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Estudios recientes sobre la interacción del tálamo con el 
neocórtex alimentan positivamente la sospecha de que no 
sólo el neocórtex es el principal responsable de los procesos 
de aprendizaje, sino su intrínseca relación con el tálamo. La 
simulación computacional ofrece un soporte conveniente 
para complementar las hipótesis derivadas de estos 
nuevos resultados experimentales. En el presente trabajo 
argumentamos a favor de la necesidad de una disciplina 
intermedia entre la neurociencia cognitiva computacional y 
el conexionismo, a la cual denominamos bioconexionismo. 
Presentamos un modelo bioconexionista que simula las 
proyecciones entre el tálamo y el neocórtex, en particular en 
el área sensorial primaria. Una nueva acepción del término 
memoria resulta del diseño bioconexionista. Finalmente, en 
busca de una interpretación de los resultados, lo comparamos 
con el trabajo de un conexionista de la primera ola, W. K. 
Taylor, quien, como resultado de una profusa contribución a 
la tradición, publicó en 1964 los lineamientos para un modelo 
cuyos supuestos son semejantes al modelo aquí expuesto. 
En el plano neurocientífico, llamamos la atención sobre la 
relevancia del tálamo en su relación con el neocórtex y en 
su responsabilidad en los procesos cognitivos. En relación 
al conexionismo, presentamos un modelo bioconexionista 
del que se deriva una posible explicación a los datos 
experimentales recientes. Desde el punto de vista de la historia 
del conexionismo, intentamos mostrar por qué conviene que 
los trabajos de Wilfred Kenelm Taylor sean reconsiderados.

Recent studies on the interaction of the thalamus with the 
neocortex positively feed the intuition that not only the 
neocortex is primarily responsible for the learning process, 
but also its intrinsic relationship to the thalamus is. Computer 
simulation conveniently support the hypotheses derived from 
these new experimental results. In this paper we argue for the 
need for an intermediate discipline between the computational 
cognitive neuroscience and connectionism, which we call 
bio-connectionism. We present a bio-connectionist model 
that simulates projections between the thalamus and the 
neocortex - particularly in the primary sensory area. A new 
sense of the word memory results from this bio-connectionist 
design. Finally, through the search of an interpretation 
of the model results, we contrast it with the work of a first-
wave connectionist: W. K. Taylor, who, as a result of profuse 
contribution to the tradition, published in 1964 guidelines 
for a model whose assumptions are similar to the model 
discussed herein. On the neuroscientific level, highlights the 
importance of the thalamus in its relation to the neocortex 
and their responsibility in cognitive processes. In relation to 
connectionism, we present a bio-connectionist model from 
which a possible explanation for the recent experimental data 
is derived. From the standpoint of the history of connectionism, 
we try to show why the work of Wilfred Kenelm Taylor should 
be reconsidered.

Resumen Resumo

Estudos recentes sobre a interação do tálamo com o 
neocórtex alimentam positivamente a suspeita de que não 
só o neocórtex é o principal responsável pelo processo de 
aprendizagem, mas sua relação intrínseca com o tálamo. A 
simulação computacional oferece um suporte conveniente 
para complementar as hipóteses derivadas destes novos 
resultados experimentais. Neste artigo, defendemos 
a necessidade de uma disciplina intermediária entre a 
neurociência cognitiva computacional e o conexionismo, 
que chamam bioconexionismo. Nós apresentamos um 
modelo que simula projeções bioconexionista entre o 
tálamo e o neocórtex, particularmente na área sensorial 
primária. Um novo sentido da palavra memória resulta do 
projeto bioconexionista. Finalmente, em busca de uma 
interpretação dos resultados, em comparação com o trabalho 
de um conexionista da primeira gama, WK Taylor, que, como 
resultado da contribuição profusa com a tradição, em 1964 
diretrizes publicadas para um modelo cujas premissas são 
semelhante ao modelo aqui exposto. No plano neurocientífico, 
chamamos a atenção para a relevância do tálamo em relação 
com o neocórtex e sua responsabilidade nos processos 
cognitivos. Em relação ao conexionismo, apresentamos um 
modelo bioconexionista que deriva uma possível explicação 
para os dados experimentais recentes . Do ponto de vista da 
história da conexionismo, tentamos mostrar que a obra de 
Wilfred Taylor Kenelm seja reconsiderada.
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 Computational modeling is a tool that offers 
alternative support to speculations and hypotheses from 
experimental data previously collected in the laboratory 
(Sommer & Wennekers, 2000).  The cortico-thalamic 
projections which complete a closed circuit between 
the thalamus and the neocortex present an opportunity 
for the application of computational modeling and thus 
it may contribute to the effort to explain the in vivo 
function of these projections (Hillenbrand & Hemmen, 
2002; Alitto & Usrey, 2003).  In this paper, we present 
a computational model to confirm a particular view of 
the interaction between the thalamus and the neocortex 
which could open new possible interpretations of 
phenomena such as perception or memory.
 Recent studies have shown that the cortico-
thalamic projection in the primary sensory neocortical 
area to the corresponding sub-nuclei of the thalamus 
directly results in the coordination and precision in the 
firing of thalamic neurons from these sub-nuclei to 
the neocortex (Andolina, Jones, Wang & Sillito, 2007; 
Wörgötter, Eyding, Macklis & Funke, 2002; Sillito, Jones, 
Gerstein & Wet, 1994).  This cortico-thalamic projection 
has the function of not only refining the receptive fields 

and / or modulating the firing of thalamic neurons, but 
also increasing the transmission of sensory signals 
from the periphery to the neocortex (Briggs & Usrey, 
2008).  The computational model presented here aims 
to provide explanatory support to this experimental 
evidence.
 We propose the rearrangement on existing 
data on connections between the thalamus and the 
neocortex in computational design, suggesting there 
is a positive advance towards understanding the 
cognitive phenomena from the biological substrate of 
thalamo-cortical circuit if we modify the methodological 
approach in order to bring the spotlight into thalamic 
connections.  A first argument for this gestalt turn - that 
a mammal can survive the ablation of large cortical 
areas, but completely lose the sense of reality to the 
lower thalamic dysfunction at some subnucleus - can 
be considered.  We propose an excitatory recurrent 
architecture (Douglas, Koch, Mahowald, Martin & 
Suarez, 1995) to support this idea.
 As for radial projections, we simply consider 
the thalamus and the neocortex; tangential dimensions, 
on the other hand, were framed based on studies of 

cortical cells (Yates, 2013; Gray & Singer, 1989).  Since 
the proposed mechanism is limited to the primary 
sensory areas of thalamo-cortical complex, we 
suggest the term perception - understood as conscious 
perception - when we discuss the effect that emerges 
as a result of this mechanism, rather than the terms 
cognition and learning, whose overuse and misuse 
have been recently criticized (Cromwell & Panksepp, 
2011; beim Graben, 2011; Globus, 1992).  At the end of 
this paper, we present a discussion and took position 
on considering the possibility of speaking of perceptual 
experience based on the mechanism shown.

Connect ionism, Computat ional  Cogni t ive 
Neuroscience and Bio-connectionism

 According to a particular point of view (Westen 
& Gabbard, 2002a, 2002b), connectionism can be 
considered a historical derivative of cognitivism because 
it attempts to decipher facts concerning knowledge of 
cognition from the simulation of neural networks, and 
not from computer algorithms, as classic cognitivism 
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does.  However, since the 1950s up to the present the 
cognitive premise has been gradually set aside from the 
connectionist task, usually to follow two distinct lines 
(Arbib, 2000).  In the first group, there is a list of studies 
in which there are few attempts at reorganization of 
neurons according to a biological map although in most 
cases they are based on the modeling of neurons, with 
a degree of simplification which varies (with respect 
to the function of neuronal activation, for example, 
see summary of Kouh & Poggio, 2008).   This group, 
which can be set as current connectionism, copies from 
biology the physiology of a neuron or part of it, but not 
the anatomy that directs the connection between certain 
neurons or neural groups in the brain.  The second line 
of investigation comprises studies belonging to an even 
newer discipline known as Computational Cognitive 
Neuroscience (CCN), which adhere to biology seeking 
such a degree of accuracy that hardly manage to extend 
their speculations to cognitivism (Ashby & Hélie, 2011).
 In order to distinguish between the modeling 
which tries to stay as close as possible to biology - always 
in view of technology limitations when programming 
- from the modeling which allows a rearrangement of 

neurons regardless of a biological order, we propose 
the term bio-connectionism to designate the former.  
An important difference between connectionism and 
bio-connectionism is that the former is inspired by 
the biology of the nervous system but its main focus 
is pragmatic, so that a classical connectionist system 
does not seem to be significant unless it demonstrates 
its usefulness (Minsky & Papert, 1972).  The bio-
connectionist system, instead, aims at the simulation of 
biological complexity just to understand such complexity; 
moreover, in the case any subsequent practical 
application is found, it will be welcome.  Many recent 
publications on connectionism share the characteristic 
of not only representing a simplified version of the neural 
physiology, which is inevitable in any instance, but also 
adding to the creation of artificial networks features that 
are not derived from experimental results, but drawn 
from mathematical games, highlighting the difference 
with the bio-connectionism.  Focusing expectation on 
a numerical result, classical connectionist networks 
are generally designed to solve problems; however, 
a system that simply is as close as possible to neural 
biology will not seek another result apart from the 

one which is generally in living things: to learn how 
to get away from noxious stimuli and how to search 
pleasurable stimuli.
 Likewise, bio-connectionism differs from CCN 
in the sense that it does not look for accurate details in 
modeling, but merely deviates as little as possible from 
biological data, even with the simplifications needed 
to perform the system programming with the available 
resources (Piccinini & Scarantino, 2011).  Thus bio-
connectionism has the advantage, typical of CCN, to 
allow a greater restriction on the model so that two or 
more researchers can model the same neural structure 
and, if they share the same conditions for simplifying 
the modeled structure, could match results to a greater 
degree than classical connectionism (Ashby & Hélie, 
2011).  At the same time, bio-connectionism, the same 
as classical connectionism, has the advantage of 
achieving results more easily than CCN, which, in turn, 
bet on perfection in modeling and minimization of the 
simplifications, thematically resigning the possibility of 
seeing the forest for the trees.  See Table 1 For a resume 
of the differences between classic cognitivism, cognitive 
computational neuroscience and bio-connectionism.

Check Table1 in page 87
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Biological Background of the Model

 Now we will consider some of the most 
important neural pathways in the primary sensory area 
and, being the most studied, the one linked with vision 
in particular: projections associated with the lateral 
geniculate nucleus of the thalamus in its connection 
to the primary visual cortex.  Projections reach the 
lateral geniculate nucleus through the optic tract.  In 
turn, this thalamic nucleus projects to the primary 
visual neocortex.  Finally, it receives projections from 
cortical area, but not necessarily from the same cortical 
layer.  The main objective of thalamic projections in the 
neocortex is layer 4 and, in the second place, layer 6, 
due to the massiveness of the projection (Thomson 
& Bannister, 2003).  Despite these are not the only 
projections that reach layer 4, the thalamus-cortical 
neurons are primarily responsible for the activity in this 
layer (Thomson, Bannister, Mercer & Morris, 2002).  It 
is very well known that layer 4 projects to layer 3, and 
this one, in turn, projects to layer 5 with impulses that 
are not reciprocal (Thomson, 2010).  Layer 6 receives 
pulses from layer 5 and in turn massively projects to the 
thalamic nucleus from which receives the stimulation 
(Sherman & Guillery, 1996).

 Based on this evidence, the following successive 
projections have been considered to perform the bio-
connectionist design: i) from the thalamus to layer 4 of 
the neocortex; ii) from layer 4 to layer 3 of neocortex; 
iii) from layer 3 to layer 5; iv) from layer 5 to layer 6; and 
finally v) from layer 6 to the same thalamic sub-core that 
started this chain.  As a result, a closed five-membered 
or five-stations circuit is formed (Figure 1.b).  To diagram 
the circuit, not only the most voluminous but also direct 
(not fuzzy) projections have been considered.  Also 
note that cortico-cortical connections, -even those from 
the primary sensory area, - which is the most studied to 
date - have not been completely elucidated and many 
of them, including some of those taken here to model, 
especially those involving layer 6, are not fully confirmed 
and significant differences between experimental 
animals are found (Thomson, 2010).
 Taking into account the great simplification that 
has been necessary to carry out for the design of the 
model, it is preferable to provide some explanations.  For 
acceptance of this bio-connectionist model, it has been 
enough to find out that the modeled neural distribution is 
possible.  The proposed demarcation or the underlining 
of certain projections on a multitude of others does 
not necessarily suggest that the distribution shown is 

the most probably responsible for the phenomenon 
that we try to explain; however, it highlights that is just 
not implausible.  While the thalamo-cortical, cortico-
cortical and cortico-thalamic pathways that have been 
extracted for modeling are some of the most important 
in the general biological circuit, they are not the only 
important ones, so the possibility of extending the circuit 
in subsequent studies to do it polycyclic or cross-linked 
(see Figure 1.c) should be emphasized.  A modeling like 
this, under the relevant considerations, would certainly 
be a step closer to the mimesis of biology as the genetic 
evolution has “designed” over millennia.

Figure 1. 
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 Now it is regarded, as an example of the above, 
the thalamo-cortical projection to layer 6 focusing on 
neurons that fire into the same thalamic nucleus.  Don’t 
we have to imagine a narrower closed circuit, with two 
stations or layers, which only involves the thalamus and 
neocortical layer 6? No experimental data invites to rule 
out this possibility.  Layer 6 is the first neocortical layer 
evolving in ontogeny (Rakic, 2009), which suggests 
that the thalamo-cortical connections to layer 6 are 
remnants of a precarious structure necessary when a 
more complex structure - including layers 3, 4 and 5 
- had not reached its maturation time.  In this report, 
it is not possible to expand on the consideration of the 
circuit from its ontogenetic development.  Literature 
data concerning the connections in the mature system 
have certainly been taken into account for this model 
layout.

Bio-connectionist model

 For modeling, another element apart from 
the functional unit called neuron and the connection 
between neurons called synapses has not been 
required (Hines & Carnevale, 1997).  All neurons in 

the system are identical in structure.  According to 
their structure, each neuron can be divided into four 
parts: a specific initial amount d of dendrites, a cell 
body which statistically processes the incoming stimuli 
to the dendrites, an axon which triggers as a function 
of the statistical result of the cell body process, and 
a specific initial amount of axon-terminals reached by 
the axonal impulse after each shot.  For the sake of 
simplicity, the design has omitted both the axon and 
axon-terminals as subelements, as the design allows 
the cell body of the presynaptic neuron directly assigns 
a stimulus to the dendrites of postsynaptic neurons.  
Thus, upon activation of a presynaptic neuron, the 
program has, as a function that depends on the strength 
of the synapse, a voltage (weight) of each dendrite of 
postsynaptic neurons (Brette et al., 2007).  The function 
of the synapse as a structural element is to reduce the 
voltage that reaches each dendrite, depending on a 
factor that varies according to the history of the neurons 
that participate in that synapse (Pappas, Asada & 
Bennet, 1971).  Thus, the program distinguishes three 
subelements of a neuron: i) dendrites, ii) cell body 
(counter), iii) synapses.

 The neurons are distributed into groups forming 
links or stations that connect successively.  Each station 
has a specific and constant number N of neurons.  The 
neurons in each station only fires to the next station, and 
the distribution of their synapses with neurons between 
stations is initially random, which ensures unsupervised 
dynamic and stochastic results that are more consistent 
with the biological architecture (Svozil, Kvasnicka & 
Pospichal, 1997).  According to the biological evidence 
proposed, the closed circuit has five stations (E0 - E4) 
connected successively, while, at the same time, the 
last station is connected to the first one to form such 
circuit (Figure 1.b).  For example, the fifth axon-terminal 
of neuron 3 of station 2, a5.3.2 , is connected with the 
seventh dendrite of the first neuron of station 3, d7.1.3.
 The electrical impulse (weight), measured in 
V (volts), reaches dendrites of a neuron as a result of 
their synapses with axon-terminals of different neurons 
from the previous station.  After that, it is processed 
by the cell body in order to be distributed in multiple 
dendrites of different neurons in the next station.  Each 
dendrite has assigned a voltage Vd whose absolute 
value decreases linearly with time (depending on the 
factor r = DVd / I, where I represents the elapsed time), 
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but grows strongly when it receives an impulse.  At 
every moment, the cell body (counter) takes the sum 
of the voltage of each of their dendrites Vc = S Vd.  Only 
when the sum exceeds a constant threshold value, UA, 
such that Vc > UA, the trigger occurs, with an intensity 
VA that is always the same for the same neuron (not 
proportional to Vc), following a stepped nonlinear 
shooting or all-or-nothing logic (Adrian & Forbes, 1922).  
The value of VA can be positive (corresponding to an 
excitatory neuron) or negative (corresponding to an 
inhibitory neuron).  Note that both positive and negative 
firing occur when the sum exceeds the threshold value 
Vc > UA which is always positive.  The axon shooting 
is manifested in the dendrites of the next station to 
which that neuron is connected, with an intensity Va 
depending on the amount of these dendrites, such that 
Va = VA / a, and with an unchanged delay t.  The delay in 
the program follows the premise that the only significant 
delay in neural time is that of the sinapse (McCulloch & 
Pitts, 1943).  The firing produces the axon inactivity for 
a period T, called idle period, during which the axon is 
not able to shoot again (Brette et al., 2007).  Synapse 
resistance translates into a drop in voltage that occurs 
in the dendrite, and is given by a permeability factor 
which goes from 0 to 1, allowing the relationship
p = DVd / Va.

On Memory in Biochemical Terms

 The “learning” of the system is related to the 
permeability p of the synapse, which should vary 
depending on the time and the shared activity of 
neurons that form synapse (Sutton & Shuman, 2006).  
The permeability at a given time at a specific synapse 
depends on the initial permeability p and on the previous 
history of this synapse (Stent, 1973).  We will speak of 
synaptic facilitation when the permeability increases 
(such that p’ > p) and of synaptic depression when 
the permeability decreases (such that p’ < p).  Also, 
we will say there is long-term facilitation when new 
synaptic connections are formed and there is long-term 
depression when a synaptic connection disappears 
(Brown, Chapman, Kairiss & Keenan, 1988; Ito, 1989).

Synaptic Facilitation

 When the dendrite’s voltage exceeds a specific 
threshold value Vd > Ud, and at the same time the axon 
of the same neuron is in a period of inactivity (for just 
shot) governed by T, the permeability factor of the 
synapse involved increases an amount x, so that p = 
p ‘ + x (the resistance decreases).  This coordination 
between the voltage of the dendrite and axon shot 

makes the synaptic resistance dependent on the full 
activity of the neuron, as the sum of the voltages of all 
dendrites leads to the axonal shot (Hebb, 1949).  Thus, 
synaptic facilitation occurs only when the dendrite is 
stimulated in synchrony with the other dendrites in the 
same neuron.
 If the presynaptic neuron is inhibitory (with 
a negative tripping current of its axon VA), facilitating 
conditions are exactly reversed.  It is necessary that 
voltage variation in the dendrite decreases below a 
threshold value Vd <U-d (such that U-d = -Ud), and also 
that the postsynaptic neuron is not in an idle period, i.e. 
that it has not shot lately.  In this case, as with excitatory 
synapses, permeability factor increases, p’= p + x.  The 
condition that the presynaptic neuron fires in asynchrony 
with other presynaptic neurons that reach the dendrites 
of the same postsynaptic neuron reflects the effect 
studied for inhibitory (presynaptic) neurons to enhance 
their synapses with (postsynaptic) neurons that do not 
participate of the path that is being empowered (Stent, 
1973).
 The system also includes the possibility of 
long-term facilitation.  When the increase in the p 
factor is such that its value reaches the unity, a new 
synapse between stations belonging to the connected 
neurons is formed so that the presynaptic neuron 
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acquires a new axon-terminal and the postsynaptic 
neuron acquires a new dendrite (Brown et. al, 1988).  
In forming the new axon-terminal and the new dendrite, 
permeability p of the synapse that gave rise to them 
goes back to its original value.  The new axon-terminal 
is not connected with the new dendrite, but awaits off 
until the next long term facilitation event, in which both 
a new axon-terminal and a new dendrite appear in 
other connections between the same two stations.  The 
dendrite is also awaiting until the next axon-terminal is 
formed.  Thus, long term facilitation lets the increase in 
branching among neurons firing in synchrony over time 
(Bliss & Collingridge, 1993).

Synaptic Depression

 When the voltage of a dendrite exceeds a given 
threshold value Vd > Ud, and also the axon is not in an 
idle period, the permeability factor of the synapse of that 
dendrite reduces such that p’ = p - x.  In this case, the 
strength of the synapse increases because its activity 
occurs in asynchrony with the other synapses of the 
same neuron, since if synchronously it would produce 
the axonal firing (see above).  Note how the system 

necessarily modifies the permeability of the synapses 
when the dendrite exceeds the threshold value, 
enhancing it if the neuron is in a period of inactivity, or 
reducing it if it is not.  When the presynaptic neuron is 
inhibitory, the requirement to decrease the permeability 
p’= p - x will be that the dendrite voltage falls below 
a given threshold value Vd > U-d (such that U-d = -Ud) 
and also that the axon is in a period of inactivity; i.e., 
that it has fired recently.  Finally, if the factor p value 
decreases to zero, the axon-terminal and dendrite 
synapse involved disappear (long-term depression) 
(Ito, 1989).  When synapses disappear, the presynaptic 
neuron loses an axon-terminal and the postsynaptic 
neuron loses a dendrite.

On Memory in Physiological Terms

 A direct consequence of the Hebb’s rule (1949)  
- immediately understood by his contemporaries (cf. 
Taylor, 1958) - is that, due to synaptic potentiation, an 
external impulse (input) eventually forms neural paths 
with neurons whose connection is enhanced in relation 
to other neurons in the same area that have not been 
reached by the neural impulse.  For the thalamo-

cortical circuit here studied, the external impulse is 
sensorial and the pathways are formed through the 
stations in the closed circuit.  Each sensory stimulated 
neuron receives a voltage Vext in its dendrites.  Synaptic 
modifications have the gradual effect of forming cell 
assemblies (CA) through the successive stations, 
which are sets of neurons of each station connected to 
each other with less resistance (or higher permeability) 
than other neurons (Lansner, 2009).  According to 
the number of neurons per station, a closed circuit 
is capable of forming a specific amount of CA before 
becoming saturated.  Once the circuit is saturated, the 
formation of a new CA involves the dissolution of one or 
more of CA previously formed.
  CA formation is led by the first station, which 
corresponds to the thalamus.  This first station Eo 
receives external activation corresponding to the 
sensory pathway, and also receives neural activation by 
the closed circuit, that is, projections from the last station 
(Figure 2).  Accordingly, each dendrite of neurons of the 
first station is indiscriminately and randomly connected 
with both sensory neurons and neurons from the 
last station (Destexhe, 2000).  The thermodynamic 
effect expected for this feature of the circuit is that, in 
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the first station, neurons that are being stimulated by 
both sides simultaneously will most likely trigger and, 
therefore, these will be more likely to participate in 
CA, which marks a neural groove along the circuit that 
ends in the same station.  Two extreme cases can be 
plotted: when stimulation chain along the closed circuit 
derives in neurons in the last station which, in general, 
are not connected with neurons of the first station, the 
enhanced route is not reinforced.  In contrast, when the 
chain stimulation results in neurons of the last station 
activating generally the same neurons in the first station 
that are activated by outside sensory via, the pathway 
stimulated along the whole closed circuit reinforces 
and a CA is formed and/or reinforced.  In this sense, 
it is fair to say that the circuit functions as a servo loop 
(Ahissar & Kleinfeld, 2003; Wiener, 1949).  This result 
is also consistent with experimental evidence according 
to which the cortico-thalamic projections from layer 6 
produce alignment and empowerment of thalamic 
neurons that are firing (those within CA) as an effect 
(Andolina et. al, 2007; Sillito et. al, 1994).
 In the formation of a CA, sensory neurons must 
remain activated enough time for the corresponding 
synapse along the circuit can be enhanced.  
Biochemistry memory stored in each synapse of the 

circuit now comprises a physiological sense when 
considered statistically, since it corresponds to the 
memory of the circuit saved as a set of neurons (a CA).  
This is because the activity in the thalamo-cortical loop 
immediately modifies synaptic properties of neurons 
involved in this closed circuit (Steriade, 2001).  This 
proposal is outlined to solve the problem of translating 
the neural dynamics to a macrostrucutre (beim Graben, 

Barrett & Atmanspacher, 2009).  The term memory has 
been used in its broadest sense as the ability to storage 
something and then to bring it back.  This something 
in terms of the thalamo-cortical dynamic proposed 
is CA (in physiological terms), or the set of synaptic 
permeabilities of neurons participating in the code (in 
biochemical terms) (confront Adams & Cox, 2002).  CA 
can be stored for retrieval in the future.  If the same 
distribution of active sensory neurons is repeated, the 
code potentiated in the past directly activates without 
the need to recreate synaptic facilitation in each of the 
synapses throughout the stations (Azouz & Gray, 1999; 
Civillico & Contreras, 2012).  The system thus tends to 
increase synchrony (Brette, 2012) between the neurons 
forming CA in the closed circuit and sensory neurons 
afferent to the thalamus whenever activated.

Computational bio-connectionist modeling

 The structure we call “brain” consists of a set 
of neurons arranged in accordance to the biological 
evidence which was analyzed previously here (see 
above).  Time is measured in iterations, and an iteration 
corresponds to one pass through the entire algorithm 
of the source code.  The set of iterations within that the 

Figure 2. 
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external stimulation is kept constant is called pulse, 
so that each pulse consists of a certain number L of 
iterations.  In turn, the set of pulses constitute a run.  
The run is the lifetime of the brain, from birth to death, 
and includes a certain number of pulses.  The brain has 
an initial state, before the run, and a final state, after 
the run.  The run has the only effect on the structure 
of modifying synaptic permeability of neurons.  The 
initial state is determined by parameters entered by the 
operator.  After the process the operator can use the 
final state of the brain to evaluate the performance of 
the program.  After observing the results (final state), 
the operator can modify the system parameters (initial 
state) and start a new run, by iterating until achieve 
optimal values.  Figure 3 shows the platform designed 
for operator use.
 Eo station is divided into three equal groups 
of neurons: A, B and C.  For each pulse, the external 
stimulation is kept constant by activating one and only 
one set of the Eo station.  In the following pulse, external 
stimulation can change or remain constant.  It is desired 
to evaluate the degree of formation achieved for CA, 
which is referred as Encoding Index, and the trend of 

neurons in Eo station to facilitate dendritic permeability 
as a coordination between the external stimulation and 
stimulation from the last station E4; this tendency is 
measured by an index called Configuration Index.
 Optimal parameters were obtained by running 
a single pulse with L = 100 iterations.  By the end of the 
run, those neurons that had been activated the most, 
were expected to have their dendritic permeability 

above the value of initial permeability p; neurons with 
an average activation should have had the permeability 
of their dendrites below the initial permeability p; and 
finally neurons that had been hardly activated should 
have had permeability close to p (Figure 4).  The first 
of these three neuronal groups corresponds to the 
neurons firing in synchrony and, therefore, their dendritic 
permeability is enhanced; the second one corresponds 
to neurons firing in asynchrony and, therefore, their 
dendritic permeability decreases; and the third one 
corresponds to neurons that did not fired or that hardly 
fired and, therefore, their permeability is maintained.
 To specify the width comprised of the cerebral 
cortex, we turn to the study of cortical columns (Yates, 
2013; Gray & Singer, 1989).  In general, each column 
implies around 80 neurons per cortical layer (Yates, 
2013), so we set N = 81.  The number is divisible by 
three to facilitate sensory stimulation symmetry, 
divided in three groups of neurons in the first station: 
A, B and C.  For each pulse, sensory stimulation 
activates 27 neurons.  With respect to the dendrites, 
we define d = 6.  While it is known that the number 
of dendrites per neuron is much higher, we argue that 

Figure 3. 
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i) in the model, dendrites that receive impulses from 
subcortical areas were not considered, with the only 
exception of sensory stimulated neurons; ii) dendrites 
that receive stimulation from other areas of neocortex 
or other thalamic subnuclei were no considered; and iii) 
a neuron is connected to other adjacent station neuron 
via a set of synapses and not just one, and the modeling 

was able to simplify this by just connecting neurons with 
one synapse.  The values for each parameter, including 
those just discussed, are shown in Table 2.
 Also a run of three pulses was performed as a 
second part of the experiment: a first pulse L1 consisting 
of 100 iterations with sensory stimulation A, a second 
pulse L2 consisting of 50 iterations with stimulation B, 
and a third pulse L3 consisting of 50 iterations with 
stimulation A again.  The objective of the experiment 
is that CA achieved during L1 is maintained to some 
extent when repeated sensory stimulation A in L3.  We 
have used two indexes to measure results.

Encoding Index.

 Define P as a set of neurons such that | P | 
= N / 3 = 27. P is the set of neurons of each station 
that have fired more during the pulse.  For each pulse, 
the system returns the values Pp and nPp, being Pp 
the average of P neurons firing during the pulse, and 
nPp the average of shots from other neurons (neurons 
not-P or nP) during the pulse in the entire circuit.  The 
encoding index is defined as ICd: Pp / nPp and should 
be as large as possible for L3.  ICd ≤ 1 equals a failed 
case where no CA is formed.

Configuration Index.

 In this case P, the set of neurons that have 
fired more during pulse, is a variable value ranging 
from 1 to N.  This time, the system evaluates dendritic 
permeability of P neurons.  Dendrites connected to P 
neurons in the previous station are called dP; dendrites 
connected with nP neurons in the previous station are 

Figure 4. 

Parameter Value
L 100
E 5
Vext 100
N 81
d 6
r 20
UA 1270
VA 2250
Ud 700
p 0.5
x 0.05

Table 2.
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called dnP.  For each pulse, the system returns the 
values dPp and dnPp for each P, being dPp the average 
permeability in dendrites connected with P neurons, and 
dnPp the average permeability in dendrites connected 
with nP neurons during the pulse across the circuit.  
The configuration index is defined as ICf = dPp / dnPp 
and should be as large as possible for L3. This confirms 
that P neurons develop a distinguished permeability 
with respect to nP neurons.  ICf ≤ 1 equals a failed case 
where no CA is formed.

Technical Characteristics of the Software we Have 
Used
 It is considered essential to have a programming 
language that allows the rapid development of the 
program and that adapts to frequent changes that are 
usual in the development phase.  With no efficiency 
requirements, such as memory management, pointers 
and other aspects of low-level programming, languages 
like Python or Java are an advantage to languages like 
C++ in which it is necessary to handle these issues.  
Python has been chosen as the programming language 
that best suits the needs of the project.  As for the GUI, 

we have decided to use Flask, since it is a minimalist 
and simplistic framework whose learning curve to begin 
developing applications is very short.  Furthermore, it 
has no restrictions and allows implementing each part 
as the programmer decides at any time.  On the other 
hand, there is no database related to the project, so this 
feature is not significant in terms of our development.

Results of the computational simulation

 In the first part of the experiment, after getting 
the optimal value for each parameter, with the help 
of graphics, a set of more active neurons have been 
observed and also the increased dendritic permeability 
in synapses which connect these neurons along 
stations. The first graph (Figure 5.a) shows how the 
most active neurons along the stations are those that 
increased their dendritic permeability above the initial 
permeability. In this graph it cannot be observed, 
however, how dendrites of neurons with an average 
activity ended with permeability below the initial 
permeability p, with the exception of the first station.  
The reason for this is that the bars show the average 

of each neuron dendritic permeability, so the graph is 
not sensitive to the discrimination between the same 
neuron dendrites. For this reason, a graph showing 
the distribution of the permeability of each station by 
dendrite (Figure 6) has been designed. In this graph, it 
can be seen how, in each station, there are dendrites 
with decreased permeability compared to the original, 
others that have increased it, and a third group that 
has maintained its initial permeability p.  The first group 
belongs to active neurons, the second one to neurons 
with intermediate level, and the third one to neurons with 
a low level of activation or that have not been activated.
 The next graph (Figure 5.b) shows axon 
permeability by neuron, that is, the permeability 
of the postsynaptic dendrites to which each neuron is 
connected. This chart shows more clearly that the 
most active neurons are those with the highest axonal 
permeability once the run is finished.  In the last station, a 
different behavior is observed. The most active neurons 
are the ones that have modified more their permeability, 
but not all of them have increased it. This is because the 
axon permeability of neurons in the last station depends 
on its connection with neurons of the first station, some of 

Check Figure 5a in page 89

Check Figure 5b in page 89

Check Figure 6 in page 90

Check Figure 7 in page 90
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which have external stimulation.  When an active neuron 
in the last station strikes a neuron of the first station 
which is being sensory stimulated, its axon permeability 
increases, because this neuron of the first station is 
active.  When an active neuron in the last station strikes 
a neuron of the first station that is not being sensory 
stimulated, its axon permeability decreases because it 
is less likely that this neuron of the first station is active. 
This graph is, therefore, an evidence of the prominent 
role of the thalamus (corresponding to the first station) 
in the formation of CA.
 The fourth graph (Figure 7) shows the number 
of shots per station over time (over iterations).  It shows 
how, from the beginning, the activation is succeeding 
throughout the stations, reaching the last station at 
iteration 22 when the entire circuit is disabled and 
the dendritic voltage Vd is equal to 0.  This finding is 
relevant to read the fifth graph (figure 8) which shows 
the activation of neurons in the first station Eo not being 
sensory stimulated. Since the beginning of the run, 
none of these neurons triggers, as they receive neither 
external stimulation nor anything from the same closed 
loop until iteration 22.  These neurons of the first station 

which do not receive external stimulation activate in 
iteration 26, but immediately after that the system tends 
to remove this “parasitic” and not sensory reinforced 
activation.  In iteration 54, the level of activation of these 
neurons is already negligible.
 For the design of the sixth graph a neuron 
from the second station was taken at random and 
the voltage Vd of each of its dendrites along the run 
was measured.  In the first sample (Figure 9.a) there 
are only three dendrites that receive stimulation from 
the previous station, and two of them in a very weak 
way.  The third of these dendrites receives energetic 
activation, but it cannot produce the firing of the 
neuron as it is not in synchrony with the others. For 
this reason, its permeability decreases gradually.  Each 
stepped segment corresponds to a period in which 
the voltage rises to exceed the threshold Vd > Ud, and, 
as permeability changes negatively, the next period 
shows lower intensity steps.  It is confirmed that the 
first step of the first cycle reaches 167.5 V, to gradually 
decrease until the first step comes only up to 103.5 V 
in the last cycle before finishing the run.  The second 
sample (Figure 9.b) is an example of the opposite.  Most 

of dendrites of the neuron in the second station being 
monitored are activated by neurons from the previous 
station.  This causes the neuron to have a high activation 
and, therefore, the permeability of dendrites increases 
successively along the run.  These last two graphs are 
an example of application of the Hebb’s rule for memory 
in biochemical terms.
 In the second part of the experiment, with a run 
of three pulses, optimal parameters (shown in Table 3) 
where found.  ICd and ICf for each station as well as the 
media for ICd and ICf for the circuit are indicated.  Both 
were positive and also showed an increase between
L1 and L3. ICd rose from 161.2 to 286.8. ICf rose 
from 1.1961 to 1.2617. To confirm the trend, the run 
continued until L15, and ICd remained with values close 
to L3 (Cf. Table 4), whereas ICf rose to values around 
1.4.  The last column of Table 3 shows the values of 
the last pulse, while Table 4 shows the values of the 
last eight pulses.  These values clearly show the system 
tends to form a CA and settle it with the passing of the 
iterations.

Check Figure 8 in page 91

Check Figure 9a in page 92

Check Figure 9b in page 92

Check Table 4 in page 88
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Discussion

 It has been demonstrated that it is possible to 
obtain configuration via a suitable neuronal distribution 
and without recourse to further elements than neurons. 
The configuration is defined as the tendency in the 
thalamo-cortical circuit to produce CA, in other words, 
it is the tendency to strengthen the connection between 
some neurons along the circuit, according to external 
stimulation entering through the first station. This first Eo 
station, in biological terms, corresponds to the thalamus 

and the configuration is, as a tendency, the condition of 
perception. This last statement is discussed below by 
comparing the results obtained with the work of W. K. 
Taylor.

Limitations of the Model

 Now the experiments have been presented and 
before beginning the main discussion of the results, the 
possibilities of the future program development should 
be highlighted.  First, even if the showed features are 

attributed doubtlessly to the connections between 
the neocortex and thalamus, we should clarify that 
influences of connections with other subcortical areas 
were not taken into account.  Although the omission 
is justified, we suggest the possibility of extending the 
application of the model to other neural nuclei.
 Neurons communicate not only according to the 
spatial region (the core of gray matter) in which they are 
and the spatial region where they project their axons, 
but also depending on the shooting mode (Brette, 2012).  
This has not been considered in the modeling.  With 
the nonlinear stepped shot, the intensity of stimulation 
results in: a maximum frequency (equivalent to a shot 
every two iterations) if the dendrites of the neuron keep 
the sum over the activation level Ua; zero frequency 
(without firing) if Ua activation threshold is not reached; 
an irregular state alternating between the previous 
two, which cannot be considered a low frequency by 
its irregularity.  There is, therefore, an entire neural 
language that has been left out, and it is more than 
necessary to propose the study and reflection on 
the design of programming networks that, apart from 
representing topical distributions - which is inevitable 
and essential - , take into account the firing pattern of 
neural populations involved in the circuit.

Table 3.

L1 = 100  Est 
Ext = A

L2 = 50  Est 
Ext = B

L3 = 50  Est 
Ext = A

L15

Estation Icd Icf Icd Icf Icd Icf Icd Icf
0 123 1.4240 347 1.3325 393 1.3799 217 1.2546
1 335 1.2242 140 1.1836 193 1.2629 205 1.4904
2 159 1.1523 174 1.1667 201 1.2342 654 1.4616
3 124 1.1492 186 1.2274 235 1.3073 155 1.4821
4 65 1.0309 243 1.0463 412 1.1243 57 1.4293
Prom 161 1.1961 218 1.1913 287 1.2617 258 1.4236
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 It should be also clarified that the rearrangement 
of the closed circuit has not been deducted from an 
analytical view and understanding of the pathways 
between the neocortex and thalamus; on the contrary, 
once the abstract model has been apprehended, we 
sought and found in the thalamo-cortical system an 
opportunity to apply the model.  That is why the level 
of detail and consideration for biology by model has 
been scarce.  There is a long and continuous way 
to the subsequent realization of increasingly finer 
details, incorporating them to the model, for it to be 
progressively more comprehensive and reflects its 
object with increasing appropriateness.  The following 
are suggestions on how to advance the development 
of a model to increase the credibility of the program 
results and the possibility to directly translate them into 
biology.

i) What is the effect on the synchrony achieved if it is 
added to the circuit the thalamo-cortical projection, 
less bulky but not negligible, into the layer 6 
innervating neurons that directly shoot into the primary 
somatosensory thalamus?

ii) What happens if every variety of inhibitory interneuron, 
both in the neocortex and in thalamus, is included?

iii) What are the results of adding each of the secondary 
projections that achieve the same objective but 
mediately, for example cortico-thalamic projections 
in layer 6 projecting to the reticular nucleus of the 
thalamus, which in turn triggers inhibitory projections to 
the thalamic corresponding subnuclei considered?

iv) In the model presented, sensory stimulation involves 
the activation of one of three neural groups in the first 
station.  How to achieve a system that recognizes 
external stimulation increasingly bounded?
 These all are considerations that aim at 
refining the model, always in view of the marked ability 
to synchronization between sensory activation and 
activation of the first station from the last one, and that 
does not account for more than the primary sensory 
area.  All this great horizon ahead is understood under 
the programmatic nature of this report and a short 
gestation period.  However, if we think of it, there is 
not a period somewhat shorter than connectionism as 
discipline itself.

Taylor’s intuition

 The bio-connectionist model has allowed 
the distinction in the neuronal network of a cellular 

assembly from another, or from the rest of the circuit.  
It is necessary to clarify in what sense this is desirable 
and what feature of the nervous system has been 
intended to be modeled.  In relation to this, we would 
like to mention that the British W. K. Taylor drafted a 
similar idea half a century ago.  Nevertheless, he could 
not carry it out with the model proposed.
 Although the roots of connectionism can be 
traced far back, it was in the fifties when neural networks 
began to be used to account for two abilities attributed as 
characteristic of human mind: the associative memory 
and recognition of patterns.  It is noteworthy that the first 
work in this field belongs to Taylor himself who, on that 
occasion, proposed a three-layers network: one layer 
with sensory units, one with associative units and the 
latter with motor units, with a training procedure under 
Hebb’s rule: activated weights increase if desired motor 
units are activated (Taylor, 1956).  In its processing, the 
network gets to associate different sensory patterns, and 
displays a behavior similar to Pavlovian conditioning.  
In later works (1958, 1960, 1965), Taylor built a more 
elaborate network, with synapses returning from motor 
to sensory units and synapses between units of the 
same layer.  Near the end of his career, he even tried 
to build electronic devices for storing memory (Taylor, 
1975) and pattern recognition (Taylor, 1979).  In 1964, 
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he ventured a biological interpretation of his network, 
suggesting that the association areas of the cerebral 
cortex and thalamus contained those networks.  That 
work is analyzed further below.
 Taylor says that perception is produced from 
a fixed system which forms certain functions of the 
incoming signals and selects the maximum.  This “fixed 
system” should be in the thalamus, and should be 
understood as fixed in the sense of permanent despite 
variations in perception. The fact that the system 
selects the maximum can be interpreted from recent 
evidence (Andolina et. al, 2007), whereby the cortico-
thalamic feedback increases the accuracy of the firing 
of thalamic neurons, as explained above.  There is a 
memory system -Taylor continues- that initially shows 
no pattern of recognition (perception), but automatically 
forms the functions required for such recognition.  The 
neocortex is interpreted as a memory system, but Taylor 
fails in this case to speculate on the cortical “function” 
that makes this “memory” possible.  He postulates a 
mathematical operation performed by the cortical 
neurons which results in the selection of the maximum.  
The existence of this mathematical operation has never 
been demonstrated.  In this paper we have shown how 

this “function” can be fully understood from the activity 
of the thalamus which orders his shot according to the 
sensory stimulation and, at the same time, the cortico-
thalamic stimulation (measured as Configuration Index). 
So the main difference in our proposal is that we don´t 
postulate the perception as the result of a mathematical 
operation that selects a maximum, but as a result of a 
tendency (called configuration) guided by a biological 
mechanism.
 There is a learning process -Taylor moves on 
explaining- in which each stimulus produces a peak 
of activity in cortical efferents (to the thalamus) that 
have produced the most favorable response to the 
stimulus in the past.  This is equivalent to saying that 
cortico-thalamic stimulation enhances thalamic activity 
towards the neocortex in a dynamic that has to do with 
its past activation.  If the distribution of cortico-thalamic 
neurons at a time produced no enhancement in the 
thalamic projections; that distribution will be removed 
in the future.  If, instead, the distribution in the cortico-
thalamic projection strengthens the thalamus-cortical 
shots, this distribution is enhanced.  This mechanism 
does not differ substantially from the bio-connectionist 
mechanism that has just been shown.

 These lines have briefly summarized the 
Taylor´s proposal but not the intuition resulting in the 
application of the mechanism.  Taylor was interested 
in the learning process explained from a (bio-) 
connectionist model.  When we interpret his writing, 
it becomes clear that learning has to do with the 
maximum being selected from successive interactions 
between neurons, but we consider a mistake to interpret 
that learning corresponds to the mathematical function 
postulated by Taylor to select the maximum.  We think 
that, for Taylor, learning has to do with the tendency 
to maximum, not the function that allows this tendency. 
Mathematical function is behind this tendency, but it is 
not possible to access the principal idea of Taylor by 
identifying the mathematical result of the equation with 
the decision that corresponds to this tendency.
 According to the previous clarification, the 
closeness of Taylor’s study to our proposal may 
be understood.  Although we start from the same 
background idea, we avoid postulating a mathematical 
function as a condition of the perception. If the thalamus 
selects and powers those neural pathways that make 
the cortico-thalamic projections match the sensory 
projections, this does not mean the thalamo-cortical 



Cuadernos de Neuropsicología
Panamerican Journal of NeuropshychologyOriginales / Original Papers

87

Bio-connectionist model / Chalita; Lis
Vo

lu
m

en
 9

. N
úm

er
o 

2.
 A

go
st

o 
20

15
. D

O
I: 

10
.7

71
4/

cn
ps

/9
.2

.2
04

system has a Boolean behavior.  Instead, the particular 
role of the thalamus in the thalamo-cortical circuit 
can be understood from a trend that gradually causes 
synaptic permeabilities to go changing: they increase 
when the stimulation that converges with the thalamus 
is coincident (activating the same thalamic CA) and 
they fall when it is not.  This trend is the one we try to 
compare with the “decision” for which the mechanism 
selects a maximum in the Taylor system.
Conclusions

 While it is true that, in the beginning, the 
original purpose of modeling neural networks was to 
mimic brain function or parts or aspects of it (Taylor, 
1956), it is noteworthy that this activity made it possible 
to understand the brain itself from a “connectionist” 
point of view (Lashley, 1950; Luria, 1962), and this trend 
or theoretical preference is still present today (beim 
Graben, 2011).  Nowadays, the theory of cell assembly 
(Lansner, 2009; Hebb, 1949), besides being a powerful 
tool for network design, can be considered part of the 
background of most of the speculation about brain 
function in biological terms, regardless of the possibility 
that this function is simulated by a computer model.  The 

generalization of this idea leads to the conclusion that 
not only does the biological map serve as a substrate 
for the computer simulation, but also the simulation 
results and the conclusions which are drawn from these 
results -and even the language used in modeling- may 
influence how we understand the biological brain.
 The thalamo-cortical mechanism centered in 
the thalamus we presented here attempts at explaining, 
first and foremost, the function of the projections from 
the thalamus to layer 6 of the neocortex (Wörgötter 
et. al, 2002; Andolina et. al, 2007; Sillito et. al, 1994).  
Secondly, it also helps to explain phenomena that 
are still not fully understood as synchronized dynamic 
activity patterns the so called brain oscillations (Briggs 
& Usrey, 2010; Gray & Singer, 1989; Eckhorn et al., 
1988), reinforcing the view that the cortical control on 
the thalamus is essential in coordinating the widespread 
and coherent oscillations (Destexhe, 2000).
 An important step has been taken in admitting 
that the thalamus is not merely a relay center to the 
neocortex (Gerstein, Kirkland, Musial & Talwar, 2002).  
This paper suggests a need to take another step towards 
consideration of the thalamus as a center of activity in its 
communication with the neocortex.  When it is decided 

to make the thalamus, and no longer the neocortex, the 
center of the mechanism responsible for perception, the 
above conclusion can be reformulated by saying that 
conscious perception occurs when, in neural terms, 
sensory stimulation to the thalamus overlaps with the 
cortical stimulation to the thalamus, but not identified 
with the function that allows the overlay, but with 
overlapping itself.  The new view allows understanding 
the feedback between the thalamus and the neocortex 
as a closed loop that begins and ends in the thalamus.
 Along these lines, it has been reached a 
system in which the memory is formed, stored, retrieved 
and reformulated in terms of synaptic forces without 
apply more than permeability (or resistance) of the 
synapse to recognize a memory system.  The choice 
of the maximum path corresponding to the conscious 
perception in terms of Taylor, is not the result of a 
mathematical formula, but a temporal Hebbian process 
(Fiori, 2005).
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CCN Connectionism Bio-connectionism
Limitations of the modeling It adheres to biology seeking 

such a degree of accuracy 
that hardly manage to 
extend its speculations to 
cognitivism

It copies from biology the 
physiology of a neuron but 
not the connection between  
neurons or neural groups in 
the brain

It makes simplifications 
of the biological map that 
requires further justifications

Consideration of biology It maintains as close as 
possible to biology

It allows a rearrangement of 
neurons without considering 
a biological order

It tries to stay as close as 
possible to biology

Main focus It seeks pragmatical results, 
but its main focus is the 
simulation of biology

Its main focus is pragmatic; 
it needs to demonstrate its 
usefulness

It wants to understand 
biological complexity; 
practical application is 
negligible

Empirical bases It reproduces neurons 
features and neural 
networks from experimental 
results

It creates artificial networks 
that are drawn from 
mathematical games

It creates artificial networks 
that are derived from 
experimental results

Simplification criteria It seeks accurate details in 
programming

There is not a criteria of 
simplification

Substantial simplifications 
are needed

Reproduction of results Two or more researchers 
can model the same 
structure and reach 
matching results

It is not possible to have 
a map of simplification 
conditions from biology 
according to which to be 
able to compare results

Two or more researchers 
who share simplification 
conditions can model the 
same structure and reach 
matching results

Cost of results Perfection in modeling 
seeking makes harder to 
reach significant results

It achieves results more 
easily and with lower cost

It achieves results more 
easily and with lower cost

Table 1.
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Table 4.
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Figure 5a. Figure 5b. 
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Figure 7. Figure 6. 
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Figure 8. 
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Figure 9a. Figure 9b. 
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Acronyms	  used	  for	  the	  modeling	  
	  
d	   Number	  of	  dendrites	  in	  each	  neuron	  
a	   Number	  of	  dendrites	  of	  the	  next	  station	  with	  which	  a	  neuron	  is	  connected	  
dPp	   Media	  of	  the	  permeability	  of	  dendrites	  connected	  with	  P	  neurons	  during	  a	  pulse	  
dnPp	   Media	  of	  the	  permeability	  of	  dendrites	  connected	  with	  nP	  neurons	  during	  a	  pulse	  
E	   Station	  
I	   Iteration	  
ICd	   Codification	  index	  
ICf	   Configuration	  index	  
L	   Pulse	  
N	   Number	  of	  neurons	  per	  station	  
nP	   Set	  of	  neurons	  firing	  less	  during	  a	  pulse	  
nPp	   Media	  of	  nP	  neurons	  firing	  during	  a	  pulse	  
P	  	   Set	  of	  neurons	  firing	  more	  during	  a	  pulse	  
Pp	   Media	  of	  P	  neurons	  firing	  during	  a	  pulse	  
p	   Permeability	  factor	  of	  the	  synapse	  
r	   Rate	  of	  decreasing	  to	  zero	  of	  the	  dendritic	  voltage	  variation	  
T	   Inactivity	  period	  of	  the	  axon,	  during	  which	  a	  neuron	  cannot	  fire	  again	  
t	   Delay	  between	  the	  axon	  firing	  and	  the	  dendritic	  voltage	  change	  of	  the	  postsynaptic	  neuron	  
Ua	   Threshold	  value	  to	  Vc,	  after	  which	  the	  activation	  of	  the	  neuron	  is	  produced	  
Ud	   Upper	  threshold	  to	  Vd,	  whose	  synaptic	  facilitation	  depends,	  for	  the	  excitatory	  synapse	  
U-‐d	   Lower	  threshold	  to	  Vd,	  whose	  synaptic	  facilitation	  depends,	  for	  the	  inhibitory	  synapse	  
VA	   Intensity	  of	  neural	  firing	  
Va	   Intensity	  of	  the	  voltage	  on	  each	  dendrite	  from	  the	  presynaptic	  neuron	  
Vc	   Sum	  of	  the	  voltages	  in	  each	  dendrite	  of	  a	  neuron	  
Vd	   Voltage	  of	  a	  dendrite	  
Vext	   Voltage	  on	  dendrites	  of	  neurons	  which	  are	  sensory	  stimulated	  
x	   Increasing	  or	  decreasing	  value	  for	  the	  p	  factor	  in	  synaptic	  facilitation	  of	  depression	  respectively	  

Acronyms used for the modeling



Cuadernos de Neuropsicología
Panamerican Journal of NeuropshychologyOriginales / Original Papers

95

Bio-connectionist model / Chalita; Lis
Vo

lu
m

en
 9

. N
úm

er
o 

2.
 A

go
st

o 
20

15
. D

O
I: 

10
.7

71
4/

cn
ps

/9
.2

.2
04

References

Adams, P. & Cox, K. (2002). A new interpretation of thalamocortical circuitry. Philosophical Transactions of the 
 Royal Society of London. Series B, Biological Sciences, 29, 1767–1779. doi: 10.1098/rstb.2002.1164
Adrian, E. D. & Forbes, A. (1922). The all-or-nothing response of sensory nerve fibres. Journal of Physiology 56, 
 301-330. doi: 10.1113/jphysiol.1922.sp002013
Ahissar, E. & Kleinfeld, D. (2003). Closed-loop neuronal computations: focus on vibrissa somatosensation in rat. 
 Cereb Cortex, 13, 53–62. doi: 10.1093/cercor/13.1.53
Alitto, H. J.,  & Usrey, W. M. (2003). Corticothalamic feedback and sensory processing. Current Opinion in 
 Neurobiology, 13, 440–445. doi: 10.1016/S0959-4388(03)00096-5
Andolina, I. M., Jones, H. E., Wang, W. & Sillito, A. M. (2007). Corticothalamic feedback enhances stimulus 
 response precision in the visual system. Proc Natl Acad Sci U S A, 104, 1685–1690. doi: 10.1073/
 pnas.0609318104
Andolina, I. M., Jones, H. E. & Sillito, A. M. (2013). Effects of cortical feedback on the spatial properties of relay 
 cells in the lateral geniculate nucleus. J Neurophysiol, 109(3), 889-99. doi: 10.1152/jn.00194
Arbib, M. A. (2000). Warren McCulloch’s search for the logic of the nervous system. Perspect Biol Med, 43, 193–
 216. doi: 10.1353/pbm.2000.0001
Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. (1996). Dynamics of ongoing activity: explanation of the large 
 variability in evoked cortical responses. Science, 273, 1868–71.
Ashby, F. G. & Hélie, S. (2011). A tutorial on computational cognitive neuroscience: modeling the neurodynamics 
 of cognition. J. Math. Psychol., 55, 273–289.  doi:10.1016/j.jmp.2011.04.003
Auladell, C., Pérez-Sust, P., Supèr, H. & Soriano, E. (2000). The early development of thalamocortical and 
 corticothalamic projections in the mouse. Anat. Embryol., 201, 169–179.
Azouz, R. & Gray, C. M. (1999) Cellular mechanisms contributing to response variability of cortical neurons in vivo. 
 J Neurosci., 19, 2209–23.



Cuadernos de Neuropsicología
Panamerican Journal of NeuropshychologyOriginales / Original Papers

96

Bio-connectionist model / Chalita; Lis
Vo

lu
m

en
 9

. N
úm

er
o 

2.
 A

go
st

o 
20

15
. D

O
I: 

10
.7

71
4/

cn
ps

/9
.2

.2
04

Bliss, T. V. P. & Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. 
 Nature, 361, 31–39. doi:10.1038/361031a0
Brette, R. (2012). Computing with neural synchrony. PLoS Comput. Biol., 8, e1002561. doi: 10.1371/journal.
 pcbi.1002561
Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., Diesmann, M., Morrison, A., Goodman, 
 P. H., Harris, F., Jr, Zirpe, M., Natschlager, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., 
 Rochel, O., Vieville, T., Muller, E., Davison, A., El Boustani, S. & Destexhe, A. (2007). Simulation of 
 networks of spiking neurons: a review of tools and strategies. J Comput. Neurosci. 23, 349–398. doi: 
 10.1007/s10827-007-0038-6
Briggs, F. & Usrey, W. M. (2008). Emerging views of corticothalamic function. Curr Opin Neurobiol, 18, 403–407. 
 doi: 10.1016/j.conb.2008.09.002
Briggs, F. & Callaway, E. M. (2001). Layer-specific input to distinct cell types in layer 6 of monkey primary visual 
 cortex. J Neurosci, 21, 3600–3608.
Briggs, F. & Usrey, W. M. (2010). Patterned Activity with the Local Cortical Architecture. Front Neurosci, Sep, 15, 
 4-18.  doi: 10.3389/fnins.2010.00018
Brown, T. H., Chapman, P. F., Kairiss, E. W. & Keenan, C. L. (1988). Long-term synaptic potentiation. Science, 242, 
 724-28. doi: 10.1126/science.2903551
Civillico, E. F. & Contreras, D. (2012). Spatiotemporal properties of sensory responses in vivo are strongly 
 dependent on network context. Front Syst Neurosci, Apr, 13, 6-25.  doi: 10.3389/fnsys.2012.00025
Cromwell, H. C. & Panksepp, J. (2011). Rethinking the cognitive revolution from a neural perspective: how 
 overuse/misuse of the term “cognition” and the neglect of affective controls in behavioral neuroscience 
 could be delaying progress in understanding the brain mind. Neurosci Biobehav. Rev, 35, 2026–2035. doi: 
 10.1016/j.neubiorev.2011.02.008



Cuadernos de Neuropsicología
Panamerican Journal of NeuropshychologyOriginales / Original Papers

97

Bio-connectionist model / Chalita; Lis
Vo

lu
m

en
 9

. N
úm

er
o 

2.
 A

go
st

o 
20

15
. D

O
I: 

10
.7

71
4/

cn
ps

/9
.2

.2
04

Destexhe, A. (2000). Modelling corticothalamic feedback and gating of the thalamus by the cerebral cortex. 
 Physiol, 94, 391-410.
Destexhe, A. & Sejnowski, T. J. (2002). The initiation of bursts in thalamic neurons and the cortical control of 
 thalamic sensitivity. Philos Trans R Soc Lond B Biol Sci, 357. 1649–1657. doi: 10.1098/rstb.2002.1154
Douglas, R., Koch, C., Mahowald, M., Martin, K. & Suarez, H. (1995). Recurrent excitation in neocortical circuits. 
 Science, 269, 981–985. doi: 10.1126/science.7638624
Douglas, R. J. & Martin, K. A. (2004). Neuronal circuits of the neocortex. Annu. Rev. Neurosci., 27, 419–451. doi: 
 10.1146/annurev.neuro.27.070203.144152
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. & Reitboeck, H. J. (1988). Coherent oscillations: 
 a mechanism for feature linking in the visual cortex? Bioi. Cybem., 60, 121-30. doi: 10.1007/BF00202899
Feldman, J. A. & Ballard, D. H. (1982). Connectionist models and their properties. Cogn. Sci., 6, 205–254. doi: 
 10.1207/s15516709cog0603_1
Fiori, S. (2005). Non-linear complex-valued extensions of Hebbian learning: An essay. Neural Computation, 17(4), 
 779–838. doi:10.1162/0899766053429381
Gerstein, G. L., Kirkland, K. L., Musial, P. G. & Talwar, S. K. (2002). Recordings, behaviour and models related to 
 corticothalamic feedback. Phil. Trans. R. Soc. Lond., B, 357, 1835– 1841. doi: 10.1098/rstb.2002.1166. 
Globus, G.G. (1992). Towards a noncomputational cognitive neuroscience. J. Cogn. Neurosci., 4, 299–310. 
 doi:10.1016/j.plrev.2014.04.005
beim Graben, J. W. (2011). From McCulloch-Pitts Neurons Toward Biology. Bullettin of Mathematical Biology, 73, 
 261-265. doi: 10.1007/s11538-011-9629-5
beim Graben, P., Barrett, A. & Atmanspacher, H. (2009). Stability criteria for the contextual emergence of 
 macrostates in neural networks. Netw. Comput. Neural Syst., 20, 178–196.  doi: 10.1080/09548980903161241



Cuadernos de Neuropsicología
Panamerican Journal of NeuropshychologyOriginales / Original Papers

98

Bio-connectionist model / Chalita; Lis
Vo

lu
m

en
 9

. N
úm

er
o 

2.
 A

go
st

o 
20

15
. D

O
I: 

10
.7

71
4/

cn
ps

/9
.2

.2
04

Granseth, B. & Lindström, S. (2004). Augmentation of corticogeniculate EPSCs in principal cells of the dorsal 
 lateral geniculate nucleus of the rat investigated in vitro. J Physiol, 556, 147–157. doi: 10.1113/
 jphysiol.2003.053306 
Gray, C. M. & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. 
 Proc. Natl. Acad. Sci. USA, 86, 1698–1702.
Guidolin, D., Albertin, G., Guescini, M., Fuxe, K. & Agnati, L. F. (2011). Central nervous system and computation. 
 Quart. Rev. Biol., 86, 265–285. doi: 10.1089/thy.2008.0121
Hebb, D. O. (1949). The organization of behavior. New York, John Wiley & Sons.
Hillenbrand, U. & Hemmen, J. L. (2002). Adaptation in the corticothalamic loop: computational prospects of tuning 
 the senses computational views of corticothalamic feedback. Philosophical Transactions of the Royal 
 Society of London, Series B, Biological Sciences, 357, 1859–1867.
Hines, M. L. & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Comput., 9, 1197-1209. doi: 
 10.1162/neco.1997.9.6.1179
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc 
 Natl Acad Sci (USA), 79, 2554–8. doi: 10.1073/pnas.79.8.2554
Ito, M. (1989). Long-term depression. Annu. Rev. Neurosci., 12, 85-102. doi: 10.1146/annurev.ne.12.030189.000505
Kouh, M. & Poggio, T. (2008). A canonical neural circuit for cortical nonlinear operations. Neural Comput, 20, 
 1427–1451. doi:10.1162/neco.2008.02-07-466
Lansner, A. (2009). Associative memory models: from the cell-assembly theory to biophysically detailed cortex 
 simulations. Trends Neurosci, 32(3), 178–186. doi: 10.1016/j.tins.2008.12.002
Lashley, K. (1950). In search of engram. Symp. Soc. Exp. Biol., 4, 454–482.
Laurent, G. (2013). A method for closed-loop presentation of sensory stimuli conditional on the internal brain-
 state of awake animals. J Neurosci Methods, 215, 139–155. doi: 10.1016/j.jneumeth.2013.02.020.



Cuadernos de Neuropsicología
Panamerican Journal of NeuropshychologyOriginales / Original Papers

99

Bio-connectionist model / Chalita; Lis
Vo

lu
m

en
 9

. N
úm

er
o 

2.
 A

go
st

o 
20

15
. D

O
I: 

10
.7

71
4/

cn
ps

/9
.2

.2
04

Liu, J. K. & Buonomano, D. V. (2009). Embedding multiple trajectories in recurrent neural networks in a self-
 organizing manner. J Neurosci, 29, 13172–13181. doi: 103389/confneuro06200903315.
Luria, A. R. (1962). Higher Cortical Functions in Man. Moscow University Press, Library of Congress, 65-11340.
McCulloch, W. S. (1949). The brain as a computing machine. Electr. Eng., 68, 492–497.
McCulloch. W. S. & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bull Math 
 Biophys, 5, 115–133.
McHaffie, J. G., Thomson, C. M. & Stein, B. E. (2001). Corticotectal and corticostriatal projections from the frontal 
 eye fields of the cat, an anatomical examination using WGA-HRP. Somatosens. Mot.Res., 18, 117–130. 
 doi: 10.1080/135578501012006200
Mercer, A., West, D. C., Morris, O. T., Kirchhecker, S., Kerkhoff, J. E. & Thomson, A. M. (2005). Excitatory 
 connections made by presynaptic cortico-cortical pyramidal cells in layer 6 of the neocortex. Cereb. Cortex, 
 15, 1485–1496. doi: 10.1093/cercor/bhi027
Minsky, M. & Papert, S. (1972, 2nd edition with corrections, first edition 1969). Perceptrons: An Introduction to 
 Computational Geometry. The MIT Press, Cambridge MA, ISBN 0-262-63022-2.
Nicolelis, M. A. L. & Fanselow, E. E. (2002). Dynamic shifting in thalamocortical processing during different 
 behavioural states. Trans. R. Soc. London, B, 357, 1753–1758. doi: 10.1098/rstb.2002.1175
Olsen, S. R., Bortone, D. S., Adesnik, H. & Scanziani, M. (2012). Gain control by layer six in cortical circuits of 
 vision. Nature, 483, 47–83.
Pappas, G. D., Asada, Y. & Bennet, M. V. L. (1971). Morphological correlates of increased coupling resistance at 
 an electrotonic synapse. J Cell Biol., 49, 173-188. doi: 10.1083/jcb.49.1.173
Piccinini, G. (2010). The mind as neural software? Understanding functionalism, computationalism, and 
 computational functionalism. Philos. Phenomenol. Res., 81(2). doi: 10.1111/j.1933-1592.2010.00356.x
Piccinini, G. & Scarantino, A. (2011). Information processing, computation, and cognition. J. Biol. Phys., 37, 1–38. 
 doi: 10.1007/s10867-010-9195-3



Cuadernos de Neuropsicología
Panamerican Journal of NeuropshychologyOriginales / Original Papers

100

Bio-connectionist model / Chalita; Lis
Vo

lu
m

en
 9

. N
úm

er
o 

2.
 A

go
st

o 
20

15
. D

O
I: 

10
.7

71
4/

cn
ps

/9
.2

.2
04

Rakic, P. (2009). Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci., 10, 
 724–735. doi: 10.1038/nrn2719
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. 
 Psychol. Rev., 65, 386–408.
Rueckl, J. G. (2010). Connectionism and the role of morphology in visual word recognition. The Mental Lexicon., 
 5, 371–400. doi: 10.1075/ml.5.3.07rue
Rutishauser, U., Kotowicz, A. & Laurent, G. (2013). A method for closed-loop presentation of sensory stimuli 
 conditional on the internal brain-state of awake animals. J Neurosci Methods, 215, 139-155. doi: 10.1016/j.
 jneumeth.2013.02.020
Sherman, S. M. & Guillery, R. W. (1996). Functional organization of thalamocortical relays. J. Neurophysiol., 76, 
 1367–1395.
Sillito, A. M., Jones, H. E., Gerstein, G. L. & Wet, D. C. (1994). Feature-linked synchronization of thalamic relay cell 
 firing induced by feedback from the visual cortex. Nature, 369, 479-482. doi:10.1038/369479a0
Smolensky, P. (1988). On the proper treatment of connectionism. Behav. Brain Sci., 11(1), 1–23. doi: http://dx.doi.
 org/10.1017/S0140525X00052432
Sommer, F. T. & Wennekers, T. (2000). Modelling studies on the computational function of fast temporal structure 
 in cortical circuit activity. J Physiol Paris, 94(5-6), 473-88. doi: 10.1016/S0928-4257(00)01098-6
Sutton, M. A. & Shuman, E. M. (2006). Dendritic protein synthesis, synaptic plasticity, and memory. Cell, 127(1), 
 49-58. doi: 10.1016/j.cell.2006.09.014
Stent, G. S. (1973). A physiological mechanism for Hebb’s postulate of learning. Proc Natl Acad Sci USA, 70, 997-
 1001.
Steriade, M. (2001). Impact of network activities on neuronal properties in corticothalamic systems. J Neurophysiol, 
 86, 1–39.



Cuadernos de Neuropsicología
Panamerican Journal of NeuropshychologyOriginales / Original Papers

101

Bio-connectionist model / Chalita; Lis
Vo

lu
m

en
 9

. N
úm

er
o 

2.
 A

go
st

o 
20

15
. D

O
I: 

10
.7

71
4/

cn
ps

/9
.2

.2
04

Supèr, H. & Romeo, A. (2011). Feedback enhances feedforward figuraground segmentation by changing firing 
 mode. PLoS One, 6(6), e21641. doi: 10.1371/journal.pone.0021641
Svozil, D., Kvasnicka, V. & Pospichal, J. (1997) Introduction to multi-layer feed-forward neural networks, Chemometr. 
 Intell. Lab. Syst., 39, 43–62. doi: 10.1016/S0169-7439(97)00061-0
Taylor, W. K. (1956). Electrical Simulation of Some Nervous System Functional Activities. In Cherry, C. (ed.). 
 Information Theory. London, Butterworths, 314-28.
Taylor, W. K. (1958). Analogue computers for research on learning. Br Med J., 18, 2(5102), 967-8.
Taylor, W. K. (1960). Computers and the nervous system. Symp Soc Exp Biol, 14,152-68.
Taylor, W. K. (1964). CorticoThalamic Organization and Memory. Proceedings of The Royal Society of London, 
 Series B, Biological Sciences (1934-1990), 159(976), 466-478.
Taylor, W. K. (1965). A model of learning mechanisms in the brain. Prog Brain Res, 17, 369-97.|
Taylor, W. K. (1975). Read Only Memory with annular fuse links. Richmond. England National Research Development 
 Corporation. London, Appl. No.: 381, 701 Jan. 28, 1975 1 1.
Thomson, A. M. (2010). Neocortical layer 6, a review. Front Neuroanat, 4-13. doi: 10.3389/fnana.2010.00013
Thomson, A. M., Bannister, A. P., Mercer, A. & Morris, O. T. (2002). Target and temporal pattern selection at 
 neocortical synapses. Philos. Trans. R. Soc. Lond., B Biol. Sci., 357, 1781–1791. doi: 10.1098/rstb.
 2002.1163
Thomson, A. M. & Bannister, A. P. (2003). Interlaminar connections in the neocortex. Cereb. Cortex, 13, 5–14. doi: 
 10.1093/cercor/ 13.1.5
Westen, D. & Gabbard, G. O. (2002 a). Developments in cognitive neuroscience: I. Conflict, Compromise, 
 Connectionism. Journal of the American Psychoanalytic Association, 50, 53–98. doi: 10.1177/
 00030651020500011501



Cuadernos de Neuropsicología
Panamerican Journal of NeuropshychologyOriginales / Original Papers

102

Bio-connectionist model / Chalita; Lis
Vo

lu
m

en
 9

. N
úm

er
o 

2.
 A

go
st

o 
20

15
. D

O
I: 

10
.7

71
4/

cn
ps

/9
.2

.2
04

Westen, D. & Gabbard, G. O. (2002b). Developments in cognitive neuroscience: II. Implications for theories of 
 transference. Journal of the American Psychoanalytic Association, 50, 99–134. doi: 10.1177/
 00030651020500011601
Wiener, N. (1949). Cybernetics. New York, John Wiley.
Wiser, A. K. & Callaway, E. M. (1996). Contributions of individual layer 6 pyramidal neurons to local circuitry in 
 macaque primary visual cortex. J. Neurosci, 16, 2724–2739.
Wörgötter, F., Eyding, D., Macklis, J. D. & Funke, K. (2002). The influence of the corticothalamic projection on 
 responses in thalamus and cortex. Philos Trans R Soc Lond B Biol Sci, 357, 1823–1834. doi: 10.1098/rstb.
 2002.1159
Yates, D. (2013). Cerebral cortex: Sizing up the columns. Nat Rev Neurosci, 14(12), 817. doi: 10.1038/nrn3631.
Zarrinpar, A. & Callaway, E. M. (2006). Local connections to specific types of layer 6 neurons in the rat visual 
 cortex. J. Neurophysiol, 95, 1751–1761. doi: 10.1152/jn.00974.2005
Zhang, Z. W. & Deschênes, M. (1997). Intracortical axonal projections of lamina VI cells of the primary somatosensory 
 cortex in the rat: a single cell labeling study. J. Neurosci, 17, 6365–6379.


