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Abstract

     In this paper linear matrix inequalities (LMIs) are 
applied to the real-time control of a gyroscope with two 
degrees of freedom. The controller is designed using 
routines from the LMI-toolbox for Matlab. Real-time 
results are presented, showing a good performance of 
the state-feedback controller.
 
Keywords:    Linear matrix inequalities, robust control, 
convex optimization, gyroscope, quadratic stability.

Resumen

     En este artículo se aplican las desigualdades lineales 
matriciales al problema de control en tiempo real de un 
giroscopio con dos grados de libertad. El controlador es 
diseñado utilizando rutinas de la caja de herramientas 
LMI de Matlab. Se presentan resultados en tiempo 
real, mostrando un buen desempeño del controlador 
de estado retroalimentado.     

Palabras clave: Desigualdades lineales matriciales, 
control robusto, optimización convexa, giroscopio, 
estabilidad cuadrática. 

Introduction

     In recent years linear matrix inequalities (LMIs) 
have emerged as a powerful tool to approach control 
problems that appear hard if not impossible to solve 
in an analytic fashion. Although the history of LMIs 
goes back to the forties with a major emphasis of their 
roles in control in the sixties by Kalman, Yakubovich, 
Popov, Willems, only recently powerful numerical 
interior point techniques have been developed to solve 
LMIs in a practically efficient manner (Nesterov, 
Nemirovskii [1,2,3]). Several Matlab [4] software 
packages are available that allow a simple coding of 
general LMI problems and provide efficient tools to 
solve typical control problems (LMI Control Toolbox, 
LMI-tool).
     Boosted by the availability of fast LMI solvers, 
research in robust control has experienced a paradigm 
shift-instead of arriving at an analytical solution 
the intention is to reformulate a given problem to 

verifying whether an LMI is solvable or to optimizing 
functionals over LMI constraints.
     The power of this approach is illustrated by several 
fundamental robustness and performance problems 
in analysis and design of linear control systems 
[5,6,7,8].
     Optimization questions and decision making 
processes are abundant in daily life and invariably 
involve the selection of the best decision from a 
number of options or a set of candidate decisions. 
Many examples of this theme can be found in technical 
sciences such as electrical, mechanical and chemical 
engineering, in architecture and in economics, but also 
in the social sciences, in biological and ecological 
processes and organizational questions. For example, 
production processes in industry are more and more 
market driven and require an ever increasing flexibility 
of product changes and product specifications due to 
customer demands in quality, price and specification. 
Products need to be manufactured within strict product 
specifications, with large variations of input quality, 
against competitive prices, with minimal waste of 
resources, energy and valuable production time, with a 
minimal time-to-market and, of course, with maximal 
economical profit. Important economical benefits can 
therefore only be realized by making proper decisions in 
the operating conditions of production processes. Due 
to increasing requirements on the safety and flexibility 
of production processes, there is a constant need for 
further optimization, efficiency and improvement of 
production processes.
     In view of the optimization problems just formulated, 
we are interested in finding conditions for optimal 
solutions to exist. It is therefore natural to resort to a 
branch of analysis which provides such conditions: 
convex analysis cited in [8].
     In this paper we found robust stability of a 
gyroscope with two axes. For this, we worked with 
a linear-time invariant system and using the LMI-
toolbox for MATLAB. First, we defined a Linear 
Matrix Inequality Problem (LMIP) to find a solution 
of the quadratic stability problem. Later, if the problem 
is feasible, it is possible to find a state-feedback that 
gives stability, performance and robustness to the 
closed-loop system.
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Preliminaries

Linear Matrix Inequalities (LMIs)

     A linear matrix inequalities (LMIs) have the form

                     ( ) ∑
=

>+=
m

i iFixFxF
1

,00                   (1)

where x Rm is the variable and the symmetric matrices 
Fi=Fi

T  Rn×n, i=0,...,m, are given. The inequality 
symbol in (1) means that F(x) is positive-definite, i.e., 
uTF(x)u>0 for all nonzero u  Rn. Of course, the LMI 
(1) is equivalent to a set of n polynomial inequalities 
due to Fi is a nxn matrix and x  Rm, i.e., the leading 
principal minors of F(x) must be positive.
     Also exists nonstrict LMIs, which have the form

                                 ( ) .0≥xF                                 (2)

     The LMI (1) is a convex constraint on x, i.e., the set 
{x/F(x)>0} is convex. Although the LMI (1) may seem 
to have a specialized form, it can represent a wide 
variety of convex constraints on x. In particular, linear 
inequalities, (convex) quadratic inequalities, matrix 
norm inequalities, and constraints that arise in control 
theory, such as Lyapunov and convex quadratic matrix 
inequalities, can all be cast in the form of an LMI.
     Given an LMI F(x)>0, the corresponding LMI 
Problem (LMIP) is to find xfeas such that F(xfeas)>0 or 
determine that the LMI is infeasible (the LMI F(x)>0 
is infeasible means the affine set {F(x)/x Rm} does not 
intersect the positive-definite cone).
     Of course, this is a convex feasibility problem. 
We say “solving the LMI F(x)>0” to mean solving the 
corresponding LMIP.
     As an example of an LMIP, consider the “simultaneous 
Lyapunov stability problem”: We are given Ai Rn×n, 
i=1,...,L, and need to find P satisfying the LMI

          LiiPAPT
iAP ,...,1    ,0    ,0 =<+>             (3)

or determine that no such P exist. Determining that no 
such P exist is equivalent to finding Q0,...,QL, not all 
zero, such that
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which is another (nonstrict) LMIP.

Linear differential inclusions

     A linear differential inclusions (LDI) is given by

                        ( ) 00    , xxxx =Ω∈                          (5)

where Ω is a subset of Rn×n. We can interpret the LDI (5) 
as describing a family of linear time-varying systems. 
Every trajectory of the LDI satisfies

                      ( ) ( ) ,00    , xxxtAx ==                      (6)

for some A:R+→Ω. Conversely, for any A:R+→ Ω, 
the solution of (6) is a trajectory of the LDI (5). In 
the language of control theory, the LDI (5) might 
be described as an “uncertain time-varying linear 
system”, with the set Ω describing the “uncertainty” 
in the matrix A(t).

Linear time-invariant systems

     When Ω is a singleton, the LDI reduces to the linear 
time-invariant (LTI) system

              
( )
,
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           (7)

where x:R+→ Rⁿ, u:R+→ Rnu, w:R+→Rnw, z:R+→Rnz, x 
is referred to as the state, u is the control input, w is the 
exogenous input signal and z is the output.

     The matrices in (7) satisfy

                   .





=Ω
zwDzuDzC
wBuBA

                     (8)

where Ω  R(n+nz)×(n+nu+nw).
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Quadratic stability

     We first study stability of the LDI

                      ( ) ( ) Ω∈= tAxtAx    ,                          (9)

that is, we ask whether all trajectories of system (9) 
converge to zero as t→∞. A sufficient condition for 
this is the existence of a quadratic function V(ξ)=ξTPξ, 
P>0 that decreases along every nonzero trajectory 
of (9). If there exists such a P, we say the LDI (9) 
is quadratically stable and we call V a quadratic 
Lyapunov function.
     Since

              ( ) ( ) ( )( ),xtPAPTtATxxV
dt

d
+=                (10)

a necessary and sufficient condition for quadratic 
stability of the system (9) is

            . allfor  0    ,0 Ω∈<+> APAPTAP        (11)

Multiplying the second inequality in (11) on the left 
and right by P-1, and defining a new variable Q=P-1, we 
may rewrite (11) as

           . allfor  0   ,0 Ω∈<+> APATQAQ          (12)

This dual inequality is an equivalent condition for 
quadratic stability. We now show that conditions for 
quadratic stability for LTI systems can be expresed in 
terms of LMIs.
     Condition (11) becomes

                      0    ,0 <+> PAPTAP                    (13)

     Therefore, checking quadratic stability for an LTI 
system is an LMIP in the variable P. This is precisely 
the (necessary and sufficient) Lyapunov stability 
criterion for LTI systems. In other words, a linear 
system is stable if and only if it is quadratically stable. 
Alternatively, using (12), stability of LTI systems is 
equivalent to the existence of Q satisfying the LMI

                     .0   ,0 <+> TQAAQQ                    (14)

Of course, each of these LMIPs can be solved 
analytically by solving a Lyapunov equation.

State-Feedback for LTI

     In this section we present the general form of the 
state-feedback for LTI [1].

     Let K  Rnu×n, and suppose that u=Kx. Since the 
control input is a linear function of the state, this is 
called state-feedback, and the matrix K is called the 
state-feedback gain. This yields the closed-loop LDI

           
( ) ( )( ) ( )
( ) ( )( ) ( ) ,

,

wtzwDxKtzuDtzCz

wtwBxKtuBtAx

++=

++=
        (15)

    
 The system (8) is said to be quadratically stabilizable 
(via linear state-feedback) if there exist a state-
feedback gain K such that the closed-loop system 
(15) is quadratically stable (hence, stable). Quadratic 
stabilizability for LTI can be expressed as an LMIP as 
follow.
     Consider a LTI system (7) without exogenous input 
signal, therefore this system is (quadratically) stable if 
and only if there exists P>0 such that

             ( ) ( ) ,0<+++ KuBAPPTKuBA           (16)

or equivalently, there exists Q>0 such that

            ( ) ( ) .0<+++ QKuBATKuBAQ           (17)

Neither of these conditions is jointly convex in K and 
P or Q, but by a simple change of variables we can 
obtain an equivalent condition that is an LMI.
     Define Y=KQ, so that for Q>0 we have K=YQ-1. 
Substituting into (11) yields

            ,0<+++ T
uBTYYuBTQAAQ               (18)

which is an LMI in Q and Y. Thus, the system is 
quadratically stabilizable if and only if there exists 
Q>0 and Y such that the LMI (18) holds. If this LMI 
is feasible (in the feasibility problem, we consider any 
feasible point as being optimal), then the quadratic 
function V(ξ)=ξTQ-1ξ proves (quadratic) stability of 
system with state-feedback u=YQ-1x.

Description of the system

     Gyroscopes are used to measure the angular 
movement with respect to a fixed structure, and are 
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     Using the D’Alembert method [2] to get a 
mathematical representation of the gyroscope, we 
found the dynamic equations of the system, later using 
the information given by Quanser in table 1 we can 
have a representation of the system.

Table 1. Information from Quanser Inc.

Parameter Simbol Value Unit
Giroscope 

module 
inertia J o

Z
0.002 Kgm2

Rotor mass Mf 0.8 Kg
Rotor ratio rf 0.0508 m

Springs 
constant Ks 1908.9 Nm

Rotational 
constant Kr 2.4631 Nm/rad

Gyroscope 
sensivity 

to θ
Gg 5.2205 (°/seg)/°

Rotor 
speed η 457 Rad/seg

    
 Linearizing the dynamic equations with the Jacobian, 
we have the following equations
  

 					             (19)

The state-space representation, is given by

  
	  

 [ ].0100=C   		          	         (20)                                                       

The transfer function of the gyroscope, is given by
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a key component of plane automatic pilots, rockets 
guidance system, spatial vehicles altitude system, 
navigation gyrocompasses, etc. [2].

     The system considered in this work is a gyroscope 
with two axes, shown schematically in Figure 1, 
which is a lab experiment developed by Quanser Inc., 
[9]. The gyroscope consists basically of the following 
components: a support plate holding the gyro module 
with a rotor which rotates a constant speed, its 
movement being produced by a DC motor, sensors 
for the angles α and ψ, and a data acquisition card 
connecting the gyroscope to a computer.
     Angle α defines the angular position of structure 
with the rotor, with respect to the gyro module, while 
angle ψ is located between the gyro module and the 
support plate.
     The purpose of the controller to be designed for 
this system is to maintain the direction at which 
the gyroscope is pointing, while the support plate 
rotates relative to the base plate. In other words, the 
gyro module must keep its position in the presence 
of perturbations or any movement of the base plate. 
This mimics the problem of a ship on which a radar 
is mounted, and it is desired to maintain the direction 
in which the radar beam points independent of the 
unknown yawn of the ship due to disturbances and 
steering. The control input of the system is the voltage 
δ(t) applied to the DC motor, and the output will be 
considered to be the angle ψ(t).

Figure. 1. Scheme of the gyroscope
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where the input δ(t) is the voltage applied to the motor, 
and the output is the angle ψ(t), which corresponds to 
the angle located between the gyro module and the 
support plate.
     The zeros of the system are given by {67.42,           
-67.42}, and the poles of the system are {0, 0.06,         
-0.88±374.16i}, from which it can be seen that the 
system is non-minimum-phase and unstable.

Results

     In this section, we present the controller to be 
designed. This controller should be such that the gyro 
module keeps its position in presence of perturbations 
or movements of the base plate, while providing 
stability, performance and robustness to the closed-
loop system.
     Using the matrices of (20) to find a solution of (18), 
the state-feedback calculated using the LMI-toolbox 
for the gyroscope of two axes is
                         

	  1−= YQlmiK                               (22)

where

[ ]05588.4143648.0681569.8808564.0 −=Y

     Since there exists Q>0 and Y such that the LMI (18) 
holds, the system is quadratically stabilizable.
     The state-feedback calculated for the gyroscope 
with two axes is

[ ]72221.00611.163977.0447.34 −−=lmiK

Real-Time results

     To test the robustness and performance of the obtained 
controller in real time, we introduce a perturbation to 
the system by moving manually the support plate. The 
angle ψ(t) caused by this input perturbation is shown 
in Figure. 2. The corresponding behavior of the angle 
α(t) is shown in Figure. 3, where it can be seen that 
α(t) opposes to the movement of the gyro module until 
the perturbation is rejected. The control signal δ(t) is 
shown in Figure. 4.

Figure. 2. Angle ψ(t).
   

Figure. 3. Angle α(t).

Figure. 4. Control signal δ(t).

    The gyro module remains practically without 
movement with respect to its initial position in the 
presence of the introduced perturbation, showing a 
good performance of the designed controller.

Conclusions

    In this paper robust stability using LMIs have been 
applied to the real-time control of a gyroscope with 
two degrees of freedom. The controller was designed 
using routines from LMI Control Toolbox. Real-time 
results show an excellent robustness and performance 
of the state-feedback.
    Future work has to be concerned with testing the 
robustness of the controller, for instance introducing 
variations on the parameters of the system.
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