence spectrometer, 585-625 nm	Ni, Hd, Ne	Andreu <i>et al.,</i> 2010
	Phenomenex Luna C18(2) 150x4.6 mm	(A) AcOH – H ₂ O (0.5:99.5, v/v), (B) MeOH	UV-DAD, 280 - 370 nm	Ht, Ne	Abad et al., 2014
	Discovery C18 250x4.6 mm	CH ₃ CN / H ₂ O 0-100%	HPLCMS	Nr, Hd	Barreca <i>et al.,</i> 2013
Peel	Hypersil BDS (C8) 250x 4.6 mm	(A) 0.1% HCOOH in H ₂ O, (B) CH ₃ CN, 75% A and 25% B.	HPLCMS	Hd, Nh, Nb, Tg	Londoño et al., 2010
	Hypersil GOLD C ₁₈ 250x 4.6 mm	(A) MeOH, (B) 9% AcOH in H ₂ O	UV-Vis, 280 nm	Ni, Nh	Chen <i>et al.,</i> 2011
Pulp	Waters Spherisorb ODS-2 150x4.6 mm	(A) H ₂ O – CH ₃ CN (90:10, v/v), (B) CH ₃ CN	UV-DAD, 280-330 nm	Hd, Nr	Ramful <i>et al.,</i> 2011
	Agilent Eclipse XDB-C ₁₈ 150x2.1 mm	(A) 1 mM NH4F in H2O, (B) MeOH	HPLCMS	Hd, Nh, Ni, Nb	Pan <i>et al.,</i> 2014
Whole	Diamonsil C18 250x4.6 mm	(A) MeOH, (B) 4% AcOH in $H_2O(v/v)$	UV-DAD, 200 – 400 nm	Nr, Hd, Nb, Tg	Sun <i>et al.,</i> 2013
C. suavissima					
Whole	TSK-gel ODS-80TS	H ₃ PO ₄ : MeOH (80:20 – 55:45)%	UV-DAD, 200 – 400 nm	Ni, Nr, Hd, Nb, Tg	Ye et al. 2011
C. succosa					
Whole	TSK-gel ODS-80TS	H ₃ PO ₄ : MeOH (80:20 – 55:45)%	UV-DAD, 200 – 400 nm	Nr, Hd, Nb, Tg	Ye et al. 2011
C. tardiferax					
Whole	TSK-gel ODS-80TS	H ₃ PO ₄ : MeOH (80:20 – 55:45)%	UV-DAD, 200 – 400 nm	Nr, Hd, Nb, Tg	Ye et al. 2011
C. unshiu					
Juice	Phenomenex Luna C18(2) 150x4.6 mm	(A) AcOH – H ₂ O (0.5:99.5, v/v), (B) MeOH	UV-DAD, 280 - 370 nm	Ht, Ne	Abad et al., 2014
	Beckman Ultrasphere ODS 250x4.6 mm	(A) H ₂ O / HCOOH (95:5; v/v), (B) CH ₃ CN /(A) (60:40; v/v)	UV-DAD, 200-600 nm	Nr, Hd	Kelebek & Selli, 2014

Citrus species	Column	Mobile phase	Detection	Flavonoids	Authors
Peel	SunFire C18 column 250x4.6 mm	(A) MeOH, (B) 0.5% AcOH in H_2O	UV-DAD, 280 nm	Nr, Hd, Ni, Ne, Ht	Jung et al., 2011
Pulp	Zorbax SB-C18, 250×4.6 mm	(A) 0.1% HCOOH in H ₂ O, (B) MeOH	UV-DAD, 283 – 367 nm	Nr, Hd, Nb	Xi et al., 2014b
Whole	TSK-gel ODS-80TS	H ₃ PO ₄ : MeOH (80:20 – 55:45)%	UV-DAD, 200 – 400 nm	Nr, Hd, Nb, Tg	Ye et al. 2011
	Diamonsil C18 250x4.6 mm	(A) MeOH, (B) 4% AcOH in H ₂ O (v/v)	UV-DAD, 200 - 400 nm	Nr, Hd, Nb, Tg	Sun <i>et al.,</i> 2013

AcOH: acetic acid, Hd: Hesperidin, HPLCMS: High performance liquid chromatography coupled with ESI-MS/MS detection, Ht: Hesperetin, MeOH: Methanol, Ni: Naringin, Nh: Neohesperidin, Ne: Naringenin, Nr: Narirutin, Nb: Nobiletin, Lu: Luteolin, Tg: Tangeretin, UPLC-PDA: Ultra performance liquid chromatography with photodiode array detector, UV-DAD: Ultraviolet diode array detector, UV-Vis: Ultraviolet and visible detector.

Gas chromatography is also used, but due to its characteristics, volatile samples are required (Cheong et *al.*, 2012). In addition, water samples are not allowed, only the species that are soluble in volatile solvent should be measured.

Liquid chromatography has been the most used technique to analyze the obtained extracts from citrus fruits (Jiang *et al.*, 2011), performing tests at different pH levels and using a huge variety of detection methods. High performance liquid chromatography (HPLC) combined with ultraviolet (UV) detection and mass spectrometric (MS), electrospray ionization (ESI), and/or two mass spectrometer tandem (MS/MS) measurement provides the most useful techniques currently available to identify specific classes and structures of food phenolics (Barreca *et al.*, 2013; He *et al.*, 2011). The differences in ultraviolet spectra are an important tool in determining which wavelengths to monitor for detection and quantification by HPLC (Soto *et al.*, 2012; González *et al.*, 2010).

Conclusions

Since citrus fruits are original from Asia, most of the varieties on the current literature were found and studied in Far East countries. It doesn't mean that others countries are not interested in studying citrus flavonoids, only that they don't have so much of wild or endemic citrus species. Most of the studies used grounded dry raw material for extraction, from peels and whole fruit. Methanol mixtures are the main solvent used in the extraction of citrus flavonoids.

There's few literature found about purification of single flavonoids, since few details of purification behavior of single flavonoid compounds have been provided in most of the publications dealing with their isolation and structural elucidation, and, in some cases, inadequate information is supplied, there is an entire opportunity field for new research in purification techniques, and their efficiencies in flavonoids isolation.

High performance liquid chromatography has been used as the best analysis technique to quantify and

identify structures of the obtained flavonoids and thin layer chromatography provides a quick method for qualitative identification of the compounds along the experimental process.

Acknowledgements

Authors are grateful to Postgraduate Department of Chemical Engineering at Universidad Michoacana de San Nicolás de Hidalgo for providing access to databases. The work was supported by the CONACYT, México, scholarship number 220045/206495.

References

- Abad-García, B., Garmón-Lobato, S., Sánchez-Ilárduya, M.B., Berrueta, L.A., Gallo, B., Vicente, F., & Alonso-Salces, R.M. (2014). Polyphenolic contents in citrus fruit juices: authenticity assessment. *European Food Research and Technology*, 238, 803-818.
- Andreu-Navarro, A., Fernandez-Romero, J.M., & Gómez-Hens, A. (2010). Long-Wavelength Fluorescence Detection of flavonoids in orange juices by LC. *Chromatographia*, 72, 1115-1120.
- Alvarez, R., Carvalho, C.P., Sierra, J., Lara, O., Cardona, D., Londoño, J. (2012). Citrus juice extraction systems: Effect on chemical composition and antioxidant a Activity of clementine juice. *Journal of Agricultural and Food Chemistry*, 60, 774-781.
- Arab, L. & Liebeskind, D. (2010). Tea, flavonoids and stroke in man and mouse. Archives of Biochemistry and Biophysics, 501, 31– 36.
- Asikin, Y., Maeda, G., Tamaki, H., Mizu, M., Oku, H., & Wada, K. (2015). Cultivation line and fruit ripening discriminations of Shiikuwasha (*Citrus depressa* Hayata) peel oils using aroma compositional, electronic nose, and antioxidant analyses. Food Research International, 67, 102-110.
- Barreca, D., Bellocco E., Caristi C., Leuzzi U., & Gattuso G. (2010). Flavonoid composition and antioxidant activity of juices from chinotto (*Citrus x myrtifolia Raf.*) fruits at different ripening stages. Journal of Agricultural and food Chemistry, 58, 3031–3036.
- Barreca D., Bellocco E., Caristi C., Leuzzi U., & Gattuso G. (2011a). Distribution of C- and O-glycosyl flavonoids, (3-hydroxy-3-methylglutaryl) glycosyl flavanones and furocoumarins in Citrus aurantium L. juice. Food Chemistry, 124, 576–582.
- Barreca D., Bellocco E., Caristi C., Leuzzi U., & Gattuso G. (2011b). Elucidation of the flavonoid and furocoumarin composition and radical-scavenging activity of green and ripe chinotto (*Citrus myrtifolia Raf.*) fruit tissues, leaves and seeds. *Food Chemistry*, 129, 1504–1512.
- Barreca D., Bellocco, E., Caristi, C., Leuzzi, U., & Gattuso, G. (2011c). Flavonoid profile and radical-scavenging activity of Mediterra-

nean sweet lemon (Citrus limetta Risso) juice. Food Chemistry, 44, 2190-2197.

- Barreca, D., Bellocco, E., Caristi, C., Leuzzi, U., & Gattuso, G. (2011d). Kumquat (*Fortunella japonica Swingle*) juice: Flavonoid distribution and antioxidant properties. *Food Chemistry*, 129, 417–422.
- Barreca, D., Bellocco, E., Leuzzi, U., & Gattuso, G. (2014). First evidence of C- and O-glycosyl flavone in blood orange (*Citrus sinensis* (L.) Osbeck) juice and their influence on antioxidant properties. *Food Chemistry*, 149, 244-252.
- Barreca, D., Bisignano, C., Ginestra, G., Bisignano, G., Bellocco, E., Leuzzi, U., & Gattuso, G. (2013). Polymethoxylated, C- and Oglycosyl flavonoids in tangelo (*Citrus reticulata x Citrus paradisi*) juice and their influence on antioxidant properties. *Food Chemistry*, 141, 1481-1488.
- Brito, A., Ramirez, J.E., Areche, C., Sepúlveda, B., & Simirgiotis, M.J. (2014). HPLC-UV-MS Profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. *Molecules*, 19, 17400-17421.
- Buer, C.S., Imin, N., Djordjevic, M.A. (2010). Flavonoids: New roles for old molecules, *Journal of Integrative Plant Biology*, 52(1), 98–111.
- Celiz, G., Daz, M. & Audisio, M.C. (2011). Antibacterial activity of naringin derivatives against pathogenic strains. *Journal of Applied Microbiology*, 111, 731–738.
- Chen, M.L., Yang, D.J., & Liu, S.C. (2011). Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit (*Citrus sinensis (L.*) *Osbeck*) peels. *International Journal of Food Science and Technology*, 46, 1179-1185.
- Cheong, M.W., Zhu, D., Sng, J., Liu, S.Q., Zhou, W., Curran, P., Yu, B. (2012). Characterization of calamansi (*Citrus microcarpa*). Part II: Volatiles, physicochemical properties and non-volatiles in the juice. *Food chemistry*, 134, 696-703.
- Codoñer-Franch, P. & Valls-Bellés, V. (2010). Citrus as functional foods. *Current Topics in Nutraceutical Research*, 8(4), 173-184.
- Costa, R., Russo, M., DeGrazia, S., Grasso, E., Dugo, P., & Mondello, L. (2014). Thorough investigation of the oxygen heterocyclic fraction of lime (*Citrus aurantifolia* (Christm.) Swingle) juice. *Journal of Separation Science*, 37, 792-797.
- Cushnie, T.P.T. & Lamb, A.J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. *International Journal of Antimicrobial Agents*, *38*, 99–107.
- DiDonna, L., Galluci, G., Malaj, N., Romano, E., Tagarelli, A., Sindona, G. (2011). Recycling of industrial essential oil waste: *Brutieridin* and *Melitidin*, two anticholesterolaemic active principles from bergamot albedo. *Food chemistry*, *125*, 438-441.
- DiDonna, L., Taverna, D., Mazzoti, F., Benabdelkamel, H., Attya M., & Sindona G. (2013). Comprehensive assay of flavanones in citrus juices and beverages by UHPLC-ESI-MS/MS and derivatization chemistry. *Food chemistry*, 141, 2328-2333.
- Duan, L., Guo, L., Dou, L.L., Yu, K.Y., Liu, E.H., & Li, P. (2014). Comparison of chemical profiling and antioxidant activities of fruits, leaves, branches, and flowers of *Citrus grandis* 'Tomentosa'. *Journal of Agricultural and Food Chemistry*, 62, 11122-11129.
- Duo-Long, D. Yuan-Yuan, Z., Xiao-Fen, C., Xin-Yi, H, & Shi-Lan, F. (2011). Advances in application of high-speed countercurrent chromatography in separation and purification of flavonoids. *Chinese Journal of Analytical Chemistry*, 39(2), 269–275.
- González-Molina, E., Domínguez-Perles, R., Moreno, D.A., & García-Viguera, C. (2010). Natural bioactive compounds of *Citrus limon* for food and health. *Journal of Pharmaceutical and Biome dical Analysis*, *51*, 327-345.
- Guimaraes, R., Barros, L., Barreira, J.C.M., Sousa, M.J., Carvalho, A.M., Ferreira, I.C.F.R. (2010). Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange. *Food and Chemical Toxicology*, 48, 99-106.
- Hamdan, D., El-Readi, M.Z., Tahrani, A., Herrmann, F., Kaufmann, D., Farrag, N., El-Shazly, A., Wink, M. (2010). Chemical compo-

sition and biological activity of *Citrus jambhiri Lush*. *Industrial Crops and Products*, 32, 269–274.

- He, D., Shan, Y., Wu, Y., Liu, G., Chen, B., Yao, S. (2011). Simultaneous determination of flavanones, hydroxycinnamic acids and alkaloids in citrus fruits by HPLC-DAD–ESI/MS. *Food Chemistry*, 127, 880-885.
- Jiang, M.H., Yang, L., Zhu, L., Piao, J.H. & Jiang, J.G. (2011). Comparative GC/MS analysis of essential Oils extracted by 3 methods from the bud of *Citrus aurantium L.* var. *amara* Engl. *Journal of Food Science*, 76(9), 1219-1225.
- Jung, H.K., Jeong, Y.S., Park, C.D., Park, C.H., Hong, J.H. (2011). Inhibitory effect of citrus peel extract on lipid accumulation of 3T3-L1 adipocytes. *Journal of the Korean Society for Applied Biological Chemistry*, 54(2), 169-176.
- Kelebek, H. (2010). Sugars, organic acids, phenolic compositions and antioxidant activity of Grapefruit (*Citrus paradisi*) cultivars grown in Turkey. *Industrial Crops and Products*, 32, 269–274.
- Kelebek, H & Selli, S. (2014). Identification of phenolic compositions and the antioxidant capacity of mandarin juices and wines. *Journal of Food Science and Technology*, 51(6), 1094-1101.
- Lagha-Benamrouche, S., & Madani, K. (2013). Phenolic contents and antioxidant activity of orange varieties (*Citrus sinensis L.* and *Citrus aurantium L.*) cultivated in Algeria:Peels and leaves. *Industrial Crops and Products*, 50, 723-730.
- Lampila, P., van Lieshout, M., Gremmen, B., & Lähteenmäki, L. (2009). Consumer attitudes towards enhanced flavonoid content in fruit. *Food Research International*, 42, 122–129.
- Ledesma-Escobar, C.A., & Luque de Castro, M.D. (2014). Towards a comprehensive exploitation of citrus. *Trends in Food Science and Technology*, *39*, 63-75.
- Levaj, B., Dragovic-Uzelac, V., Bursac-Kovacevic, D., & Krasnici, N. (2008). Determination of flavonoids in pulp and peel of mandarin fruits. *Agriculturae Conspectus Scientificus*, 74, 3, 221-225.
- Li, P.L., Liu, M.H., Hu, J.H., Su, W.W. (2014). Systematic chemical profiling of *Citrus grandis* 'Tomentosa' by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry. *Journal of Pharmaceutical and Biomedical Analysis*, 90, 167-179.
- Loizzo, M.R., Tundis, R., Bonesi, M., Menichini, F., DeLuca, D., Colica, C., Minichini, F. (2013). Evaluation of Citrus aurantifolia peel and leaves extracts for their chemical composition, antioxidant and anti-cholinesterase activities. *Journal of the Science of Food and Agriculture*, *92*, 2960-2967.
- Londoño-Londoño, J., Rodrigues de Lima, V., Lara, O., Gil, A., Crecsynsky Pasa, T.B., Arango, G.J., Ramirez Pineda, J.R. (2010). Clean recovery of antioxidant flavonoids from citrus peel: Optimizing an aqueous ultrasound-assisted extraction method. *Food Chemistry*, *119*, 81-87.
- Lorente, J., Vegara, S., Martí, N., Ibarz, A., Coll, L., Hernández, J., Valero, M., & Saura, D. (2014). Chemical guide parameters for Spanish lemon (*Citrus limon* (L.) Burm.) juices. *Food Chemistry*, *162*, 186-191.
- Makovsek, K., Knez, Z., & Skerget, M. (2012). Influence of process parameters on the extraction of flavanones from mandarin peel. *Acta Chim Slovenia*, *59*, 879-887.
- Menichini, F., Tundis, R., Loizzo, M.R., Bonesi, M., Liu, B., Jones, P., Persaud, S.J., Mastellone, V., Lombardi, P., Houghton, P.J., Avallone, Menichini, F. (2011a). C. medica cv Diamante peel chemical composition and influence on glucose homeostasis and metabolic parameters. Food Chemistry, 124, 1083-1089.
- Menichini, F., Loizzo, M.R., Bonesi, M., Conforti, F., DeLuca, D., Statti, G.A., Cindio, B., Menichini, F., Tundis, R. (2011b). Phytochemical profile, antioxidant, anti-inflammatory and hypoglycemic potential of hydroalcoholic extracts from *Citrus medica L*. cv Diamante flowers, leaves and fruits at two maturity stages. *Food and Chemical Toxicology*, 49, 1549-1555.
- Mohammad, A., Bhawani, S.A., & Sharma, S. (2010). Analysis of herbal products by thin-layer chromatography: A Review. *International Journal of Pharma and Bio Sciences*, *1*, (2), 1-51.

- Montes-Belmont, R. (2009). Diversidad de compuestos químicos producidos por las plantas contra hongos fitopatógenos. *Revista Mexicana de Micología, 29,* 73-82.
- Moulehi, I., Bourgou, S., Ourghemmi, I., & Tounsi, M.S. (2012). Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (*Citrus reticulate Blanco*) and bitter orange (*Citrus aurantium* L.) seeds extracts. *Industrial Crops and Products*, 39, 74-80.
- Natarajan, N., Thamaraiselvan, R., Lingaiah, H., Srinivasan, P., Periyasamy, B.M. (2011). Effect of flavonone hesperidin on the apoptosis of human mammary carcinoma cell line MCF-7. *Biomedicine & Preventive Nutrition, 1,* 207-215.
- Neves, A.L., Chinali Komesu, M. & Sala Di Matteo, M.A. (2010). Effects of Green Tea Use on Wound Healing. *International Journal of Morphology. Morphol.*, 25(3):905-910.
- Özçelik, B., Kartal, M., & Orhan, I. (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. *Pharmaceutical Biology*, *4*9(4), 396–402.
- Pan, Z., Li, Y., Deng, X., & Xiao, S. (2014). Non-targeted metabolomic analysis of orange (*Citrus sinensis* [L.] Osbeck) wild type and bud mutant fruits by direct analysis in real-time and HPLCelectrospray mass spectrometry. *Metabolomics*, 10, 508-523.
- Pekal, A., Drozdz, P., & Biesaga, M. (2011). Evaluation of the antioxidant properties of fruit and flavoured black teas. *European Journal of Nutrition*, *50*, 681-688.
- Procházková, D., Boušová, I. & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. *Fitoterapia*, 82, 513– 523.
- Ramful, D., Tarnus, E., Aruoma, O.I., Bourdon, E., & Bahorun, T. (2011). Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. *Food Research International*, 44, 2088-2099.
- Rodríguez-Rivera, M.P., Lugo-Cervantes, E., Winterhalter, P., & Jerz, G. (2014). Metabolite profiling of polyphenols in peels of *Citrus limetta* Risso by combination of preparative high-speed countercurrent chromatography and LC-ESI-MS/MS. Food Chemistry, 158, 139-152.
- Rousos, P.A. (2011). Phytochemicals and antioxidant capacity of orange (*Citrus sinensis* (I.) Osbeck cv. Salustiana) juice produced under organic and integrated farming system in. *Scentia Horticulturae*, *129*, 235-258.
- Sandoval-Montemayor, N.E., Garcia, A., Elizondo-Treviño, E., Garza-González, E., Alvarez, L., Camacho-Corona, M.R. (2012). Chemical composition of hexane extract of *Citrus aurantifolia* and Anti-*Mycobacterium tuberculosis* activity of some of its constituents. *Molecules*, *17*, 11173-11184.
- Sanfélix-Gimeno, G., Peiró, S., Librero, J., Ausejo-Segura, M., Suárez-Alemán, C., Molina-López, T., Celaya, M.C., Castaño-Riera, E. (2010). Population analysis by area of health of changes in consumption, price and expenditure of cardiovascular drugs in eight autonomous communities, Spain, , *Revista Española Salud Pública*, 84, 4, 389-407.
- Scordino, M., Sabatino, L., Belligno, A., & Gagliano, G. (2011). Flavonoids and furocoumarins distribution of unripe chinotto (*Citrus x myrtifolia Rafinesque*) fruit: beverage processing homogenate and juice characterization. *European Food Research and technology*, 233, 759-767.
- Soto, M.L., Moure, A., Domínguez, H, & Parajó, J.C. (2011). Recovery, concentration and purification of phenolic compounds by adsorption: A review. *Journal of Food Engineering*, 105, 1–27.
- Soto-Vaca, A., Gutierrez, A., Losso, J.N., Xu, Z., & Finley, J.W. (2012). Evolution of Phenolic Compounds from Color and Flavor Problems to Health Benefits. *Journal of Agricultural and Food Chemistry*, 60, 6658-6677.

- Sun, Y., Qiao, L., Shen, Y., Jiang, P., Chen, J., & Ye, X. (2013). Phytochemical profile and antioxidant activity of physiological drop of citrus fruits. *Journal of Food Science*, 78(1), C37-C42.
- Tham, W.W. & Liew, K.C. (2014). Influence of different extraction temperatures and methanol solvent percentages on the total phenols and total flavonoids from the heartwood and bark of *Acacia auriculiformis. European Journal of Wood and Wood Products, 72,* 67-72.
- Vikram, A., Jayaprakasha, G.K., Jesudhasan, P.R., Pillai, S.D. & Patil, B.S. (2010). Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. *Journal of Applied Microbiology*, 109, 515-527.
- Wang, S., Chen, P., Jiang, W., Wu, L., Chen, L., Fan, X., Wang, Y. & Cheng, Y. (2014). Identification of the effective constituents for anti-inflammatory activity of Ju-Zhi-Jiang-Tang, an ancient traditional Chinese medicine formula. *Journal of Chromatography A*, 1348, 105–124.
- Xi, W., Fang, B., Zhao, Q., Jiao, B., & Zhou, Z. (2014a). Flavonoid composition and antioxidant activities of Chinese local pummelo (*Citrus grandis* Osbeck.) varieties. *Food Chemistry*, 161, 230-238.
- Xi, W., Zhang, Y., Sun, Y., Shen, Y., & Zhou, Z. (2014b). Phenolic composition of Chinese wild mandarin (*Citrus reticulate Blan*co.) pulps and their antioxidant properties. *Industrial Crops and Products*, 52, 466-474.
- Ye, X.Q., Chen, J.C., Liu, D.H., Jiang, P., Shi, J., Xue, S., Wu, D., Xu, J.G., & Kakuda, Y. (2011). Identification of bioactive composition and antioxidant activity in young mandarin fruits. *Food Chemistry*, 124, 1561-1566.
- Yoo, K., Hwang, I.K., Park, J.H., & Moon, B. (2009). Comparative flavonoids contents of selected herbs and associations of their radical scavenging activity with antiproliferative actions in V79-4 Cells. *Journal of Food Science*, 74, 6, C462-468.
- Yu, E.A., Kim, G.P., Jeong, S.W., Park, S., Lee, S.J., Kim, J.H., Lee, W.S., Bark, K.M., Jin, J.S., & Shin, S.C. (2014). Flavonoid profile and biological activity of Korean citrus varieties (II): Pyunkyul (*Citrus tangerina* Hort. ex Tanaka) and overall contribution of its flavonoids to antioxidant effect. *Journal of Functional Foods*, 6, 637-642.
- Yu, M.W., Lou, S.N., Chiu, E.M., & Ho, C.T. (2013). Antioxidant activity and effective compounds of immature calamondin peel. *Food Chemistry*, 136, 1130-1135.
- Zang, L., Shimada, Y., Kawajiri, J., Tanaka, T., & Nishimura, N. (2014). Effects of Yuzu (*Citrus junos* Siebold ex Tanaka) peel on the diet-induced obesity in a zebrafish model. *Journal of Functional Food*, 10, 499-510.
- Zhang, M., Duan, C., Zang, Y., Huang, Z., & Liu, G. (2011). The flavonoid composition of flavedo and juice from the pummelo cultivar (*Citrus grandis* (L.) Osbeck) and the grapefruit cultivar (*Citrus paradisi*) from China. *Food Chemistry*, 129, 1530-1536.
- Zhang, M., Jiang, S., Qian, D., Shang, E.X., & Duan, J.A. (2014a). Determination of metabolism of neohesperidin by human intestinal bacteria by UPLC-Q-TOF/MS. *Chromatographia*, 77, 439-445.
- Zhang, M., Nan, H., Wang, Y., Jiang, X., & Li, Z. (2014b). Comparison of Flavonoid compounds in the flavedo and juice of two pummelo cultivars (*Citrus grandis* L. Osbeck) from different cultivation regions in China. *Molecules*, *19*, 17314-17328.
- Zhang, Y., Sun, Y., Xi, W., Shen, Y., Qiao, L., Zhong, L., Ye, X., & Zhou, Z. (2014c). Phenolic compositions and antioxidant capacities of Chinese wild mandarin (*Citrus reticulata* Blanco) fruits. *Food Chemistry*, 145, 674-680.