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Resumen

La contaminación del aire de la ciudad de Bogotá es un problema que se ha venido incrementando paralelo al 
crecimiento de la ciudad. Las mediciones de la contaminación en Bogotá requieren metodologías que permitan su 
análisis, para que a su vez se emitan diagnósticos. A continuación se realiza el análisis de Componentes Principales 
Funcionales a reportes de material particulado PM10, resultando esta una metodología apropiada para tratar grandes 
cantidades de datos, pues resume estadísticos funcionales tales como la media y la covarianza, obteniendo como 
resultados diagnósticos del comportamiento de las mediciones de forma sintetizada y concisa.

Palabras Clave: Componentes principales funcionales, datos funcionales, PM10.

Abstract

Bogotá city air pollution is a problem that has been increasing parallel to the growth of the city. The 
measurements of pollution in Bogotá require methodologies that allow its analysis; therefore, at the same 
time, that diagnoses are issued. Below is the functional principal component analysis to reporting material 
particulate matter PM10. As a result, an appropriate methodology for treating large amounts of data is 
developed because it summarizes functional statistics such as the average and the covariance obtaining a 
diagnostic of the behavior of the medic results. 

Keywords: Functional data analysis,  functional principal components, PM10. 
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1. Introduction

Knowing the importance of atmospheric con-
centrations, it is significant to start mentioning 
that these concentrations of particulate matter 
with diameter less than 10 μm (PM10) in Bo-
gotá city tend to exceed the limits set by the 
standards of air quality as Gaitán et al. (2007) 
and Bautista (2010) have noted. Likewise, this 
situation is reflected in the incidence of respi-
ratory and heart problems in the population; 
hence, it has called for some real alerts in the 
environmental control bodies as Rodríguez-
Moreno et al. (2013), García-Ubaque et al. 
(2011), Otman et al., (2010), Blanco-Becerra 
et al., (2014) and Franco et al., (2009) have 
pointed this out. Also, Preciado (2008) and 
García-Ubaque et al. (2011) suggested that the 
continued growth in economic terms in Bogo-
tá has caused that the control measures which 
already exist for the proper management of 
PM10 are upstaged by the increase in the pre-
sence of particulate material. For this reason, 
it is necessary to develop new methodologies 
that allow studying its spatio-temporal beha-
vior in order to facilitate environmental autho-
rities and the pollution diagnoses for PM10 in 
Bogotá; consequently, some management stra-
tegies which are conducive to the well-being 
of the population and can be suggested. 

Seen in this light, the majority of studies have 
been conducted to determine the influence of 
the presence of particulate matter on health. 
The results obtained it is concluded in all cases 
that the increase in the presence of particulate 
matter PM10 is directly proportional to the 
increase in respiratory diseases as Cattani et 
al. (2010), Zarkey (2008) and Aldunate et al. 
(2006) have pointed. 

In Colombia, several air quality studies have 
been done. From one of the most prominent 
studies in this country, a result of the most 
appropriate statistic method to study the pollution

data has been obtained. This research was 
mentioned by Reina & Olaya (2012) and as 
a main conclusion the authors indicated that 
the Spline method is the most appropriate to 
model the pollution data. In another research, 
García et al. (2006) found that other statistical 
tools such as analysis of variance and multiple 
range test were used and it was determined 
that the emission of particulates comes from 
anthropogenic sources.

Taking into account the air quality research 
that has taken place in Bogotá, Gaitán et al. 
(2007) conducted a descriptive analysis of 
the PM10 concentration at different times of 
the year; moreover, a relationship with other 
environmental factors was established such 
as the speed of the wind and carbon dioxide. 
At the same time, Bautista (2010) and Vargas 
& Rojas (2009) made a description of the 
chemical and physical characteristics of the 
PM10 and PM2.5 concluding that they are 
a health risk because of the high presence 
of metals in them.  This conclusion is also 
supported by the high correlation that exists 
between these two pollutants as Galvis & 
Rojas (2005) and Blanco-Becerra et al. (2015) 
pointed this out.

Similarly, it is important to note that Blanco-
Becerra et. al (2014) used classical time series 
along with simple delay and distributed lag 
models. Then, it was found that mortality from 
respiratory causes is strongly influenced by the 
increase in the concentration of the pollutant; 
likewise, this is also supported by Rodríguez-
Moreno et al. (2013) who indicated that exposure 
to this contaminant significantly increases the 
risk to any respiratory illness. 

On the other hand, Bohórquez (2010) conduc-
ted and analysis for predictive purposes the 
presence of PM10 in Bogotá by using a non-
separable covariance function, resulting in a 
predictive model of distribution space in the pre-



77

Ingeniería Y Competitividad, Volumen 18, No. 2, P. 75 - 88 (2016)

sence of PM10. However, Herrera (2013) noted 
that using functional data (FDA) next to the 
interpolator space cokriging analysis, it was 
proposed a functional model. This model is 
based on the wind speed and the behavior of the 
pollutant would be able to predict the maximum 
average hours of the PM10. 

Seen in this light, this research proposed the 
use of the statistical technique of functional 
data analysis which has been used for the 
analysis of temperature, measurement of 
depth and risk of occurrence of an accident 
as Giraldo (2007), Levitin et al. (2007) and 
Segovia et al. (2005) have found this out. 
This technique provides an alternative in 
which it is possible to distinguish the main 
characteristics of the data such as functions 
of mean and covariance without any analysis 
separated in time intervals. Additionally, one 
of the main functional components was the 
suggested technique. According to Ramsay & 
Silverman (2005) this technique summarizes 
the variability of the data in the few principal 
functions understanding this as the weighting 
function of the variability of the data which is 
more easily manipulated. In order to get the

main conclusions, it is important to see that 
Chávez et. al (2015) mentioned that a conceptual 
extension 

of the classic principal components where 
instead of treating vectors, functions is used, 
being somewhat improved characterization of 
the nature of the data. 

This, in terms of pollution would allow the improve-
ment of curricula and existing environmental mana-
gement policies that seek to improve the quality of 
Bogotá’s inhabitants. 
 
2. Methodology

2.1 Study Area

The city of Bogota has a network of stations 
which are distributed throughout the city, it is 
important to note that not all stations that are 
willing to measure concentrations of PM10 
are not available; therefore, only nine out of 
fifteen stations were taking into account for 
this research; additionally, eight out of those 
nine stations registered the required data for 
this research (see table 1 next to figure 1).

Station North (m) East (m) Height (m)
Carvajal-Sevillana 99637.709 92495.434 2559.138

San Cristóbal 97060.376 99705.904 2548.624
Usaquén 112204.733 105556.503 2775.947
Kennedy 102856.982 91074.557 2554.873

Puente Aranda 103628.018 95934.516 2557.045
Las Ferias 110125.45 99820.121 2550.817

Suba 118080.677 98613.068 2554.268
Tunal 97468.198 94451.448 2564.361

Table 1. Stations used in environmental monitoring network with their respective coordinates datum MAGNA-SIRGAS
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2.2 Materials

Knowing the importance of measuring the con-
centrations of PM10 at Bogotá city, it is im-
portant to mention that in order to implement 
this study; firstly,  it was necessary to achieve 
a construction of a database that took as input 
particulate material PM10 which was supplied  
by the Network for Monitoring  air quality in 
Bogota (Red de Monitoreo de Calidad de Aire).

 These data were obtained through the websi-
te of the Ministry district's environment. Given 
the availability of information, the database 
contained reports of PM10 measurements co-
rresponding to the days Monday and Sunday 
with one hour temporal resolution during May 
and August from 2011 to 2013 for each selec-
ted station.  For each concentration of PM10 the 
data were included: date, time, PM10, season, 
day of the week, north coordinate, east coordinate

Figure 1. Location of stations used for the Environmental Monitoring Network.
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and height above sea, specifying that the coor-
dinates are in the spatial reference system 
MAGNA-SIRGAS.

Clearly, for the proper analysis of the data and 
to facilitate processes related to the treatment 
of the same were used the following software: 
R Project 3.1.2 for the statistical analysis of 
the database, Postgis 1.18.1 as the database 
management system and QGis 2.4 for spatial 
analyses that were necessary. For the integra-
tion of the base data with R, the use of the pac-
kage (version 0.4) RPostgreSOL was required. 
Given the functional data methodology used 
in the study, it was necessary to package fda 
(version 2.4.4) thus, this package provides 
functions and methods that allowed the analy-
sis of functional data as well as it allowed 
getting the principal functional components. 
Moreover, it was also necessary to use the 
package gstat (version 1.0.25) to perform the 
spatial interpolation of the principal functional 
components obtained for each station.

2.3 Methods

Besides addressing the materials used for this re-
search, it is important to see that the absence of 
134 pollution concentrations was detected befo-
re the final structuring of the database. In order 
to not be more robust, it was necessary to find 
an appropriate method to complete missing data; 
therefore, this procedure was performed using 
the software remove measurements so that the 
analysis would R using package Amelia (version 
1.7.3) using the time series module as proposed 
by Honake et to the. (2014).

By the nature of the data, it was necessary to 
create and implement functions in R that facili-
tates handling the same data and that were also 
consistent with the parameters of the functions 
of the fda library. With the purpose of facili-
tating the processes carried out in relation to 
functional data analysis and taking into account

the issues raised by Ramsay & Silverman 
(2005) about the definition of functional data 
on measurements repeated in a continuous sys-
tem of reference being a curve through space. 
Mathematically it is defined as shown:

Where, Yi (t) denotes the functional data, cj are 
the weighting coefficients and ϕj (t) are the basis 
functions of smoothing;  therefore, in order 
to represent hourly concentrations of PM10 
for each date was selected as a base B-Spline 
by its computational flexibility and adequate 
description of local effects. As Carreño (2013) 
pointed this out, these characteristics are 
conducive for the pollution data as Montero & 
Fernández-Avilés (2015) also noted.  Therefore, 
for its use, it was necessary to define the 
number of polynomials and the grade used with 
each sample.  For this reason, it  was created 
and implemented a function on R which made 
the validation procedure cross to obtain these 
parameters, Aristizabal (2011) mentioned that  
this method is the most suitable to define the 
parameters of this base; hence, the definition 
and characterization of each functional data 
was accurate.

Later, exploratory analysis was subsequently 
performed functional data, this corresponded to 
the first diagnosis made to data reported in each 
month and year and particulate material which 
consisted of obtaining  together with the analy 
sis of the statistical average x ̅ (t) and bivariate 
covariance-centric v(s,t) functions correspon-
ding to each period, that are defined as:

Where xi (t) is the ith functional data while s and 
t are times in which measurement was made. This

(1)

(2)

(3)
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analysis was conducted with the aim to have first-
hand a robust examination of the temporal beha-
vior of the contaminant.

As the exploratory analysis complement, two prin-
cipal functional components were found from the 
functional data of each month studied. Taking into 
account that this method is intended to calculate 
a specific number of ξ (t) from the eigenvalues μ 
weighting functions (these determine the portion 
of the explained variability by each weighting 
function in ξ (t)) bivariate covariance-centric 
function (these are defined in equation 4 which 
corresponds to the functional equation of itself), 
with the aim of reducing the dimensionality of the 
whole functional data. The method must accom-
plish the following mathematical characteristics, 
as Ramsay & Silverman (2002) pointed out:

  
In the functional context, it is important that the-
se  equations are valid for all weighting functions 
in, due that in the case of equation 5 ensures the 
generation of a new space functional Z, while the  
In the functional context, it is important that thee

quation 6 designates the condition of normality 
which allows comparisons between the generated 
functions too; likewise, the equation 7 designates the 
aspect of orthogonality which is appropriate since it 
ensures that the weighting functions are independent. 
However, it was necessary to use the VARIMAX ro-
tation algorithm with them. According to Ramsay & 
Silverman (2005) components are affected by the 
systematic patterns of orthogonal functions; therefo-
re; two interpretations were only appropriate in the 
sense of identifying particular characteristics of the 
PM10 behavior that explain each eigenfuncion and 
it retains about 80% of the variability of the data.

In addition, the functional principal components 
for each station were found because of the pur-
pose which was based on that visualization of 
the spatial behavior of variability explained by 
each eigenfuncion of the pollution in the hours in 
which the functional average was maximum and 
minimum; therefore, the spatial interpolation 
model deterministic IDW was employed because 
the calculation with this method is much simpler. 
As Villatoro et al. (2008) noted its use is prefe-
rable at sampled points that are separated in lar-
ge distances being the case of the spatial arran-
gement of stations. To use this interpolation, it 
was necessary to define the power of weighting, 
making this process by cross-validation as says 
Mehrjardi et to the. (2008). In Figure 2, you can 
see synthetically methods that were employed.

(7)

(4)

(5)

(6)

Figure 2. Diagram of the methodology used for the analysis.
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3. Results and discussion

3.1 Results

As the first result was obtained with all full records 
database, this was finally consolidated with a total 
of 7752 records.

The following result corresponded to the functions 
of media for the months and years chosen for the 

Another of the results corresponding to the 
exploratory analysis of functional data was the 
function of bivariate covariance-centric; this was 
evidenced by the variability of the data in the time 
at the zone used. In figures 5 and 6, the covariance 
functions obtained are observed. For this result 
interpretation, it is observed in the graph that in 
the ordinates of the day are shown while and in

study. In figures 3 and 4, the functions of 
media in which the axis of ordinates in the 
values of the PM10 concentrations average 
are observed; likewise, the hours of the day  
where it is easy to establish that time for 
greater concentration of the contaminant is 
10 am while the minor takes place at 4 am. It 
is important to see that all dates of study are 
represented on the horizontal axis. 

the abscissa the values of variability are seen. It 
is also observed that most of the times the more 
dispersed  data in the majority of the functions 
are those corresponding to the slot in the morning 
especially between 5 am and 12 pm while there 
are more homogeneity in them in the close to 7 
pm and 10 pm hours.

Figure 3. Mean functions for August. a). 2011 b). 2012 c). 2013.

Figure 4. Mean functions for May. a). 2011 b). 2012 c). 2013.

Figure 5. Covariance functions for August. a). 2011 b). 2012 c). 2013.
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Figure 6. Covariance functions for May. a). 2011 b). 2012 c). 2013.

From the functional data of each date of study, it was possible to obtain two functional principal 
components for each; however, it was necessary to rotate them using the VARIMAX algorithm (see 
figures 7 and 8 for this process results). 

Figure 7. Functional Principal Component rotated with the VARIMAX algorithm, plotted as positive 
perturbations (dashed lines '+') and negative (dashed lines '-') of the functional mean (thick solid line). to). 

May 2011. b). May 2012. c). May 2013.
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Figure 8. Functional Principal Component rotated with VARIMAX algorithm, plotted as positive 
perturbations (dashed lines '+') and negative (dashed lines '-') of the functional mean (thick solid 

line). to). August 2011. b). August 2012. c). August 2013.

Finally, the model deterministic IDW was used for the spatial interpolation and the functional principal 
components of each season; as a result, four maps that correspond to the first and second eigenfuncion 
from 10 o'clock and 4 o'clock in the morning were obtained (see figures 9 and 10).
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Figure 9. Spatial interpolation of the first functional principal component by IDW. to). For 10 am b). For 4am.

Figure 10. Spatial interpolation of the second functional principal component by IDW. to). For 10 am b). For 4am
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3.2 Discussion 

Regarding the exploratory analysis of functional 
data, media functions and bivariate covariance 
functions were found. These functions allowed 
a robust diagnosis of data which in the case of 
the media function allowed observing that in 
general. In August (see figure 3) the highest 
values of PM10 concentrations are concentrated 
between the 5 and 10 o'clock in the morning. 
Similar results were observed in the diagnosis of 
the data in May (see figure 4). In the graphics, it 
was observed:  the values of the average in each 
hour of the day allowing a general diagnosis of 
the behavior of the contaminant. It is important 
to highlight that as it was stipulated in resolution 
0610 2010 about the limits of exposure to PM10 
in terms of 24 hours (100 μg/m3) the means of 
measurements functions showed that the records 
did not exceeded this limit. As it shown in figures 
5 and 6, the diagnosis of variability is visible 
and easily identified and the times where there 
is more dispersion among the data noting that in 
the case of August, specifically for the year 2011 
(Figure 5a) and 2013 (figure 5b) the dispersion is 
concentrated in the strip from 5 am to 10 am while 
in 2012 I group in the 8 am to 1 pm. Similarly, 
in May (see figure 6), it was observed that in all 
cases, the more dispersed data were located in the 
strip from 5 am to 12 pm; additionally, in 2012 
(see figure 6b) another scattered strip was from 
4 pm to 8 pm. It was also noted that the data in 
2013 (see figure 6) are homogeneous due to the 
behavior of its covariance function. This means 
that in some way, the data are reliable because 
the variability was constant in the majority of the 
hours of the day.

Concerning the interpretation of the functional 
principal components rotated for each date, 
this was performed for each one because it 
depended exclusively on behavior of the bivariate 
covariance-centric function and which possess 
weighting function compared with the average 
function (as shown in figure 7 and 8). Hence, 
in the case on May in 2011 (figure 7a), the first 
component retained was 44.3% of the data 
variability; additionally, the first nineteen hours a

day were described.  The second component has 
the 38.3% of the variability, but the first hours of 
the day (from 1 am to 6 am) were only described; it 
means that the two weighting functions functions 
were not able to explain the behavior of the whole 
time slot. The opposite happened with data from 
2012 (see figure 7b), since the first component 
has 53.8% of the variability of the data, that it 
described much of the day except the time slot 
from 12 am to 5 am, while the second retained the 
25.6% of the variability, successfully synthesizing 
only the first twelve hours of the day. Finally, in 
2013 (Figure 7 c), the first component has about 
the 38.3% of the data variability; moreover, part of 
the day was summed up. The only exception was 
made from 6 am to 10 am in the morning while 
the second retained the 37.3% of the variability 
explaining only the afternoon hours from 1 pm to 
5 pm. 

In the case of August, in 2011 rotated functional 
principal components (see figure 8a), presented 
a supplementary behavior. Since the first 
component retained around the 62.9% of the data 
variability of describing much of the day except 
for the hours early morning hours like from 1 
am to 4 am, while the second retained 19.8% 
of the variability, explaining only the first nine 
hours of the same second functional principal 
component . Meanwhile, in 2012 (figure 8b), 
weighting functions were not adequate, since the 
first component explained about the 41.9% of the 
data variability, adequately describing only the 
slot from 11 am until the end of the day, while 
the second retained the 32.7% of the variability 
explaining properly the slot from 3:00pm to 
8.00pm. Finally, in 2013 the eigenfuncion (see 
figure 8c), it was noted that the first component 
explained about the 58.2% of the data variability 
describing properly most of the day except its 
first five hours, while the second retained the 
22.1% of the variability explaining properly only 
eleven hours of the day; consequently, they are 
not suitable because they do not perform a correct 
explanation of all day long. 

As a result of spatial diagnostic from functional 
components as it can be seen in figures 9 and 10,
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the maps which correspond to the interpolation 
of the eigenfuncion, noting that the first 
component retained in most cases 60% of the 
data variability, while the second shows 20%. 
Figure 9a shows that the stations of surrounding 
areas: Suba, Usaquén, Las Ferias, Carvajal-
Sevillana and Tunal have low variability in the 
data, while stations of Kennedy, Puente Aranda 
and San Cristóbal have high variability in the 
data. As to the second functional principal 
component for the hour of highest contamination 
(figure 10a) it was noted that the stations of 
Tunal, Carvajal-Sevillana, Puente Aranda, Las 
Ferias and Suba have a high variability, and the 
stations of Kennedy, Usaquén and San Cristóbal 
have low variability. Regarding to the first and 
second principal component, it is observed that 
the highest time of contamination shows that in 
general the area that is not adequately explained 
by the major functional components of Usaquén, 
Tunal and Kennedy present high of variability 
levels.  In terms when it comes to less pollution 
(figures 9b and 10b), it is observed in the case 
of figure 9b that stations of Usaquén, Tunal 
and Kennedy present high levels of variability, 
meanwhile Las Ferias, Puente Aranda and 
Carvajal Sevillana have low levels of variability. 
In figure 10b it is seen that there is a high 
variability in the North, in the stations Suba, 
Usaquén and Las Ferias; the stations Kennedy 
and San Cristobal have a low variability and 
other stations showed average variability. The 
first and second main functional component for 
reducing pollution time evidenced that the area 
better explained by the FPCA was the area of 
Usaquén followed by climb, while the Carvajal 
zone do not contribute information relevant to 
these eigenfuncions.

From the spatial interpretation, applicability 
which would have this type of study for the 
characterization of the material data can be 
observed PM10 particulate for the dates of study, 
due to possessing with only two maps is around 
80% of the variability of the data (equivalent to 
own this proportion of the data).  In addition,  the 
functional statistical characteristics of pollution 
data, could  be diagnoses of the average behavior

of contaminant in the regions of greater 
reliability without manipulating the data or 
statistics functions exposed previously, being 
faster process, depending on their reliability 
only the correct characterization data and 
the proper interpretation of the principal 
components.

4. Conclusions

The methodology used in the collection 
and analysis of the principal functional 
components rotated for each study date 
casts as a result that the first and the second 
eigenfuncion characterize synthetically the 
temporal behavior of the contaminant, in the 
majority of cases; consequently, this feature 
in more appropriate in the sense that the 
functions are more precise and robust in the 
description of the pollutant compared with 
functional exploratory analysis. Therefore, 
the interpretation of these is more appropriate 
since the explanation is made across the 
range of temporary using only the two main 
components without needing to use statistical 
functions and direct manipulation of the entire 
database as a whole.

Seen in this light, it is important to note that the 
diagnosis made from the spatial interpolation 
of the main functional components, it was 
evident that regardless of the time of reporting, 
the eigenfuncion were able to explain the 
behavior of the pollutant in most of the study 
area, as it was the North-East and South-West 
of Bogotá city. However, there were areas 
that provided no variability due to special 
characteristics of these regions; however, this 
generality is ideal because it would possess 
spatial synthetic report of the contaminant 
behavior at that moment of time having no 
need to manipulate and compare the records 
of all the dates required by the study, meeting 
fully the purpose of the method since it will 
significantly decrease time that would make a 
reliable diagnosis of concentration of PM10, 
and thus government entities could make 
decisions regarding their control.
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