CAPITULO 6: CASOS PARTICULARES

Sea (C,R) un carcaj con relaciones y sea $\Lambda = kC/R$. Da da alguna familia de álgebras definida por alguna propiedad \mathbb{P} , quisiéramos encontrar la "traducción" \mathbb{P}' de \mathbb{P} en términos de carcajes con relaciones, o sea que quisiéramos encontrar \mathbb{P}' tal que Λ tiene la propiedad \mathbb{P} si y sólo si (C,R) tiene la propiedad \mathbb{P}' . En otras palabras, nos preguntamos qué efecto tiene sobre (C,R) la imposición de condiciones adicionales sobre Λ .

Un ejemplo de esto ya lo hemos visto en 3.F: Λ tiene radical cuadrado cero si y sólo si $R = F^2$.

En este capítulo estudiaremos el problema mencionado en algunos casos particulares.

§6.1 ALGEBRAS HEREDITARIAS

<u>Definición</u>: Diremos que Λ es <u>hereditaria</u> si los submódulos de Λ -módulos proyectivos son siempre proyectivos.

Esto es equivalente a pedir que la dimensión global proyectiva de Λ sea menor o igual a uno y, por lo dicho en 5.G, podemos concluir que Λ es hereditaria si y sólo si el radical de todo proyectivo inescindible es proyectivo.

Como ya conocemos los proyectivos inescindibles y sus radicales, nos será fácil interpretar la afirmación "A es he-

reditaria" en términos de (C,R). Para esto utilizaremos la s<u>i</u> guiente propiedad de las álgebras hereditarias: todo morfismo no nulo entre proyectivos inescindibles es monomorfismo (ver 6.D(1)).

Proposición: Λ es hereditaria si y sólo si C no tiene ciclos dirigidos y R=0.

Demostración:

Necesidad: Supongamos que A es hereditaria.

Si tuviésemos un ciclo en C, digamos $\gamma = (i|\alpha_n...\alpha_1|i)$ con $n \geq 1$, obtendríamos, como en 2.B(2), monomorfismos entre proyectivos inescindibles $\phi_{\alpha_n}, \phi_{\alpha_{n-1}}, \ldots, \phi_{\alpha_1}$ de tal forma que la composición $\phi = \phi_{\alpha_n} \phi_{\alpha_{n-1}} \ldots \phi_{\alpha_1}$ sería un automorfismo $\phi \colon P_i \longrightarrow P_i$.

Por otra parte, como $n \ge 1$, resulta $\phi \in \operatorname{rad}(\operatorname{End}_{\Lambda} P_i)$: en efecto, $P_i = \Lambda \bar{\tau}_i$ y ϕ es la multiplicación por $\bar{\gamma}$; mediante el isomorfismo $\operatorname{End} P_i \cong \bar{\tau}_i \Lambda \bar{\tau}_i$ de 1.2.6(ii), ϕ se transforma en el elemento $\bar{\gamma}$ de $\bar{\tau}_i \Lambda \bar{\tau}_i$, pero $\bar{\gamma}$ está en $\operatorname{rad}(\bar{\tau}_i \Lambda \bar{\tau}_i)$ por 1.A y 2.3.4.

Entonces ϕ es al mismo tiempo nilpotente e invertible, lo cual es una contradicción. Concluímos que C no tiene ciclos dirigidos.

Si fuera $R \neq 0$, tendríamos dos vértices i,j de C y a<u>l</u> guna relación legible ρ de i a j en R.

Como C no tiene ciclos, deberá ser i ≠ j. También por la ausencia de ciclos dirigidos en C, podemos suponer que ρ es una relación "extrema", o sea que si tenemos algún camino dirigido desde i a algún otro vértice s \(\neq i, ya no empiezan relaciones legibles en s. \)

Consideremos el proyectivo P_i en mod(C,R). Por 5.E, la cubierta proyectiva de rad P_i /rad 2P_i es

$$P = \bigoplus_{t=1}^{r} \#(i,j_t) P_{j_t},$$

donde j_1, j_2, \ldots, j_r son todos los vértices a los que llega alguna flecha desde i. Por nuestra demostración de 1.7.3, P es también la cubierta proyectiva de rad P_i .

Pero el mismo $radP_i$ es proyectivo, de modo que debe coincidir con su propia cubierta proyectiva (la identidad es ciertamente un epimorfismo superfluo, ahora use la unicidad de la cubierta proyectiva, 1.6.2), de donde

(i)
$$\operatorname{radP}_{i} \stackrel{\circ}{=} \underset{t=1}{\overset{r}{\theta}} \#(i,j_{t})P_{j_{t}}$$
,

y de aquí obtendremos nuestra contradicción.

Si suponemos #[x,y] igual al número de caminos dirigidos de x a y, obtendremos que

(ii)
$$\#[i,j] = \sum_{t=1}^{r} \#(i,j_t) \#[j_t,j]$$
.

Por 5.2.1 y la extremalidad de ρ se tiene que, para toda t = 1,...,r,

(iii)
$$\dim_{k} (P_{j_{t}})_{i} = \#[j_{t}, j].$$

Como i \neq j, 5.3.1 nos asegura que:

(iv)
$$\dim_{k}(\operatorname{rad}P_{i})_{i} = \dim_{k}(P_{i})_{i}$$
.

Como ρ es una relación legible de i a j, usando 5.2.1 obtenemos que

$$(v) \quad \dim_{k}(P_{i})_{j} < \#[i,j].$$

De (i), (iii) y (ii) se obtiene que $\dim_k (\operatorname{radP}_i)_j$ es igual a #[i,j], pero de (iv) y (v) se obtiene que es menor.

Concluimos entonces que R = 0.

Suficiencia: Supongamos ahora que C no tiene ciclos dirigidos y que R = 0. Probaremos que Λ es hereditaria.

Como R = 0, por 2.E podemos ver a Λ = kC como el álgebra tensorial Λ = T_A(M).

Como A = k^{C_0} es semisimple, todo A-módulo es proyectivo, pero entonces todo Λ -módulo de la forma $\Lambda \otimes X$, con X en $\Lambda \otimes X$, es proyectivo: en efecto, el funtor $\operatorname{Hom}_{\Lambda}(\Lambda \otimes X, -) \cong \operatorname{Hom}_{\Lambda}(X, \operatorname{Hom}_{\Lambda}(\Lambda, -)) \cong \operatorname{Hom}_{\Lambda}(X, -)$ es exacto. (Hemos usado la adjunción entre Hom y \Re , para una prueba puede verse la p. 225 de [A-F]).

En particular, para X = M, tenemos que $\Lambda 80M$ es un $\Lambda - m\underline{\delta}$ dulo proyectivo, pero como C no tiene ciclos dirigidos sabemos por (c) y (d) de 2.E que $\Lambda 80M \cong \text{rad}\Lambda$, de donde rad Λ es proyectivo.

Si $P_i = \Lambda \tau_i$ es un proyectivo inescindible, $radP_i = rad(\Lambda \tau_i) = (rad\Lambda)\tau_i$ es proyectivo por ser sumando directo de rad\Lambda, de donde Λ es hereditaria. //

§ 6.2 ALGEBRAS COCIENTES DE HEREDITARIAS

Veremos ahora que si se omite la condición "R = 0" para las álgebras hereditarias, se obtiene una familia importante de álgebras: las álgebras cocientes de hereditarias (ver [Hr], [J-N]).

Definición: Λ es cociente de hereditaria si existe una k-ál-

gebra Γ de dimensión finita y hereditaria y un morfismo supra yectivo $\phi\colon \Gamma \longrightarrow \Lambda$ de k-álgebras tal que Ker $\phi \subseteq \operatorname{rad}^2\Gamma$.

Observaciones: En la situación de la definición anterior, se tiene lo siguiente:

- (1) La condición $\operatorname{Ker} \phi \subseteq \operatorname{rad}^2\Gamma$ equivale a pedir que $\phi^{-1}\operatorname{rad}^2\Lambda = \operatorname{rad}^2\Gamma$, ó a pedir que ϕ induzca un isomorfismo de k-álgebras $\bar{\phi}\colon \Gamma/\operatorname{rad}^2\Gamma \longrightarrow \Lambda/\operatorname{rad}^2\Lambda$ (ver 1.C).
- (2) Como Λ es básica e indescomponible, por ser $\operatorname{Ker} \phi \subseteq \operatorname{rad}^2 \Gamma$, Γ también es básica e indescomponible. (ver 6.A).

Proposición: Λ es cociente de hereditaria si y sólo si C no tiene ciclos dirigidos.

<u>Demostración</u>: Si C no tiene ciclos dirigidos, kC es hereditaria por la proposición anterior, y si ϕ : kC $\longrightarrow \Lambda = kC/R$ es la proyección natural, Ker ϕ = $R \subseteq F^2$ por ser R admisible y F^2 = rad 2 kC por 2.2.4, de modo que Λ es cociente de hereditaria.

Supongamos ahora que Λ es cociente de hereditaria. En tonces existe un morfismo sobre $\phi\colon\Gamma\longrightarrow\Lambda$ de k-álgebras con Γ hereditaria y Ker $\phi\subseteq \operatorname{rad}^2\Gamma$.

Por la observación (2), podemos considerar al carcaj de Γ , C_{Γ} . Por la proposición anterior obtendremos entonces que C_{Γ} no tiene ciclos dirigidos.

Sabemos que C = C_{Λ} (3.1.3), pero C_{Λ} = C_{Γ} por 3.F, de donde C no tiene ciclos dirigidos. //

§6.3 ALGEBRAS SERIALES IZQUIERDAS

<u>Definición</u>: Λ es <u>serial izquierda</u> si todo proyectivo inescindible en mod Λ tiene una única serie de composición.

Recordemos que una serie de composición para un Λ -módulo M es una cadena de submódulos M = M₀ \supset M₁ \supset ... \supset M_Q = 0 con la propiedad de que M₁/M₁₊₁ es simple para i = 0,1,...,l-1. Como Λ es un anillo artiniano, todo Λ -módulo izquierdo finita mente generado tiene alguna serie de composición, lo que se exige es que los proyectivos inescindibles la tengan <u>única</u> (o sea, que los proyectivos inescindibles sean uniseriales).

Observemos que un Λ -módulo M tiene una única serie de composición si y sólo si M \supset radM \supset rad 2 M \supset ... \supset 0 es una serie de composición.

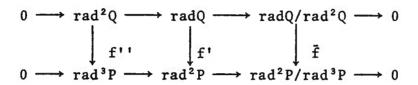
 $\underline{6.3.1}$ Lema: Supongamos que radP/rad²P es simple o cero para cada Λ -módulo proyectivo inescindible P. Entonces Λ es serial izquierda.

Demostración: Sea P un proyectivo inescindible en modΛ. Por hipótesis sabemos que radP/rad²P es simple o cero. Suponiendo que radP/rad²P es simple, probaremos que rad²P/rad³P es tambień simple o cero.

Sea f: Q \longrightarrow radP la cubierta proyectiva de radP. Como radP/rad²P es simple y Q es también la cubierta proyectiva de radP/rad²P, entonces Q es un proyectivo inescindible.

Usando 1.5.5, vemos que f puede restringirse a epimor

fismos f': radQ \longrightarrow rad²P y f'': rad²Q \longrightarrow rad³P, de modo que f induce un epimorfismo \bar{f} : radQ/rad²Q \longrightarrow rad²P/rad³P que hace conmutativo el siguiente diagrama:



Pero por hipótesis, ya que Q es proyectivo inescindible, radQ/rad²Q es simple o cero, de modo que rad²P/rad³P es también simple o cero.

Con esto se habrá probado que $P \supset radP \supset rad^2P \supset \dots$ $\supset 0$ es una serie de composición, de modo que P es uniserial.//

6.3.2 Proposición: Λ es serial izquierda si y sólo si para ca da vértice i de C hay a lo más una élecha que empieza en i. Demostración: Supongamos primero que Λ es serial izquierda. Sea i un vértice de C y consideremos el proyectivo P_i . Como P_i es uniserial, $P_i \supset \text{rad}P_i \supset \text{rad}^2P_i \supset \dots \supset 0$ es serie de composición, y entonces $\text{rad}P_i/\text{rad}^2P_i$ es simple o cero. Por 5.E se tiene entonces que $\lim_{j \in C_0} \#(i,j)S_i$ es simple o cero. Por lo tanto, hay a lo más una flecha en C que empieza en i.

Ahora supongamos, recíprocamente, la condición del enunciado. Sea i un vértice cualquiera de C. Por hipótes-is y 5.E se tiene que ${\rm radP_i/rad^2P_i}$ es simple o cero. En consecuencia, aplicando 6.3.1, Λ es serial izquierda. //

§6.4 ALGEBRAS DE NAKAYAMA

<u>Definición</u>: Λ es <u>serial derecha</u> si todo Λ-módulo derecho proyectivo e inescindible es uniserial.

Observemos que, como mod Λ^{op} es equivalente a la categoría de los Λ -módulos derechos, Λ es serial derecha si y sólo si Λ^{op} es serial izquierda. Como el carcaj de Λ^{op} es C_{Λ}^{*} , el opuesto al de Λ (ver 3.G), se obtiene la siguiente versión de 6.3.2:

6.4.1 Proposición: Λ es serial derecha si y sólo si para cada vértice i de C hay a lo más una flecha de C que termina en i.//

Definición: Λ es un <u>algebra de Nakayama</u> si es serial izquierda y serial derecha.

De la definición y nuestras dos últimas proposiciones obtenemos:

6.4.2 Proposición: A es de Nakayama si y sólo sí en cada vértice de C empieza a lo más una flecha y termina a lo más una

flecha. En concecuencia Λ es de Nakayama si y sólo si C es uno de los siguientes carcajes:

Notese que cuando n=1, el primer carcaj es solo un punto $(\Lambda=k)$ y el segundo es un vértice con un lazo. //

<u>Definición</u>: Λ es <u>autoinyectiva</u> si considerada como Λ -módulo izquierdo es inyectiva. (Equivalentemente, si cada proyectivo inescindible es inyectivo).

No conocemos una condición para (C,R) que sea equivalente a la autoinyectividad de Λ , pero para álgebras de Nakayama autoinyectivas esta descripción es fácil. Vimos ya que pedir que Λ sea de Nakayama restringe fuertemente la forma de C, aunque no impone condiciones al ideal admisible R. Veremos ahora que pedir que Λ sea Nakayama-autoinyectiva resringe aún más la forma de C e impone una fuerte condición a R.

<u>6.4.3 Proposición</u>: Si $\Lambda \neq k$ (éste es el caso en que C es sólo un punto y, forzosamente, R = 0), entonces Λ es Nakayama-auto inyectiva si y sólo si C es de la forma

 $y R = F^h \text{ con alguna } h \ge 2.$

<u>Demostración</u>: Supongamos que Λ es Nakayama-autoinyectiva. C no puede ser de la forma $1 \longrightarrow 2 \longrightarrow \ldots \longrightarrow n$ con n > 1, pues $\Lambda \tilde{\tau}_n$ sería un proyectivo simple no inyectivo (ver 5.C), y por lo tanto C es la forma requerida por 6.4.2. Veremos ahora que $R = F^h$ para alguna $h \ge 2$. Recordemos que, para n = 1, ya vimos esto en 2.D; en lo que sigue, usaremos la notación de 2.D.

Sea h := $\max\{\ell(i) / i = 0, 1, ..., n-1\}$. Ciertamente, h ≥ 2 (R es admisible) y, como $\{\gamma_i^{\ell(i)} / i = 0, ..., n-1\}$ es un sistema de generadores para R, nos bastará con probar que $\ell(0) = \ell(1) = ... = \ell(n-1) = h$ para tener que R = F^h.

Razonaremos por contradicción, suponiendo que hay un vértice i de C tal que $\ell(i)$ < h. Sea i' \in C₀ tal que i' + 1 \equiv i mod n (o sea que i' es donde empieza la única flecha que llega a i). Es fácil convencerse de que podemos suponer que $\ell(i')$ = h, y de aquí obtendremos nuestra contradicción.

Sea $j \in C_0$ tal que $j+1 \equiv i+\ell(i)$ mod n. Como P_i es inyectivo, sabemos por 5.F que $\gamma_i^{\ell(i)-1}$ es el más largo camino que llega a j y no está en R. Entonces $\gamma_{i'}^{\ell(i)} \in R$, pues también llega a j y es más largo que $\gamma_i^{\ell(i)-1}$. Por la definición de $\ell(i')$, concluímos que $h = \ell(i') \leq \ell(i) < h$.

Reciprocamente, supongamos que (C,R) es como en el

enunciado. Por 6.4.2, Λ es de Nakayama. Por 5.F, P_i es inyectivo para todo vértice i de C, de modo que Λ es autoinyectiva. #

EJERCICIOS DEL CAPITULO 6

6.A Pruebe la observación (2) de 6.2. Sugerencia:

Use 1.C para t = 1. Para la primera parte, pruebe el converso del lema 1 de 3.2.2, y para la segunda use 1.3.3.

- <u>6.B</u> <u>Algebras locales</u>. Λ es <u>local</u> si tiene un único ideal iz quierdo maximal. Pruebe que Λ es local si y sólo si C tiene un solo vértice (cualquier número de lazos, R arbitrario).
- <u>6.C</u> <u>Algebras conmutativas</u>. Pruebe que Λ es conmutativa si y sólo si C tiene un sólo vértice y, si $\alpha_1, \alpha_2, \ldots, \alpha_n$ son las flechas de C, $\alpha_i \alpha_j \alpha_j \alpha_i \in R$ para todo par de índices $i,j \in \{1,\ldots,n\}$.

6.D Algebras & -hereditarias.

- (1) Pruebe que si Λ es hereditaria, todo morfismo no nulo entre proyectivos inescindibles es monomorfismo. Esto se usó en la prueba de la proposición de 6.1.
- (2) Λ es ℓ -hereditaria (localmente hereditaria) si cumple la condición del inciso anterior. Pruebe que Λ es ℓ -hereditaria si y sólo si todo submódulo local (i.e. con un único submódulo máximo) de un proyectivo inescindible es proyectivo.
- (3) Considere la relación transitiva < generada por $"P_i @ P_j \text{ si y sólo si hay un morfismo no nulo de } P_i \text{ a } P_j \text{ que}$

no es isomorfismo". Pruebe que P_i < P_j si y sólo si hay un camino dirigido de j en i, no trivial. Entonces Λ es cociente de hereditaria si y sólo si < es un orden parcial. Concluya que las álgebras ℓ -hereditarias son cocientes de hereditarias.

- (4) Si Λ es ℓ -hereditaria, R no puede contener relaciones cero.
- (5) Una expresión legible de x a y en C es un elemento no nulo de $\tau_y k C \tau_x$. Nótese que el producto uv de dos expresiones legibles es el cero de kC si y sólo si v termina en un punto distinto del punto inicial de u. Pruebe que $\Lambda = kC/R$ es ℓ -hereditaria si y sólo si:
 - (i) C no tiene ciclos dirigidos, y
 - (ii) Si u,v son expresiones legibles con $0 \neq uv \in R$, entonces $u \in R \delta v \in R$.
- $\underline{6.E}$ Pruebe que si Λ es serial izquierda, C tiene a lo más un ciclo dirigido. Describa la "forma general" de C cuando no tiene y cuando tiene un ciclo dirigido.
- 6.F Supongamos que Λ es Nakayama-autoinyectiva. Llamaremos Naka yama-simétrica a Λ si además se satisface que, para cada proyectivo inescindible P, P/radP es el único submódulo simple de P. Pruebe que esto ocurre si y sólo si $h \equiv 1 \mod n$, donde h es la de 6.4.3.
- $\underline{6.G}$ Pruebe que si Λ es autoinyectiva, cada flecha de C está contenida en algún ciclo dirigido de C. Muestre que el converso no es válido.