

Caracterización de materiales de maracuyá (Passiflora spp) en Veracruz, México

Material characterization of passion fruit (Passiflora spp) in Veracruz, México

Enrique N. Becerra-Leor^{1⊠}, Xochítl Rosas-González¹, Isaac Meneses-Márquez¹ y Andrés Vásquez-Hernández¹

¹INIFAP-Campo Experimental Cotaxtla Km 34.5 Carretera federal Veracruz-Córdoba. Municipio de Medellín de Bravo, Ver. E-mail: becerra.noe@inifap.gob.mx ⊠Autor para correspondencia

Recibido: 9/01/2014 Aceptado: 19/07/2014

RESUMEN

Se llevó a cabo la caracterización de diferentes materiales de maracuyá incluyendo tres especies cultivadas (*P. edulis* Deg, *P. ligularis* Juss y *P. quadrangularis* L.) y una silvestre (*P. foetida* L. Gaertn). El análisis de varianza mostro diferencias altamente significativas entre materiales y hubo correlación entre el contenido jugo y la cantidad de semillas por fruto, y además entre jugo y peso del fruto. *P. quadrangularis* presentó los frutos más grandes y *P. foetida* los de menor tamaño.

Palabras claves: Evaluación, passifloras, especies

ABSTRACT

Characterization of different materials of passion fruit including three cultivated species (*P. edulis* Sims fv flavicarpa Deg., and *P. ligularis* Juss. *P. quadrangularis* L.) and a wild (*P. foetida* L. Gaertn.) was carried out. Analysis of variance showed significant differences among materials broadly and there were correlation between juice content and number of seeds per fruit, and juice content with fruit weight. *P. quadrangularis* had the largest fruit than others and *P. foetida* the smaller one.

Key words: Evaluation, passifloras, species.

INTRODUCCION

El maracuyá es uno de los nuevos cultivos que se ha introducido para su siembra en las áreas tropicales y subtropicales, en un intento por diversificar la fruticultura. Este fruto es originario de la región del Amazonas

en Brasil, que es el país con mayor producción en el mundo. Otros países productores importantes son: Colombia, Ecuador, Perú, Australia, Sudáfrica, y Estados Unidos (Hawaii y Florida); también se cultiva en Venezuela, República Dominicana, El Salvador, Costa Rica, Puerto Rico, Cuba, Chile y México, aunque en este último país se produce en baja escala (Schwentesius y Gómez, 1997; Knight y Sauls, 1994).

Los grandes países productores de maracuyá como Brasil, Venezuela y Ecuador, no tienen identificadas variedades, únicamente lo conocen como maracuyá amarillo. En El Salvador es un cultivo relativamente nuevo, originado de semilla introducida de Guatemala posiblemente de Honduras; algunos productores tienen identificado su material, con una selección propia, posiblemente no saben su verdadero nombre (García, 2002).

En los Estados Unidos (California, Hawaii y Massachussets) se han desarrollado variedades de maracuyá morado como Black Knight, Edgehill, Frederick, Kahuna, Paul Ecke y Purple Giant (Morton, 1987).

De maracuyá amarillo se mencionan a Brazilian Golden y Golden Giant, de Brasil y de Australia, respectivamente. Existen algunas selecciones locales como Waimanalo Selection, Yee Selection y Noel's Special de Hawai, además de Mirim o Hawaiiana de América del Sur. En Australia se siembran híbridos de las dos formas como E 23, Purple Gold, Lacey y Black Beauty. En Brasil se han obtenido recientemente tres híbridos denominados BRS Gigante Amarelo, BRS Ouro Vermelho y BRS Sol do Cerrado (EMBRAPA, 2008).

En México este cultivo se produce en baja escala, la superficie es pequeña, los lotes de producción son reducidos en la mayoría de los casos y las prácticas agronómicas y uso de materiales mejorados son empíricas. Veracruz cuenta con las condiciones agro-ecológicas que satisfacen los requerimientos del cultivo. El objetivo de este trabajo fue caracterizar y seleccionar germoplasma para contribuir a la diversificación de genotipos de este cultivo.

MATERIALES Y METODOS

El experimento se realizó en lotes del Campo Experimental Cotaxtla, del INIFAP, ubicado en el kilómetro 34.5 de la carretera Veracruz-Córdoba, en el municipio de Medellín de Bravo. Se evaluaron 16 materiales de maracuyá durante el periodo de febrero a mayo del 2008 y 2009. Se consideraron materiales de P. ligularis, P. foetida y P. P. edulis. quadrangularis, de los cuales nueve son maracuyá amarillo, cuatro morados, rosadas y una anaranjada (Cuadro 2). Se midieron los siguientes datos en diez frutos de cada material: Peso en gramos (g), diámetro a lo largo y ancho fruto, largo y ancho de la cavidad en centímetros (cm), número de semillas, relación largo y ancho del fruto, grosor de cáscara en milímetros (mm), pH y color de la pulpa, sólidos solubles, contenido de jugo (ml) y en algunos casos acidez titulable. Se hicieron análisis de varianza y correlaciones con el paquete estadístico SAS.

RESULTADOS Y DISCUSION

En el Cuadro 1 se presentan los resultados del análisis de varianza de los materiales en donde se obtuvieron diferencias altamente significativas para los parámetros de jugo expresado en mililitros, peso del fruto expresado en gramos, número de semillas, cantidad de sólidos solubles, relación largo por ancho del fruto y pH del jugo.

El material AmarilloB sobresalió en los siguientes parámetros peso de fruto, largo y ancho de cavidad de fruto, numero de semillas y jugo (238 gr; 8.68 cm; 8.11 cm; 328.7 y 93.9 ml, respectivamente). También sobresalieron Cotaxtla en peso promedio (128 gr); y largo y ancho de la cavidad el material de La Esperanza (15.76 cm y 30.35 cm; 7.55 cm y 5.82 cm

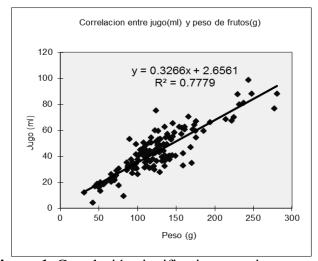
respectivamente), en grosor de cáscara casi todos los materiales contaron con 0.34 mm; la

acidez titulable fue de 3.55 a 4.98.

Cuadro 1. Cuadrados medios de variables con diferencias altamente significativas de maracuyá.

F.V.	G.L.	Jugo (ml)	Peso fruto (g)	No. Semillas	Solidos Solubles	Relaciòn Largo/Ancho	Ph	
Rep	4	204.3	755.1	4525	4.6	0.003	0.03	
Variedad	15	1165.4 **	8323.7 **	14,774.4 **	5.9 **	0.48 **	0.95 **	
Error	60	16.4	64.4	579.5	0.3	0.0003	0.001	
C.V.		9.4	6	9.8	3.6	2.2	1	

Los materiales morados sobresalieron en los sólidos solubles con promedios de 15.4 a 18.4 (Cuadro 2). La acidez titulable vario de 3.61 a 4.43. El color de la pulpa varió desde amarillo hasta anaranjado.


Cuadro 2. Comparaciones de medias de variables evaluadas en materiales de maracuyá.

Variedad	peso/fruto(g)		Num. de semilla		Brix		Indice (largo/ar		На	
Amarilla J1	156.1	b	253.8	efg	15.0	efgh	0.95	f	3.0	d
Morada J	49.0	I	124.0	0	14.9	efghi	0.88	g	3.2	С
Rosada J1	150.8	b	292.1	cd	16.1	bc	0.52	i	3.4	b
Morada CECOT	128.0	cde	246.8	efgh	14.6	fghijk	0.52	i	2.8	fg
Morada redonda Rancho El Para	97.6	hi	201.0	ijklmn	15.4	cde	1.06	е	2.8	h
Rosada Rancho El Paraiso	100.4	hi	234.8	fghi	13.9	k	1.14	С	2.7	i
Amarilla Jalisco	105.6	h	219.8	ghijklm	16.0	bcd	0.52	i	3.0	d
Amarilla CECOT	128.0	cdef	327.4	ab	16.3	b	0.53	i	2.7	i
Amarilla B	238.3	а	328.7	а	14.8	efghij	0.86	g	3.0	е
Amarilla La Esperanza	123.9	defg	223.5	fghijkl	15.3	def	0.64	i	3.0	d
Amarilla Comapa	129.6	cde	258.1	ef	15.2	defg	0.65	h	2.9	f
Amarilla San Martinito	122.4	defg	226.0	fghijk	14.2	ijk	0.52	i	2.8	fg
Amarilla Rancho Paraiso	137.4	С	302.8	bc	16.1	bc	1.09	de	2.8	h
Amarilla Paso La Mipla	129.8	cd	279.4	cde	14.6	fghijk	1.38	а	3.1	С
Granadilla Chiapas	77.6	j	231.8	fghij	14.4	hijk	1.34	b	4.5	а
Morada T	63.6	k	172.8	n	18.4	а	1.15	С	2.9	е
Significancia	**		**		**		**		**	


La correlación entre el contenido de jugo (ml) y el peso del fruto entre variedades resultó altamente significativo ($R^2 = 0.7$) (Fig.

1). Lo mismo sucedió cuando se correlacionó entre contenido de jugo (ml) y número de semillas ($R^2 = 0.5$) (Figura 2). Lo anterior es

importante porque se buscaria producir frutos con mayor cantidad de semilla, lo que permitiria obtener una buena cantidad de jugo por fruto. Sobretodo que la produccion de este cultivo se enfoca a la industria de los jugos.

Figura 1. Correlación significativa entre jugo y peso del fruto.

Figura 2. Correlación entre jugo y número de semillas.

Cuadro 3. Características morfológicas de especies de Passiflora

Especies de	Peso de	Largo fruto	Ancho fruto	Cavid	lad (cm) No.		Grosor cascara	pH de		Sólidos solubles	Jugo (ml)	Acidez titulable
Passifloras	fruto (g)	(cm)	(cm)	Largo	Ancho	Seminas	(mm)	pulpa	puipa	solubles		tituiable
P. foetida	3.2	2.5	2.1	2.49	2.01	51.7	0.34		Blanca	20	12	
P. ligularis	79	7.4	57.1	56.1	42.6	194.8	3.85	4.47	Blanca	27.86	32.3	0.95
P. quadrangularis	1,399	26.37	71.89	16.5	6.44	203.8	0.75	3.75	Amarilla	12.78	151.9	
P. edulis D. Brasil	81	6.18	60.5	46.3	46.5	197.1	5.07	3.05	Amarilla	19.53	33	0.34

La especie que presentó el menor tamaño de fruto es *P. foetida*, pero una gran ventaja es que cuenta con un valor alto de sólidos solubles (Cuadro 3). La de mayor peso es *P. quadrangularis*, aproximadamente 1.4 kg, por lo que esto es de esperarse ya que la correlación entre jugo y peso de fruto resulto altamente significativo, aunque los sólidos solubles son bajos (Cuadro 3). *P. ligularis* contó con el valor más alto de sólidos solubles, aunque cuando se quiso sembrar bajo condiciones del Campo Cotaxtla no mostro un desarrollo apropiado, debido quizás a las condiciones climáticas de la zona y por ser una

especie que requiere temperaturas más bajas (Andrés *et al*, 2001).

LITERATURA CITADA

Andrés, A. J., Almaguer, V. G. y Santos, A. B. 2001. El cultivo d ela granada china (*Passiflora ligularis* Juss.). Universidad Autónoma Chapingo. Chapingo, Edo. de México. 34 p.

EMBRAPA. 2008. BRS Ouro Vermelho, BRS Gigante Amarelo, BRS Sol do Cerrado

- Cerrados Transferencia de tecnología. Brasil.
- . García, T. M. A. 2002. Guía técnica. Cultivo de maracuyá amarillo. CENTA. El Salvador, San Salvador, 33 p.
- Knight, R. J. Jr. and Sauls, J. W. 1994. The Passion fruit. Fact Sheet HS-60. UF/IFAS. 7 p.
- Morton, J. F. 1987. Passionfruit Passiflora edulis Sims p. 320-328. In: Morton, J.F. (Ed). Fruits of warm climates. Creative Resources Systems Inc. Miami, Florida. USA.
- Schwentesius, R. R. y Gómez, C. M. A. 1997. El Maracuyá fruta de la pasión. Universidad Autónoma Chapingo. 245 p.
- Serna, V. J. 1994. El cultivo del Maracuyá. In: Memoria de la Primera Reunión Internacional y Segunda Reunión Nacional de Frutales Nativos e Introducidos. Montecillos, México. pp. 85-100.