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Diabetes, specifically type 2 diabetes mellitus (T2DM), 
one of the most common non-communicable diseases, 
poses a major health problem throughout the world. 
T2DM is characterized by insulin resistance, impaired 
glucose-induced insulin secretion and inappropriately 
regulated glucagon secretion which in combination 
eventually result in hyperglycemia and in the longer term 
microvascular and macrovascular complications of dia-
betes. Traditional treatment modalities, even multidrug 
approaches, for T2DM are often inadequate in getting 
patients to achieve glycemic goals as the disease pro-
gresses due to a steady, relentless decline in pancreatic 
β-cell /number/function. Furthermore, current treatment 
modalities are often limited by inconvenient dosing regi-
mens, safety and tolerability issues, the latter including 
hypoglycemia, body weight gain, edema and gastrointes-
tinal side effects. A novel category of antihyperglycemic 
therapy based on modulation of the endogenous incretin 
system has recently evolved. The incretins, specifically 
glucagon-like peptide-1 (GLP-1) and glucose-dependent 
insulinotropic peptide (GIP), are gut-derived peptides 
secreted in response to meals, specifically the presence 
and absorption of nutrients in the intestinal lumen. The 
incretins potentiate meal-induced insulin secretion and 
trophic effects on the β-cell; the GLP-1 also inhibits glu-
cagon secretion, and suppresses food intake and appe-
tite. The activity/level of the incretins is diminished in 
T2DM. Both GLP-1 and GIP are rapidly degraded by the 
endogenous dipeptidyl-peptidase-4 (DPP-4). Hence, sta-
ble long-acting GLP-1 analogs/GLP-1 receptor agonists 

(incretin mimetics) have been developed. Since, the in-
cretin mimetics have to be injected, orally active inhibi-
tors of DPP-4, the incretin enhancers, have also been in-
troduced for the treatment of T2DM. The GLP-1 receptor 
agonists and DPP-4 inhibitors are useful in the manage-
ment of T2DM because they provide effective reductions 
in levels of fasting plasma glucose (FPG) and postprandial 
glucose (PPG), partly through their actions on pathogenic 
causes of T2DM that are not addressed by other glucose-
lowering agents. In addition, the GLP-1 receptor agonists 
promote weight loss, whereas the DPP-4 inhibitors are 
mostly weight neutral, and there is a low risk of symp-
tomatic hypoglycemia with both type of agents. The GLP-
1 receptor agonists and DPP-4 inhibitors are effective as 
monotherapy in drug-naive patients as well as in those in 
whom other treatments (for example with metformin, sul-
fonylureas, thiazolinediones, etc.) have been inadequate 
to achieve glycemic control. When combined with other 
glucose-lowering agents, the GLP-1 receptor agonists 
and DPP-4 inhibitors further lower FPG and PPG levels, 
and hemoglobin A1c. Consequently, these agents can be 
used for all stages of T2DM. However, the durability and 
long-term safety of these drugs remains to be determined. 
This review focuses on the therapeutic potential of the in-
cretin mimetics and incretin enhancers in treating T2DM. 
In addition, the review also presents some information on 
the mechanism of action(s), efficacy, pharmacokinetics, 
pleiotropic effects, drug interactions and adverse effects 
of the main drugs which modulate levels and activity of 
endogenous incretins.
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Introducción
Diabetes, specifically type 2 diabetes mellitus (T2DM), 
one of the most common non-communicable diseases, 
is emerging as an epidemic of the 21th century and a 
major health problem throughout the globe1,2. Compli-
cations from diabetes, such as cardiovascular (CV) dis-
ease, peripheral vascular disease, stroke, diabetic neu-
ropathy, amputations, renal failure and blindness result in 
increasing disability, reduced life expectancy and enor-
mous health costs for virtually every society4. T2DM is 
a polygenic disease characterized by multiple defects in 
pancreatic insulin secretion and insulin action in muscle, 
adipose, and liver3. About 80-85% of T2DM patients have 
insulin resistance, and impaired β-cell function occurs 
in 50% of newly diagnosed T2DM5,6, and after that there 
is a linear decline in β-cell number/function with time, 
despite therapy with sulfonylurea, metformin or insulin7,8, 
as a result of glucotoxicity, lipotoxicity, proinflammatory 
cytokines, leptin, and islet cell amyloid leading to ac-
celerated apoptosis and loss of β-cell function/mass. The 
treatment goals for T2DM patients are related to effective 
control of blood glucose, as well as management of co-
existing pathologies, such as hypertension, dyslipidemia, 
and excess body weight, and ultimately, to avert the se-
rious complications associated with sustained tissue ex-
posure to hyperglycemia. Although, intensive glycemic 
control reduces the appearance and progression of mi-
crovascular and neuropathic complications (retinopathy, 
nephropathy and neuropathy)9-12, long-term intensive 
therapy to achieve target HbA1c in T2DM patients has 
been associated with increased mortality without signifi-
cant beneficial effect on major CV events13. In addition, 
tighter glycemic control (using intensive therapy) burdens 
the patients with complex treatment regimens, increased 
risk of hypoglycemia, possible weight gain, and relatively 
high costs, while offering uncertain benefits in return14-16. 
Hence, ideal treatment in T2DM should be to control 
hyperglycemia and its adverse consequences without 
increasing CV or other risks such as hypoglycemia, by 
healthy lifestyle, preventive care, and individualizing and 
optimizing medications (combinations, if necessary) and 
their doses, for initiation and intensification of therapy to 
achieve a target hemoglobin A1c (HbA1c), depending on 
patients’ circumstances. 

Prevention and control of diabetes with diet, weight con-
trol and physical activity has been difficult. Treatment of 
T2DM has centered on a) increasing insulin levels, either 
by direct insulin administration or oral agents that pro-
mote insulin secretion (insulin secretagogues, such as oral 
sulfonylureas), b) improving insulin sensitivity to insulin 
in tissues, such as by metformin or thiazolidinediones 
(TZDs), or c) reducing the rate of carbohydrate absorption 
from the gastrointestinal tract by the use of α-glucosidase 
inhibitors and/or agents that decrease gastric motility. 
Despite significant improvement achieved over the last 

decade in the management of T2DM with the use of drugs 
such as metformin, sulphonylureas, α-glycosidase inhibi-
tors, TZDs and insulin preparations, often in high doses 
and in combinations, a large proportion of patients are 
unable to reach recommended therapeutic targets (>60% 
with HbA1c > 7%)6,7,9,17. Furthermore, current treatments 
do not address the issue of progressive β-cell dysfunction/
failure/loss, such that the development and continued 
progression of diabetes is a consequence of the failure 
of the β-cell to overcome insulin resistance. In addition, 
current therapies, with the exception of insulin, have lim-
ited glucose-lowering capacity, and become less effective 
over time as a result of progressive loss of β-cell function/
number.17 Also, there are major adverse effects associated 
with the use of current medications, especially weight 
gain2,18, which may undermine the benefits of glycemic 
control. Therefore, strategies that aim to prevent hyperg-
lycemia must also aim to stabilize the progressive decline 
of β-cells. In this regard, intensive efforts have been made 
and are still continuing to develop newer classes of drugs 
to control hyperglycemia in T2DM patients without insu-
lin and preserve β-cell number/function. Recent break-
throughs in the understanding of incretin-based therapies 
have provided additional options for the treatment of 
T2DM, and one of the main strategy has been to modu-
late the levels of incretins (see below), the endogenous 
substances involved in glucose control to treat T2DM.

This review describes the therapeutic potential in treating 
T2DM (used as monotherapy or in combination with other 
antidiabetic drugs), mechanism of action(s), efficacy, phar-
macokinetics, pleiotropic effects, drug interactions and 
adverse effects of the main drugs which modulate levels 
and activity of endogenous incretins.

The incretins 
In 1902, Bayliss and Starling proposed that intestinal 
mucosa contains a hormone that stimulates the exocrine 
secretion of the pancreas (“secretin”). In 1932, La Barre 
proposed the name incretin for a hormone extracted from 
the upper gut mucosa, which caused hypoglycemia and 
proposed possible therapy for diabetes. In 1970, gas-
tric inhibitory peptide (GIP) was isolated from intestinal 
mucosa and sequenced by Brown and co-workers. The 
original name gastric inhibitory peptide was dropped 
and GIP was renamed glucose-dependent insulinotropic 
peptide in 1973 after Brown and colleagues, showed that 
GIP (Table 1) stimulates insulin secretion19. Of the several 
glucagon-like peptides-1 (GLP-1) detected in the intes-
tinal secretions, the GLP-1 (7-36) amide, was found to 
have the insulinotropic effect in humans21,22. It was deter-
mined that the incretin effect is mainly due to GLP-1(7-
36) amide and GIP (Figure 1). GLP-1 (7-36) is a 30 amino 
acid peptide produced (from proglucagon) and released 
from the neuroendocrine L-cells of the lower small intes-
tine (ileum) and the colon, in response to dietary fat and 
carbohydrates21-24, while GIP is a 42-aminoacid peptide 
secreted from the K-cells of mainly the duodenum and 
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jejunum20,23. Both endogenous incretins have a very short 
half-life (t), of the order of minutes, as a result of deg-
radation by the serum enzyme dipeptidyl-peptidase-IV 
(DPP-4, CD-26, EC 3.4.14.5)25-28. GLP-1 (7-36) is rapidly 
degraded (Table 1) to GLP-1 (9-36) with a plasma t½of 
1–2 minutes, while GIP is also quickly degraded with a 
t½= 4.3 min to GIP (3-42)20,23-27. Earlier, it was thought 
that the degradation products of GIP and GLP-1 were 
inactive, however, it has been shown that some of the 
extra-pancreatic effects of GLP-1 (lowering of post-pran-
dial glycemia by decrease in hepatic glucose production 
and vasodilatory effect) are mediated via the metabolite 
GLP-1 (9-36)28,29, and improvement in insulin sensitivity 
by GIP (3-42)29.

Incretin receptors
Both the incretins have specific receptors. The GLP-1 re-
ceptor, a member of the seven-transmembrane domain 
glucagon receptor family of G-protein-coupled recep-

Figure 1

Table 1. Amino acid sequence of incretins and analogs
        
GLP-1 (7-36; human) HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-amide

GLP-1 (9-36; human) EGTFTSDVSSYLEGQAAKEFIAWLVKGR-amide (metabolite of GLP-1)

        
GIP (1-42; human)  YAEGT-FISDY-SIAMD-KIHQQ-DFVNW-LAQKG-KKNDW-KHNHI-TQ 

GIP (3-42; human)  EGT-FISDY-SIAMD-KIHQQ-DFVNW-LAQKG-KKNDW-KHNHI-TQ (metabolite of GIP) 

         
Exendin-4 (synthetic) HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-amide
(Exenatide)

Exendin (9-39)  DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-amide (major circulating metabolite of exendin-4)

          
Liraglutide (1-31)  HAEGTFTSDVSSYLEGQAAKEFIAWLVRGR
      |
                  C-16-fatty acid-albumin
------------------
A = Ala; D = Asp; E = Glu; F = Phe; G = Gly; H = His; I = Ile; K = Lys; L = Leu; M = Met; N =  Asn; P = Pro; R = Arg; 
Q = Gln; S = Ser; T = Thr; V = Val; W = Trp; Y = Tyr 

The position of action of the enzyme DPP-4 is indicated by (above) to give the respective metabolites; other metabolites are also formed by the 
action of various enzymes.

tors, is the product of a gene mapped to the short arm 
of human chromosome 6 (6p21.1) and binds specifically 
GLP-1; it has a much lower affinity for related peptides 
such as GIP and glucagon21,26,30,31. GIP has a GIP-specific 
G-protein-coupled receptor with no cross-reactivity with 
the GLP-1 receptor. 22,30,31 Intravenous administration of 
GLP-1 activates the GLP-1 receptor, which results (Table 
2) in a) increased cAMP production and activation of ATP-
sensitive K channel mediated by β-arrestin-132,33, leading 
to increased synthesis and release of insulin; b) glucose-
dependent enhancement of insulin release by improving 
β-cell responsiveness to glucose via increased expres-
sion of glucose transporter-2 (GLUT 2) and glucokinase 
genes; insulin release is high at high glucose level and 
decreases as the glucose level drops, c) increase in tissue 
sensitivity to insulin, d) glucose-dependent secretion of 
amylin from the pancreas, e) delay in gastric emptying, 
mediated by vagal afferents34, f) suppression of appetite 
(by a central mechanism, possibly partially mediated by 
increased serotonin release in the hypothalamus35, and 
producing a feeling of fullness36, and satiety37, leading to 
decreased body weight, g) improvement in glycemic con-
trol, and h) decrease in glucagon secretion (from α-cells), 
possibly mediated by increased somatostatin secretion, 
resulting in reduced hepatic glucose production (Table 
2)21-23,26,38. Interaction of GIP with its receptor also in-
creases glucose-dependent pancreatic insulin secretion, 
but it has no effect on hepatic glucose output, gastric mo-
tility, satiety or body weight (Table 2), however, it does 
induce lipogenesis and glucagon secretion, and suppress 

gastric acid secretion23,26,28. In addition to improving in-
sulin sensitivity, the incretins also promote proliferation/
neogenesis of β-cells and prevent loss of β-cells by apop-
tosis, stimulate proinsulin gene transcription and transla-
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tion39,40,23,26,28. Additionally, there are several mechanisms 
of regulating hepatic and muscle glucose flux via GLP-1 
receptor, independent of insulin effect41,42. Receptors for 
both GLP-1 are found in the pancreatic islet β-cells, as 
well as in the stomach, adipose tissue, skeletal muscle, 
bone, heart, kidney, stomach, lung and brain20,21,23,27 and 
GIP receptors are mainly expressed in β-cells23,27.

Incretins in normoglycemic individuals and in patients 
with type 2 diabetes mellitus
In healthy normoglycemic individuals, plasma glucose 
levels are maintained within a narrow range by pancre-
atic insulin and glucagon (having opposite effects on 
glucose), and by glucoregulatory hormones, amylin and 
the incretins (GLP-1 and GIP)22,23. Ingestion of nutrients 
results in the release of the incretins, which stimulate the 
release of insulin from the pancreatic β-cells20,21. Incretin 
action is required for glucose homeostasis (24-hr blood 
glucose control) as well as control of postprandial glu-
cose; about 50-70% of stimulation of insulin secretion 
after a meal is due to incretin effect39,40. 

In T2DM, the amount of insulin released from the β-cells 
in response to a meal is insufficient and/or the target tis-
sues (fat, liver and muscle) develop insulin resistance 
(decreased insulin sensitivity). In addition, the incretin 

Table 2.  Comparative actions of GLP-1 and GIP

       GLP-1 GIP
 
Increase glucose-dependent insulin secretion
(from pancreatic β-cells)     Yes Yes*

Enhance insulin sensitivity     Yes Yes

Suppress glucagon secretion (from pancreatic α-cells)  Yes No*

Stimulate insulin biosynthesis    Yes Yes

Decrease apoptosis of β-cells    Yes Yes

Lower blood glucose     Yes Yes

Inhibit gastric emptying (decrease gastric motility)  Yes No

Inhibit gastric acid secretion    Yes Yes

Inhibit hepatic insulin extraction    Yes Yes

Inhibit post-prandial glucose excursion   Yes Yes

Extrapancreatic glucose lowering    Yes Yes

Enhance satiety (suppress appetite)    Yes No*

Decrease body weight     Yes No*

Enhance β-cell survival     Yes Yes

Increase β-cell neogenesis     Yes Yes

Stimulate β-cell expansion (mass)    Yes Yes
------------------------------------------------------------ 
* = the effect is not consistent

effect is either greatly impaired as a result of decrease 
in postprandial GLP-1 secretion (about 15%) and a 
marked reduction in insulinotropic response of β-cells 
to GIP25,43-46; hyperglycemia decreases the levels of GIP 
and GLP-147. The reduced incretin effect is believed to 
contribute to impaired regulation of insulin and gluca-
gon secretion in T2DM. This impaired action of incretins 

in T2DM patients may be, at least partly, 
restored by improved glycemic control, 
as shown in studies involving intensive 
diabetic therapy39,48. 

Treatment of type 2 diabetes mellitus 
based upon modulation of incretins
An option for the treatment of T2DM in-
volves modulation of levels of endog-
enous incretins, mainly GLP-1, which 
control the release of insulin and glu-
cagon from the pancreas in response to 
meals. Since, the levels of GLP-1 are 
decreased in T2DM43-46 and both GLP-
1 and GIP have a very short t, of the 
order of minutes, as a result of degra-
dation by DPP-420,23,27, enhancement 
of incretin action has been achieved 
by the development of novel metaboli-
cally stable activators of the GLP-1 re-
ceptor (incretin-mimetics)47-70, as well 
as, by inhibitors of DPP-4 (incretin en-
hancers)39,49,52,56-60,62-65,67,69-83,84. 

GLP-1 receptor agonists -- Incretin-
mimetics 
Because of very short t, native GLP-1 is 
not useful as a therapeutic agent unless 
administered by continuous subcutane-
ous infusion24,61. Hence, several synthet-
ic incretin-mimetics with longer t have 
recently been introduced, such as the 
exendins, which act by stimulating the 

GLP-1 receptors, and thus, stimulating glucose-depen-
dent insulin secretion and inhibiting glucagon release 
after meals. Exendin-4, a 39 amino acid peptide found 
in the saliva (venom) and isolated from the salivary gland 
of the lizard Heloderma suspectum (Gila monster)85, is 
a naturally occurring analog of GLP-1 (53% homology 
to GLP-1) (Table 4), that binds and activates the GLP-1 
receptor with the same potency as GLP-186-87. A synthetic 
version of exendin 4 (exenatide, 39-aminoacid peptide, 
Byettta®) is an insulin secretagogue with glucoregula-
tory effect, which has been approved in the USA (2005) 
as add-on therapy in T2DM patients with metformin, 
TZDs, sulfonylureas, and/or insulin to improve glucose 
control88-90. Though the effects of exendin-4 (exenatide) 
treatment on glucose control are likely due to several 
actions that are similar to those of GLP-1, the activity of 
exendin-4 is much greater than that of GLP-1 in control-
ling hyperglycemia, which may be due to its resistance 
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to degradation by DPP- 491. In human plasma it has a 
t½of 9.6 hr92, but in the circulation the t is 2.4 hr93. In 
response to a meal, exenatide a) causes initial rapid re-
lease of insulin (from β-cells), b) suppresses pancreatic 
glucagon release, c) delays gastric emptying and thus 
decreases appearance of glucose after a meal, and d) 
reduces appetite - all of which function to lower blood 
glucose55,90,91. The results of the clinical studies with ex-
enatide have been reviewed56-58,62,65,70,94; some data are 
presented in Table 4, which demonstrate that exenatide 
improves glycemic control (reduces HbA1c by 0.8%-
1.4%) and decreases body weight by ~2-4 kg in T2DM 

patients88,94-110, who fail to achieve glycemic control with 
metformin and/or a sulfonylurea. Monotherapy with ex-
enatide (5-10 g/dose) for 24 weeks in T2DM patients, in 

addition to decreasing HbA1c (0.7-0.9%), resulted in a 
significant weight loss (2.8-3.1 kg)95. Most patients using 
exenatide slowly lose weight, and generally the greatest 
weight loss is achieved by people who are the most over-
weight at the beginning of exenatide therapy. Sustained 
glycemic control (reduction of HbA1c by about 1%) and 
weight loss continues with long-term therapy (>5 kg in 
2-3 yr) with exetanide97,106,108. No ethnic differences were 
found in the efficacy and safety of exenatide110. Since 
metformin has been found to inhibit DPP-4 activity114, 
addition of metformin to the antidiabetic regimen would 
enhance the beneficial effects of GLP-1 analogs. The use 
of exenatide with meglitinides and α-glucosidase inhibi-
tors has not been studied. Exenatide is administered (5-
10g) twice daily subcutaneously (s.c.) before or within 60 

Table 4. Clinical studies with liraglutide
    Dose of        Study        Other    Change            Change  Change in 
Reference liraglutide (LIRA)              N    Duration     treatment  in HbA1c           in FPG Weight (kg)
        (wk)               (mg/dL)

Seino131  LIRA-0.5-0.9 mg/d            226      14      Diet   - 1.7%            -  46    0 

Madsbad133 LIRA- 0.225-0.450 mg/d.    193     12      Diet   - 0.2% to 0.5%    - 14 to - 23 - 0.7 to -1.

LIRA- 0.60-0.75 mg/d.      12      Diet    - 0.5%           - 22 to - 34 - 0.3 to -0.4

Placebo               12      Diet   + 0.2%           + 13   0.0

  Glimepiride        12      Diet   - 0.6%           - 38  +1.0

Harder134  LIRA 0.6 mg/d           33     8      Diet   - 0.3%           -  5  - 0.7

  Placebo       8      Diet   + 0.5%           + 5  - 0.9 

Vilsbøll129  LIRA-0.6 mg/d           165      14      Diet   - 1.0%           - 36  + 0.2

  LIRA-1.2 mg/d                14      Diet   - 1.4%           - 54   - 0.7

  LIRA-1.9 mg/d                 14      Diet   - 1.5%           - 54  -  3.0

  Placebo                           14      Diet   +0.2%           + 5   - 1.8

 Garber135  LIRA-1.2 mg/d          764     52      Diet   - 0.8%           - 15   - 2.0

  LIRA 1.8 mg/d            52      Diet   - 1.1%           - 26   - 2.5

  Glimepiride 8 mg/d              52      Diet   - 0.51%            -  5  + 1.1

 Feinglos130 LIRA-0.225 mg/d          210      12      Diet   + 1.3%           + 36 - 1.9%

  LIRA-0.450 mg/d               12      Diet   + 0.9%           + 11  - 1.2%

  LIRA-0.600 mg/d            12      Diet   + 0.2%           +  0  - 0.6%

  LIRA-0.750 mg/d              12      Diet   + 0.3%           + 16 - 0.9%

  Placebo                    12      Metformin  + 0.1%           -   4  - 0.6%

Nauck132  LIRA-0.5-2.0 mg/d            144      5      Metformin + SU  - 0.8%           - 50  - 1.5

Nauck136  LIRA- 0.6 mg/d                 1091    26      Metformin > 1 g/d  - 0.7%           - 20  - 1.8

  LIRA- 1.2 mg/d                 26      Metformin > 1 g/d  - 1.0%           - 29  - 2.6

  LIRA- 1.8 mg/d                 26      Metformin > 1 g/d  - 1.0%           - 31  - 2.8 

  Glimepiride 4 mg/d      26      Metformin > 1 g/d  + 0.1%           - 23  + 1.0

Marre137  LIRA-1.2-1.8 mg/d            1041    26      Glimepiride 2-4 mg/d - 1.1%           - 31  - 0.2

Rosiglitazone 4 mg/d            26      Glimepiride 2-4 mg/d - 0.4%           - 18  + 2.1

  Placebo             26          Glimepiride 2-4 mg/d + 0.2%           + 16  - 2.0

 Russell-Jones139  LIRA-1.8 mg/d        Metformin + glimepiride  - 1.3%    -1.8

  Placebo         Metformin + glimepiride  -  0.2%   

 Buse111  LIRA-1.8 mg/d          464     26      Metformin + SU  - 1.1%           - 29   - 3.2

  EX-10 ug b.i.d.       26      Metformin + SU   - 0.8%           - 11   - 2 .9

Wk = week; b.i.d. = twice a day; t.i.d. = three-times a day; d = day; FPG = fasting plasma glucose levels; SU = sulfonylurea;  LIRA = liraglutide; 
EX = exenatide. For glucose levels, to convert mg/dL to mmol/L divide by 18
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min of the morning and evening meals95,96. Unlike sul-
fonylureas and meglitinides, exenatide increases insulin 
synthesis and secretion only in the presence of glucose, 
lessening the risk of hypoglycemia. However, if used in 
combination with sulfonylureas, exenatide may increase 
the risk of sulfonylurea-induced hypoglycemia102, and 
therefore, the dose of sulfonylurea should be decreased 
if co-administered with exenatide. In patients with nor-
mal renal function, doses higher than 2.5g are needed for 
adequate glycemic response, but in patients with renal 
dysfunction dose adjustment is required115; it is contrain-
dicated in patients with severe renal impairment.

The main adverse effect of exenatide is nausea, which 
is mild to moderate depending on the dose, and may be 
transient. However, in some studies, up to 14% patients 
had to discontinue the drug due to nausea101-103,105. Other 
gastrointestinal symptoms include dyspepsia, vomiting 
and diarrhea90. Exenatide may also cause acute pancre-
atitis116, abdominal pain with or without vomiting, and 
sometimes renal failure117. In addition to being injected 
once or twice a day, other drawbacks of exenatide in-
clude lack of long-term studies to evaluate sustained ef-
ficacy and safety, as well as high cost.

The pharmacokinetic and pharmacodynamic profiles 
of exenatide have been evaluated90,118-121; after a single 
s.c. injection (5-10 µg), the drug is rapidly absorbed 
with mean peak plasma levels (tmax) achieved in 1.0-
3.0 hr90. Based on animal studies, the bioavailability of 
exenatide after s.c. injection has been estimated to be 
between 65% and 75%90. The mean apparent volume of 
distribution (Vd) after administration of a single s.c. dose 
is 28.3 L.90 Plasma levels decrease with a mean t1/2 of 
2.4 hr (range 0.9-4.0 hr)90,118-120. The drug does not accu-
mulate after repeated dosing. No ethnic differences were 
observed in the pharmacokinetics of exenatide119-121. The 
t of exenatide is increased in patients with renal dysfunc-
tion and it is poorly tolerated in patients with severe re-
nal insufficiency and end-stage renal disease115; doses of 
5-10g are unsuitable in such patients. The drug is elimi-
nated predominantly by glomerular filtration followed by 
proteolytic degradation90. There are no significant phar-
macokinetic interactions of exenatide with warfarin121, 

digoxin122, lisinopril123, and lovastatin124. 

GLP-1 analogs with long duration of action
A long-acting-release (LAR) formula of exenatide, which 
is to be injected once a week is under development. Ini-
tial trials have shown that the LAR formulation is approxi-
mately twice as effective as the original twice-daily in-
jectable form, with a similar safety profile but with rate of 
nausea rates and greater weight loss112,113,125,126. Exenatide 
LAR injection (in doses of 0.8-2.0mg), administered once-
weekly for 15 weeks with or without metformin, reduced 
HbA1c by 1.4-1.7%113. In a 30-week study, exenatide 
LAR (2.0 mg) once weekly was found to be superior to 
exenatide (10 g) twice daily (Table 3) in terms of glycemic 
control (HbA1c of 6.4% versus 6.8%) and the number 

of T2DM patients achieving HbA1c of <7.0% (77% ver-
sus 61%)112,113. Adverse effects of exenatide-LAR include 
nausea, gastroenteritis and hypoglycemia113,114. 

Several other long-acting analogs of GLP-1 such 
as liraglutide (NN2211; Victoza®) and albiglutide 
(naliglutide, GSK716155, Albugon®, Syncria®), are being 
developed for the treatment of T2DM. Liraglutide is a 
30-amino acid peptide attached to a fatty acid molecule 
and then bonded to albumin (Table 2)127,128; it has 97% 
homology with GLP-1128. After s.c. administration, the 
drug is released slowly into circulation (tmax = 9-13 hr), 
and then cleared slowly (t½of 11-15 hr) and excreted by 
the kidney127,128. The duration of action is about 24-hr, 
allowing once-daily s.c. dosing, which effectively reduces 
fasting as well as postprandial hyperglycemia (12 hr after 
administration)  (Table 5) by increasing insulin secretion, 
delaying gastric emptying, and suppressing prandial 
glucagon secretion127,128. Liraglutide administration 
(0.9 mg/day for 14 weeks) resulted in 75% of patients 
achieving HbA1c <7.0% and 57% achieving HbA1c 
<6.5%129, and once daily administration (0.75-2 mg for 
5-12 weeks) caused significant improvement in glycemic 
control (HbA1c reduction of 0.8-1.9%) and a weight 
loss of up to 3.0 kg128,130, as compared to placebo or 
glimepiride131; liraglutide administration also decreased 
appetite causing minimal side effects (nausea, vomiting, 
and diarrhea) with negligible risk of hypoglycemia128. The 
clinical efficacy of liraglutide, given as monotherapy or 
in combination with other antidiabetic drugs, has been 
amply demonstrated in  a large number of clinical trials 
including the Liraglutide Effect and Action in Diabetes 
series (LEAD-1 to -6) of studies in more than 4400 T2DM 
patients (Table 6)111,127-141. In addition to robust glycemic 
control, liraglutide reduced weight in most patients, 
improved beta-cell function, lowered blood pressure and 
triglycerides, and was well tolerated with minimal risk of 
hypoglycemia; addition of liraglutide to oral antidiabetic 
regimen improved glycemic control128,129,139,140. A once-a-
day s.c. injection may be sufficient in normal use. Dosage 
adjustment may not be required in patients with renal 
impairment142. In some populations, especially at higher 
doses, liraglutide decreases body weight111,129,131,134,136,138. 
Some studies suggest that the efficacy and tolerability 
of liraglutide administered once-a-day is comparable or 
even better than exenatide given twice-a-day94,111. An 
ethnic difference in the effects of liraglutide was observed, 
in that in Japanese T2DM patients given half the dose 
of the Caucasian patients, the reduction in HbA1c was 
more prominent, suggesting that liraglutide may be more 
effective in Asian than in Caucasian patients possibly due 
to their improvement of early phase insulin secretion143. 
The main adverse effects of liraglutide include nausea, 
vomiting and diarrhea128,135-137. The US-FDA advisory 
includes the risk of developing pancreatitis and papillary 
thyroid tumors144,145. After s.c. administration of 1.0 mg of 
liraglutide in healthy individuals, Cmax of 15-20 nmol/L 
was obtained at tmax of 12-14 hr; plasma t of liraglutide 
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Table 5. Clinical studies with Sitagliptin

             Dose of     Study                   Other      Change   Change in         Change in
Reference         sitagliptin (SITA)           N Duration               treatment                     in HbA1c  FPG (mg/dL)   Weight (kg)
     (wk)

Aschner185           SITA -100 mg/d      741 24      Diet     - 0.79%                  - 13 to 18               - 0.2

            SITA -200 mg/d  24      Diet      - 0.94%          - 16 to 22               - 0.1

           Placebo   24      Diet       + 0.18%          +  5               - 1.1

Raz203           SITA -100 mg/d      521 18      Diet     - 0.48%           -  13               - 0.2

            SITA -200 mg/d  18      Diet       - 0.36%           -  11               - 0.6

           Placebo   18      Diet       + 0.12%          +   7               - 0.7

Hanefield191      SITA - 25-50 mg b.i.d./q.d.    555 12      Diet     - 0.4 to -0.6% -11 to -17                 0

Nonaka205           SITA - 50 mg b.i.d.     151 12      Diet + exercise    - 1.3%          - 49     

           SITA - 100 mg q.d.  12      Diet + exercise    - 0.8%          - 41     

           Placebo   12      Diet + exercise    - 0.2%          -   7     

Charbonnel211     SITA -100 mg/d      701 24      Metformin (>1500 mg/d)   - 0.67%          -  16               - 0.6

           Placebo   24      Metformin (>1500 mg/d)   - 0.02%          +   9               - 0.7

Rosenstock212    SITA -100 mg/d       353 24      Pioglitazone 30-45 mg/d   - 0.85%          -  16               +1.8

            Placebo   24      Pioglitazone 30-45 mg/d   - 0.15%                0               +1.5

Scott200          SITA - 12.5 – 50 mg b.i.d.      743 12      Diet + exercise    - 0.4% to -0.8%       -13 to -18         + 0.1 to +0.4

           Glipizide (5-20 mg/d)  12      Diet + exercise    - 0.76% to -1.38%   + 23

           Placebo   12      Diet + exercise    + 0.23%          + 8      

Nauck215           SITA -100 mg/d      1172 52      Metformin > 1500 mg/d   - 0.67%          - 10               - 1.5

           Glipizide (5-20 mg/d)   52      Metformin > 1500 mg/d   - 0.67%          -  8               +1.1

Brazg214           SITA - 100 mg/d      28  4      Metformin > 1500 mg/d    - 22     

           Placebo      4      Metformin > 1500 mg/d    -   7    

Goldstein216        SITA- 100 mg/d      1091 24      Diet + exercise    - 0.83%          - 23

           SITA- 50 mg/d   24      Metformin 1000 mg/d + Diet    - 1.5%          - 53

           SITA- 50 mg/d.   24      Metformin 2000 mg/d + Diet    - 2.07%          - 70  

           Placebo   24      Metformin 1000 mg/d + Diet    - 0.99%          - 33

           Placebo   24      Metformin 1000 mg/d + Diet    - 1.3%          - 35

           Placebo   24      Diet + exercise    + 17%          +  6  

Hermansen217     SITA -100 mg/d      441 24      Glimepiride    - 0.30%         -  2               +1.1

          SITA -100 mg/d   24      Glimepiride/Metformin   - 0.59%         -  7               + 0.4

           Placebo   24      Glimepiride    + 0.27%          + 18  0

           Placebo   24      Glimepiride/Metformin   + 0.30%          + 12               - 0.7

Scott213           SITA -100 mg/d      273 18      Metformin >1500 mg/d.           - 0.7%          -  11               - 0.4

                           Roziglitazone 8 mg/d      18      Metformin >1500 mg/d.   - 0.8%          - 23               + 1.5

           Placebo   18      Metformin >1500 mg/d   - 0.2%          - 54               - 0.8

Mohan218           SITA -100 mg/d  18      Metformin 1500 mg/d.   - 1.0%          - 31  

            Roziglitazone 8 mg/d            18      Metformin 1500 mg/d   - 0.8%          - 23               + 1.5

           Placebo   18      Metformin 1500 mg/d.   - 0.2%          - 54               - 0.8

Wk = week; b.i.d. = twice a day; t.i.d. = three-times a day; d = day; N = number of patients in the study; d = per day; FPG = fasting plasma glucose levels; 
SU = sulfonylurea; for glucose levels, to convert mg/dL to mmol/L divide by 18
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was 11-15 hr146. There is no effect of age or gender on 
the pharmacokinetics of liraglutide146. Liraglutide is being 
considered for approval by the US-FDA in 2009. 

Another drug of this class, albiglutide, a recombinant hu-
man GLP-1-albumin-fusion protein (genetic fusion of a 
DPP-4-resistant GLP-1 dimer to human albumin) has a 
long duration of action (t½= 6-8 days) and is to be injected 
every 5-8 days to control hyperglycemia147,148. In (Table 5) 
addition to controlling blood sugar, it also suppresses ap-
petite. In T2DM patients, albiglutide (16-64 mg given by 
s.c. injection) improved fasting plasma glucose and post-
prandial glucose with a low adverse effect profile (mainly, 
headache, nausea and flatulence)147,148. After injection, al-
biglutide is readily absorbed but tmax is reached in 3-5 
days and its plasma t is between 6 and 8 days147,148.  

Although, the GLP-1 receptor agonists (incretin mimetics) 
are effective in reducing HbA1c and post-prandial glu-
cose in patients failing sulphonylurea and/or metformin 
therapy, the role of these drugs in the treatment of T2DM 

is still debated. An earlier consensus algorithm of the 
American Diabetes Association (ADA) and the European 
Association for the Study of Diabetes (EASD)149, http://
www.eje-online.org/cgi/content/full/160/6/909 - BIB4  
suggested to limit the use of GLP-1 receptor agonists 
only to some specific cases, without considering those 

agents as the main-line drugs. The reasons for this exclu-
sion were their perceived limited efficacy in decreasing 
HbA1c in comparison with other agents, their poorly de-
fined safety profile, and their cost94. However, the newer 
Consensus algorithm issued by ADA/EASD suggests that 
GLP-1 receptor agonists can be used, in selected cases, 

as an add-on treatment to metformin150. 

GIP analogs and GIP receptor antagonists
In addition to the insulinotropic action of GIP on the 
pancreatic β-cell, GIP also has been shown to stimulate 
β-cell proliferation and inhibit apoptosis in islet cell lines. 
Additionally, functional GIP receptors have been identi-
fied on adipocytes, which have been shown to stimulate 
glucose transport, increase fatty acid synthesis, and stim-
ulate lipoprotein lipase activity in animal models. Thus, 
there is some interest in GIP analogs as novel therapeutic 
option for the treatment of T2DM. However, there are sev-
eral limitations to using GIP itself as a therapeutic agent: 
a) GIP (1-42) has a short biological t in the circulation 
due to rapid cleavage and degradation by DPP-4,  b) the 
cleaved metabolite (GIP 3-42) (Table 2) is not only inac-
tive but may also function as a GIP receptor antagonist 
in vivo,  c) clinical GIP infusion studies in T2DM patients 
have resulted in blunted insulin responses, since GIP no 
longer modulates glucose-dependent insulin secretion in 
T2DM even at supraphysiological plasma levels.22 How-
ever, the interaction of GIP with its functional receptor on 
adipocytes results in a) increase in lipoprotein lipase, b) 
stimulation of lipogenesis, c) enhancement of fatty acid 
and glucose uptake, d) augmentation of insulin-mediated 
fatty acid incorporation, and e) inhibition of both glu-

cagon- and adrenergic-receptor mediated lipolysis.23,55 
Thus, GIP promotes energy storage and reduces insulin 
at the adipocyte level while it stimulates insulin secre-
tion from the β-cells. Hence, there is interest in develop-
ing GIP receptor agonist for the treatment of obesity and 
insulin resistance.55 Although, several GIP analogs have 
been synthesized, no human studies with GIP analogs 
have been reported. 

Pleiotropic effects of incretins and incretin-mimetics
The incretins have a number of pleiotropic (extrapan-
creatic) actions which have therapeutic benefits beyond 
controlling hyperglycemia20,21,151-153. As mentioned earli-
er, GLP-1 and exenatide delay gastric emptying, suppress 
appetite and cause satiety by central mechanism(s), which 
translates into reduction in body weight. GLP-1, exenati-
de and liraglutide have been shown to increase insulin 
sensitivity and β-cell function (Table 3)111,128,135,139,140,154-

156 In animal experiments, both exenatide and liraglutide 
increased β-cell mass, by increasing proliferation and 
neogenesis and reduction in apoptosis 27,38,157-159; it is not 
known if these effect on β-cells are also applicable to hu-
mans. GLP-1 and analogs regulate cell proliferation and 
apoptosis in various tissues (such as pancreas, gut and the 
CNS)158. Exenatide also improves lipid profile (decrease 
in total cholesterol, LDL-cholesterol and triglycerides, 
apo B, and an increase in HDL-cholesterol)100. Liraglutide 
administration also decreases triglyceride levels111,128. 
Furthermore, exenatide treatment in patients with the 
metabolic syndrome produced significant improvement 
in cardiometabolic risk factors and anthropometric pa-
rameters160. Since exendin-4 was shown to reverse hepat-
ic steatosis in ob/ob mice161, the GLP-1 mimetics may be 
a therapeutic option for (human) hepatic steatosis162. 

Activation of GLP-1 receptors by GLP-1 in the endotheli-
um, and cardiac and vascular myocytes, has been shown 
to increase levels of cAMP and cGMP resulting in vaso-
dilation, enhanced coronary blood flow, and increased 
functional recovery and cardiomyocyte viability after 
ischemia-reperfusion injury in experimental studies163,164. 
Exenatide has also been reported to prevent ischemic-
reperfusion injury in experimental animal models165. It 
is possible that the incretins and incretin-mimetics may 
protect the heart against ischemia-reperfusion injury in 
humans. The central action of GLP-1 also contributes to 
central regulation of metabolic and cardiovascular ho-
meostasis155, GLP-1 decreases BP and increases myocar-
dial contractility151, and in heart failure patients, infusion 
of GLP-1 improves endothelial function and symptoms 
of heart failure43,159,166,167. Some of these beneficial effects 
are mediated via a nitric oxide synthase-requiring mech-
anism that is independent of the interaction of GLP-1 
with its receptor168. Exenatide decreased both the systolic 
and diastolic BP in patients following 82-week treatment, 
probably as a secondary consequence of improvements 
in blood levels of glucose and lipids and a reduction in 
body weight97. In other short term (24-week)95 and long 
term (82-week)107 studies, exenatide (5-10g bid) lowered 
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Table 3. Clinical studies with exenatide and exenatide LAR

        Dose of                   Study   Other                 Change      Change    Change in 
Reference      exenatide (EX)        N       Duration       treatment              in HbA1c     in FPG     Weight (kg)
                  (wk)             (mg/dL)

Moretto95        EX- 5 µg b.i.d.  232 24 Diet/exercise         - 0.7%      - 18           - 2.8  
        EX-10 ug b.i.d.       24 Diet/exercise         - 0.9%      - 19           - 3.1 
        Placebo      24 Diet/exercise         - 0.2%      -   5           - 1.4
Nelson96        EX-10 µg b.i.d.   99   4 Diet/exercise         - 0.4%      - 36            ---  
        Placebo             4 Diet/exercise         + 0.2%      + 11            ---
Nelson96        EX-10 µg b.i.d./20 q.d. 127 30 Diet/metformin          - 0.9%            - 4.3  
        EX-10 ug b.i.d./20 q.d.  30 Diet/exercise         - 1.0%            - 3.7
Fineman88       EX-0.08 µg b.i.d./t.i.d. 109   4 SU + Metformin         - 1.0- -1.1%        ---            ---  
        Placebo                4 SU + Metformin         - 0.3%        ---            ---
Ratner97        EX-10 µg b.i.d.    92 82 Metformin          - 1.3%      - 31           5.3  
Poon98        EX-5 µg b.i.d.      156   4 Diet/exercise/metformin   - 0.4%      - 20           - 1.4  
        Ex-10 ug b.i.d.        4 Diet/exercise/metformin   - 0.5%      - 17           - 1.8 
        Placebo        4 Diet/exercise/metformin   + 0.1%      +  7             0
Barnett99        Ex-10 ug b.i.d.       138 16 Metformin/SU         - 1.4%      - 52           - 2.2 
        Insulin glargine    16 Metformin/SU         - 1.4%      - 74          +2.3
Klonoff100        EX-5-10 ug b.i.d.  217 16 Metformin + SU         - 1.0%            - 5.3
        Placebo.    16 Metformin + SU         - 0.4%      - 0.2           - 0.1 
Monami94        EX-5-10 ug b.i.d.  466 16 Metformin + SU         - 1.2%      - 1.3           - 1.2 
        Placebo.    16 Metformin + SU         - 0.4%      - 0.2           - 0.1 
deFronzo101    EX- 5µg b.i.d.    336 30 Metformin (1000 mg/d)    - 0.4%      -  7           - 1.6 
        EX-10 µg b.i.d.   30 Metformin (1000 mg/d)    - 0.8%      - 11           - 2.8       
        Placebo   30 Metformin (1000 mg/d)    + 0.2%      +14           - 0.3 
Buse102        Ex- 5 µg b.i.d.     377 30 Glimepiride (4 mg/d)        - 0.5%      -  5            - 0.9  
        EX-10 µg b.id       30 Glimepiride (4 mg/d)        - 0.9%      - 11           - 1.6
        Placebo   30 Glimepiride (4 mg/d)        + 0.1%      +  7           - 0.6
Kendall103        EX-5 µg b.i.d.   733 30 Metformin + SU         - 0.6%      -  9           - 1.6 
        EX-10 µg b.i.d.   30 Metformin + SU          - 0.8%      - 11           - 1.6
        Placebo         30 Metformin + SU          + 0.2%      +14           - 0.9
Zinman104        EX-10 µg b.i.d.  233 16 Metformin + TZD         - 0.9%      - 29           - 1.8 
        Placebo     16 Metformin + TZD         + 0.1%      +  2           - 0.2
Heine105        EX-10 µg  551 26 Metformin + SU         - 1.1%      - 26           - 2.3 
        Insulin glargine   26 Metformin + SU         - 1.1%      - 52           +1.8
Nauck106        EX-10 µg b.i.d.       501 52 Metformin + SU         - 1.0%      - 32           - 2.5 
        Biphasic insulin   52 Metfromin + SU         - 0.9%      - 31           + 2.9
Blonde107        EX-5-10 µg b.i.d. 314 82  Metformin + SU         - 1.1%            - 4.4 
        EX-5-10 µg b.i.d. 551 82  Metformin + SU         - 0.9%            - 3.5
Buse108        EX-5-10 µg b.i.d. 283 30  Metformin + SU         - 0.9%            - 2.1 
        EX-5-10 µg b.i.d.  52  Metformin + SU         - 1.1%            - 4.7
Brodows109      EX-5-10 µg b.i.d. 314 24  Metformin + SU         - 0.7% to -0.9%     - 18           - 2.8 to -3.1 
Gao110        EX-5-10 ug b.i.d.  466 16 Metformin + SU         - 1.2%      - 1.3           - 1.2 
        Placebo.    16 Metformin + SU         - 0.4%      - 0.2           - 0.1
Buse111        EX-10 ug b.i.d.   464 26 Metformin + SU         - 0.8%      - 11           - 2.9 
        Liraglutide 1.8 mg/d  26 Metformin + SU         - 1.1%      - 29           - 3.2
Drucker112        EX-10 µg b.i.d.  295 30 Metformin + SU         - 1.5%      - 25           - 3.8 
        EX-LAR 2.0 mg/wk   30 Metformin + SU         - 1.9%      - 41           - 4.3
Kim113        EX-LAR 0.8 mg/wk     45 15 Metformin/diet/exercise   - 1.4%      - 43             0.0 
        EX-LAR 2.0 mg/wk     15 Metformin/diet/exercise   - 1.7%      - 40           - 3.8
        Placebo         15 Metformin/diet/exercise   + 0.4%      +18             0.0

Wk = week; b.i.d. = twice a day; t.i.d. = three-times a day; d = day; EX = exenatide; EX-LAR = Long-acting exenatide; 
FPG = fasting plasma glucose levels; SU = sulfonylurea; TZD = thiazolinedione. For glucose levels, to convert mg/dL to mmol/L divide by 18
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BP, which was independent of weight loss. Liraglutide ad-
ministration also decreased systolic BP128,129, which oc-
curs even before the weight loss.  

Exenatide treatment has been shown to prevent early 
diabetic retinopathy in experimental animals169. The in-
cretins may also be involved in the regulation of taste 
function, since GLP-1 signaling in taste buds modulates 
taste sensitivity170. The apparent ability of exendin-4 (ex-
enatide) to arrest progression of, or even reverse nigral 
lesions once established, normalize dopamine imbal-
ance, and increase the number of cells positive for mark-
ers of dopaminergic neurons in the substantia nigra in a 
model of Parkinson’s disease suggests that pharmacolog-
ical manipulation of the GLP-1 receptor system could be 
of therapeutic value in Parkinson’s disease171,172. Further-
more, GLP-1 has been shown to decrease endogenous 
amyloid-beta peptide (Abeta) levels and protect hippoc-
ampal neurons from death induced by Abeta and iron173; 
these observations suggest that GLP-1 and analogs may 
be useful in the therapy of Alzheimer’s disease174,175. 
Since, exenatide potently decreases ghrelin levels in 
fasting rats, incretin-mimetics could offer a therapeu-
tic option for syndromes characterized by substantial 
amounts of circulating ghrelin176. Additionally, exen-
din-4 improves glycemic control, ameliorates brain and 
pancreatic pathologies, and extends survival in a mouse 
model of Huntington’s disease177. It is expected that oth-
er GLP-1-receptor agonists and inhibitors of DPP-4 will 
have some of the above mentioned pleiotropic effects of 
GLP-1 and agonists.  

Dipeptidyl-peptidase-4 inhibitors - incretin enhancers
Since the incretin-mimetics have to be given subcutane-
ously, efforts to find orally active compounds that en-
hance the endogenous incretin effect, have resulted in 
the development of inhibitors of DPP-471,76,78,79,84, the 
enzyme which rapidly inactivates the endogenous in-
cretins. DPP-4, a serine protease/peptidase, involved in 
many important processes related to nutrition, excretion 
and immune function (such as maintaining lymphocyte 
composition and memory T cell generation), is present in 
many tissues of the body but mostly in the kidney178,179. 
Serum levels of DPP-4 have been shown to increase with 
prolonged hyperglycemia180, and its levels decrease with 
normalization of blood glucose. Increased levels of DPP-
4 could contribute to the reduction in circulating active 
GLP-1 and to the consequent postprandial hyperglyc-
emia in T2DM patients with poor metabolic control180. 
Inhibitors of DPP-4, called the gliptins, block the ac-
tive site of DPP-4 and thereby prevent the inactivation 
of incretins, thus prolonging the duration of action of 
GLP-1 and GIP181. These “incretin enhancers” increase 
postprandial insulin secretion, effectively improve glyc-
emic control (reduce HbA1c), suppress glucagon release 
and endogenous glucose production (in the liver), and 
improve islet cell function (increased β-cell sensitivity 
to glucose), without a significant effect on gastric motil-

ity or body weight57,80,82,182-199. The DPP-4 inhibitors are 
more effective in patients with significant residual β-cell 
function as compared to those with long-standing insulin 
deficiency. The data on the effect of gliptins on appetite 
and body weight are not consistent in that some investi-
gators claim that gliptins do not have any effect on these 
parameters57,58,63,75,76,200,201, while others indicate that the 
gliptins have a modest effect on appetite (slowing gastric 
motility and inducing a feeling of satiety) and reduction 
in body weight189,202,203. Preclinical studies have demon-
strated that an approximately 80% inhibition of DPP-4 
activity is necessary to achieve a near-maximal effect on 
glucose concentration204. In humans, 80-88% inhibition 
is achieved with DPP-4 inhibitors given at the therapeu-
tic doses182,192,205,206, which results in significant rise in 
GLP-1 and GIP levels192,197. If animal studies turn out to 
be applicable to man, chronic treatment with DPP-4 in-
hibitors may prevent the decline in β-cell function and 
increase basal GLP-1 levels207. Interestingly, the observa-
tion that atorvastatin inhibits DPP-4208 suggests that the 
statin may offer clinical benefit in treating T2DM patients 
with dyslipidemia. 

In general, the DPP-4 inhibitors are well tolerated and the 
risk of hypoglycemia is low when used as monotherapy 
or in combination with metformin or TZDs. In addition, 
these drugs have a low gastrointestinal side effect profile 
and drug administration does not require injection, thus 
enhancing patient compliance. However, the risk of na-
sopharyngitis, urinary tract infection and upper respira-
tory infection increases with the use of these drugs56,71,189. 

The effect of inhibition of DPP-4 could potentially have 
some adverse consequences, since DPP-4 has a large 
number of physiological (endogenous) substrates, and 
DPP-4 has been implicated in the control of lymphocyte 
and immune function, cell migration, viral entry, cancer 
metastasis, and inflammation71. It is possible that inhibi-
tion of neuropeptides, other closely related serine pro-
teases such as DPP-2, DPP-8, DPP-9, fibroblast activation 
protein-alpha/seprase, prolyl endopeptidase, and tryptase 
may account for the occasional anemia, thrombocytope-
nia, neurogenic inflammation, allergic reactions, hyper-
tension and splenomegaly that have been reported with 
certain non-selective DPP-4 inhibitors177,178,209. However, 
no such adverse effects have been reported in humans 
with short-term (12 months) use of the approved selective 
inhibitors at the therapeutic doses81. On the other hand, 
the DPP-4 inhibitors may be useful to decrease liver in-
flammation and steatosis, in conditions in which DPP-4 
levels are high210. However, the durability and long-term 
safety of these drugs remains to be determined.

Sitagliptin (MK-0431, Januvia®) has been approved (2006) 
in the USA, and vildagliptin (LAF 237, Galvus®) in Europe 
(2008), as oral antidiabetic agents, to be used either as 
monotherapy in T2DM patients inadequately controlled 
with diet and exercise, or as add-on therapy in combina-
tion with metformin, TZDs, or insulin, who have failed oral 
agents73,185,190, 194. If used as monotherapy, sitagliptin is re-
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ported to be less effective than sulfonylurea and metformin 
in lowering HbA1c211. The efficacy of sitagliptin has been 
demonstrated in least 11 clinical trials conducted in 6781 
randomized patients57,59,65,84,185,186,191,195,200,203,205,211,212-220; 
some data are presented in Table 6. Sitagliptin mono-
therapy (50-100 mg/day) usually results in a reduction 
in HbA1c of 0.8-0.9% and glucose levels of 18-22 mg/
dL195,200,203, while addition of metformin211,213,216,219,221 or 
TZDs212,220 to the antidiabetic regimen improves the effi-
cacy; combination with metformin increases the efficacy 
in part by the reported inhibition of DPP-4 by metform-
in114. The drug (at doses of 100-200 mg/d) is well-tolerated 
in trials lasting up to 52 weeks, and it has a low risk of hy-
poglycemia57,186,200,203,215,219-222. Sitagliptin may be used as 
monotherapy in patients who cannot tolerate metformin 
or sulfonylureas and it may also be used as an alternative 
to metformin in renal insufficiency57, however, the dose 
has to be decreased in patients with moderate to severe 
renal dysfunction or end-stage renal disease223,224. An eth-
nic difference in the efficacy of the gliptins (sitagliptin 
and vildagliptin) was observed in that at the same doses, 
the reduction in HbA1c was 1.5 times higher in Japanese 
T2DM patients as compared to the Caucasian patients225. 
Sitagliptin improves β-cell function and decreases insulin 
resistance157,191,211,214-216. Sitagliptin has a favorable effect 
on lipid profile (decrease in free fatty acids, triglycerides 
and increase in HDL-cholesterol)200. 

Sitagliptin may cause gastrointestinal side effects, na-
sopharyngitis, upper respiratory infection and head-
ache57; cases of severe idiosyncratic hepatotoxicity have 
also been reported63. Since, sitagliptin is highly selective 
for DPP-4 and shows little interaction with other pro-
teas (Table 6) es or closely related enzymes, in particular 
DPP-8 and DPP-9, it is not associated with multiorgan 
toxicities exhibited by inhibitors of DPP-8/DPP-9 in ani-
mal studies209. Never-the-less, another DPP-4 inhibitor, 
vildagliptin, has been reported to cause skin lesions and 
kidney impairment in animals, but, no such adverse ef-
fects have been reported with short-term (12 months) use 
of sitagliptin or vildagliptin at therapeutic doses81. Some 
drawbacks of using sitagliptin include a lack of long-term 
safety and efficacy data, as well as high cost.

After oral administration, sitagliptin is rapidly absorbed 
(tmax = 1-4 hr), the absorption is not influenced by food 
intake182,192. The oral bioavailability of sitagliptin is 87%; 
it exhibits low and reversible binding to plasma proteins 
(approximately 38%) and is widely distributed in tissues 
(Vd = 198 L)182,192. The Cmax and AUC are dose-dependent 
in the 25–400 mg dose range226. Plasma levels decline in 
a biphasic pattern (t½of the alpha phase = 2-4 hr; termi-
nal t½= 8-14 hr ), independent of the dose182,192. Sitaglip-
tin is mostly excreted (80-87%) by the kidney182,192,227; 
metabolism by hepatic CYP 3A4 and CYP2C8 accounts 
for 17% of the administered drug192,227. Pharmacokinetic 
and pharmacodynamic parameters of sitagliptin are not 
significantly altered in moderately obese subjects228 or 

in diabetic patients192,221. However, pharmacokinetic pa-
rameters of sitagliptin are altered in patients with renal 
insufficiency, with values of Cmax, AUC, and terminal 
t1/2 increasing with the degree of renal dysfunction: AUC 
increase 4-5-fold, and Cmax and terminal t1/2 increase 
2-fold in patients with end-stage renal disease223,224. The 
pharmacokinetics of sitagliptin is not significantly af-
fected by mild to moderate hepatic dysfunction.229 Sit-
agliptin does not alter the pharmacokinetic parameters of 
glyburide196,230, metformin196,221, rosiglitazone231, simvas-
tatin196,232, warfarin196 or oral contraceptives196.  

Vildagliptin is used as monotherapy or in combination 
with metformin, sulfonylureas or TZDs in T2DM patients 
with inadequate glycemic control following monothera-
py; it is also used as monotherapy or in combination 
with a TZD in patients who cannot tolerate metformin 
or sulfonylureas194,220. At an oral dose of 100 mg, vild-
agliptin almost completely inhibits DPP-4 for up to 24 
hr233. At least 19 clinical trials have been conducted 
in more than 7000 randomized patients56-58,65,74,80,82,84; 
results of some of these studies are presented in Table 
6183,188,201,202,235-248. Vildagliptin dose-dependently im-
proves glycemic control in T2DM patients: at doses of 25 
to 50 mg b.i.d., the decrease in HbA1c ranges between 
0.8% and 1.1%, and fasting glucose levels (by 15 mg/
dL to 30 mg/dL) after monotherapy201,202,234, with further 
improvement in these parameters when given in combi-
nation with metformin188,194,197,198,239,244,246, the effect on 
weight is minimal237,243,244,246. Vildagliptin is as effective 
as pioglitazone, and In T2DM patients failing TZD mon-
otherapy, vildagliptin in combination with pioglitazone 
improved glycemic control240,241,247,249 without additional 
risk of hypoglycemia240,241. Vildagliptin in combination 
with metformin, a sulfonylurea or a TZD  (given for 24-
52 wk) not only improved glycemic control in T2DM 
patients but also appeared to slow the progression of 
β-cell degeneration187,194,250. Vildagliptin has a low risk of 
hypoglycemia and is generally well-tolerated at doses 
of up to and including 200 mg a day in trials lasting up 
to 52 wk201,251. The drug is also available as a fixed-dose 
formulation with metformin (Eucreas®)252-254. Vildagliptin 
improves islet-cell function by increasing both α- and 
β-cell responsiveness to glucose; improvement in β-cell 
function (assessed by increase in HOMA-β), insulin sen-
sitivity (reduction in HOMA-insulin resistance), post-
prandial insulin secretion, and a reduction in postpran-
dial glucagon secretion were observed with vildagliptin 
(at doses of 25-200 mg/day)75,187,193,194,199,253-264. Vildaglip-
tin improves lipid profile237.

After oral administration, vildagliptin is rapidly absorbed 
giving rise to dose-dependent Cmax (tmax = 1.0-2.0 hr) 
across the dose range of 25- 200 mg; its oral bioavailabili-
ty is 85%256,265-268. Food has no effect on the absorption of 
vildagliptin268. Vildagliptin exhibits low protein binding 
(9.3%), and it is quickly eliminated (t of ~ 2-3 hr)256,265,266; 
the t½is dose-dependent (range 1.6-2.5 hr)267-269. There is 
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Table 6. Clinical studies with Vildagliptin
            Dose of     Study      Other             Change    Change     Change in
Reference          vildagliptin (VILD)            N Duration     treatment           in HbA1c    in FPG     Weight (kg) 
     (wk)        (mg/dL)

Kikuchi 234            VILD – 25-50 mg b.i.d.      291 12   Diet         -1.0% to - 1.2%        0   
            Placebo   12   Diet     +0.1%      -   9     - 0.2
Dejager202            VILD - 50 mg q.d.      632 24   Diet     - 0.8%      - 18     -  1.8 
            VILD - 50 mg b.i.d  24   Diet     - 0.8%      - 14     -  0.3 
            VILD -100 mg q.d.  24   Diet     - 0.9%      - 14     -  0.8 
            Placebo   24   Diet     - 0.3%      -   4     -  1.4 
Pi-Sunyer201        VILD - 50 mg q.d.      354 24   Diet     - 0.5%      -   9     -  0.4 
            VILD - 50 mg b.i.d  24     Diet     - 0.7%      - 22        0 
            VILD -100 mg q.d.  24   Diet     - 0.8%      - 20     -  0.4 
            Placebo   24   Diet       0.0      +  2     -  1.4 
Pan235            VILD - 50 mg b.i.d.      660 24   Diet    - 1.4%      - 16  
            Acarbose 300 mg/d  24   Diet    - 1.3%      -  27
Schweizer236       VILD - 50 mg b.i.d.      780 52   Diet     - 1.0%      - 16     + 0.3 
             Metformin 1000 mg b.i.d.  52   Diet      - 1.4%      - 31     + 1.6 
Rosenstock237     VILD - 50 mg b.i.d.      598 52   Diet     - 0.9%         0 
            Rosiglitazone 8 mg/d.  52   Diet     - 1.1%      + 4.7 
Scherbaum238     VILD - 50 mg q.d.      306 52   Diet     - 0.2%      -  7     - 0.5 
            Placebo   52     Diet     +0.1%      + 8     - 0.2
Ahren239            VILD - 50 mg q.d.      107 12   Metformin    - 0.6%      - 18     - 0.4
             Placebo   12   Metformin   + 0.1%      +  4     - 0.5 
Rosenstock240     VILD -100 mg q.d.      607 24   Diet     - 1.1%      - 23     - 0.6 
             VILD - 50 mg q.d.  24   Pioglitazone 15 mg q.d. + Diet  - 1.7%      - 43     + 1.4 
            VILD -100 mg q.d.  24   Pioglitazone 30 mg q.d. + Diet  - 1.9%      - 50     + 2.1
            Placebo   24   Pioglitazone 30 mg q.d. + Diet  - 1.4%      - 34     + 1.5
Garber241            VILD - 50 mg q.d.      463 24   Pioglitazone 45 mg/d.   - 0.8%      - 14     + 0.1 
             VILD - 50 mg b.i.d.  24   Pioglitazone 45 mg/d.   - 1.0%      - 18     + 1.3
            Placebo   24   Pioglitazone 45 mg/d   - 0.3%      -   9     + 1.4
Garber242            VILD - 50 mg q.d.      515 24   Glimepiride    - 0.6%      -   5     -  0.1 
             VILD - 50 mg b.i.d.  24   Glimepiride    - 0.6%      -   7     + 1.3
            Placebo   24   Glimepiride    + 0.1%      +  4     -  0.4
 Fonseca243         VILD - 50 mg b.i.d.      296 24   Insulin 82U/d    - 0.5%      - 14     + 1.3
            Placebo   24   Insulin 82U/d    - 0.2%      -   4     +  0.3
Bosi188            VILD - 50 mg q.d.      544 24   Metformin >1500 mg/d   - 0.7%      - 14      -  0.4
            VILD - 50 mg b.i.d.  24   Metformin >1500 mg/d   - 1.1%      - 31     +  0.2
            Placebo   24   Metformin >1500 mg/d   +0.2%      + 13     -  1.0
Bosi244            VILD - 50 mg b.i.d.      1179 24   Metformin 2000 mg/d   - 1.8%      -  47         0
            VILD - 50 mg b.i.d.  24   Metformin 1000 mg/d   - 1.6%          0
            VILD - 50 mg b.i.d.  24   Diet     - 1.1%      - 27         0
            Placebo   24   Metformin 2000 mg/d    - 1.4%      - 35         0
Rosenstock245     VILD - 50 mg b.i.d.      786 24   Diet     - 1.1%      - 23     -  0.3 
             VILD - 50 mg q.d.  24   Rosiglitazone 8 mg q.d. + Diet  - 1.3%      - 41     + 1.6 
Bolli246            VILD - 50 mg b.i.d.      576 24   Metformin 2000 mg/d   - 0.9%      - 38     + 0.2 
             Pioglitazone 30 mg q.d. 24   Metformin 2000 mg/d   - 1.0%      - 25     + 1.9
Goke247            VILD - 50 mg b.i.d.      305 52   Diet + pioglitazone   - 1.0%      - 0.5 
            Metformin 2000 mg/d  52   Diet + pioglitazone   - 1.5%      + 2.5
Ferrannini248       VILD - 50 mg b.i.d.      2789 52   Metformin 2000 mg/d   - 0.44%      - 18     -  0.23 
            Glimepiride 4.5 mg/d  52   Metformin 2000 mg/d   - 0.53%      - 21

N = number of patients in the study; b.i.d. = twice a day; q.d. = once a day; d = day; FPG = fasting plasma glucose levels; SU = sulfonylurea; 
For glucose levels, to convert mg/dL to mmol/L divide by 18
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no accumulation after repeated dosing. The metabolism 
of vildagliptin is mainly by hydrolysis to inactive metabo-
lites265. Some 80% to 85% of an oral dose is eliminated in 
urine, including 22% to 29% of unchanged drug in Chi-
nese subjects, which is similar to that observed in non-
Chinese subjects256,265-269. There is no significant effect of 
gender or obesity on the pharmacokinetics of vildaglip-
tin, however, total exposure (AUC) of the drug increases, 
but clinically insignificantly in the elderly267. Hepatic 
dysfunction does not have any effect on the pharmacoki-
netics of vildagliptin, therefore, dosage adjustment is not 
necessary269. Vildagliptin does not have a significant ef-
fect on the pharmacokinetics of digoxin270 , amlodipine271 
valsartan271, ramipril271, simvastatin272 and warfarin273.

Several other DPP-4 inhibitors, including alogliptin 
(SYR-322)84,274,275,276,277 and saxagliptin (BMS-477118; 
Onglyza ®)84,275,278,279, etc., are in various stages of devel-
opment. Both vildagliptin and saxagliptin are apparently 
close to being approved by the USA-FDA. Monotherapy 
with alogliptin (12.5-25 mg per day) improved glycemic 
control (decrease in HbA1c by 0.6%) in T2DM patients 
without raising the risk of hypoglycemia274,276.280. It ap-
pears to be effective and safe in treating T2DM, when 
added to metformin in patients not sufficiently controlled 
on metformin monotherapy.281 In addition to metformin, 
alogliptin can also be combined with TZDs, sulfonylu-
reas and insulin274,277. The drug is well tolerated and has 
an excellent safety profile, except that hypoglycemia is 
significant at 800 mg dose282; it appears to be weight 
neutral. Combination of alogliptin with pioglitazone (in 
ob/ob mice) increased GLP-1 and insulin levels and re-
duced glucagon concentration, and exhibited a comple-
mentary effect in terms of improved glycemic control 
and lipid profile283. Never-the-less, studies in diabetic 
patients are needed to evaluate the long-term safety and 
efficacy of alogliptin284. After single oral doses (25-800 
mg), alogliptin is rapidly absorbed (tmax = 1-2 hr) and is 
slowly eliminated (t½= 12 – 21 hr). A small fraction of 
the dose is metabolized (8%), and 60 - 71% of the dose 
of the drug is eliminated by the renal route282,285. Results 
of clinical studies with saxagliptin appear to be encour-
aging, in that a dose-dependent inhibition of DPP-4 is 
achieved resulting in reduction in HbA1c (by 0.7-0.9%), 
fasting serum glucose, postprandial glucose levels, with 
low incidence of adverse effects, and no significant ef-
fect on body weight84,275,278, 279,286.

Conclusions
Traditional first-line therapy (sulfonylureas, metformin, 
TZDs, etc.) might not be appropriate for all T2DM pa-
tients. In addition, these drugs have significant adverse 
effects, such as hypoglycemia and weight gain. The re-
cently developed diabetes therapies based upon GLP-1 
receptor agonists (e.g., exenatide, liraglutide) and DPP-4 

inhibitors (e.g., sitagliptin, vildagliptin) are useful in the 
management of T2DM because they provide effective 
reductions in fasting plasma glucose and postprandial 
glucose levels. In addition, the GLP-1 receptor agonists 
promote weight loss, whereas the DPP-4 inhibitors are 
weight neutral, and there is a low risk of symptomatic 
hypoglycemia. These drugs are effective as monotherapy 
in drug-naive patients as well as in those in whom other 
treatments (for example with metformin, sulfonylureas, 
thiazolinediones, etc.) have been inadequate to achieve 
glycemic control. When combined with other glucose-
lowering agents, the GLP-1 receptor agonists and DPP-
4 inhibitors the efficacy of treatment is increased. These 
drugs appear to have beneficial effects on β-cell dysfunc-
tion, although, the ability of GLP-1 receptor agonists to 
reduce and/or reverse the progressive β-cell loss remains 
unclear. Also, it is not known that long-term therapy based 
upon incretin-mimetics/incretin-enhancers will have sus-
tained benefits, especially in later-stages of the disease; 
the long-term safety has also not been established. Never-
the-less, the current consensus statement from the Ameri-
can Diabetes Association and the European Association 
for the Study of Diabetes about the medical management 
of hyperglycemia in T2DM patients has included GLP-1 
receptor agonists as an option when weight loss or risk 
of hypoglycemia are major considerations. In general, 
antidiabetic agents should be individualized on the ba-
sis of their efficacy as hypoglycemic agents and their ex-
traglycemic effects (on lipids, BP and weight), tolerability 
and safety, complication of long-term use, ease of drug 
administration, and costs.
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