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ABSTRACT
Absorption, distribution, metabolism, excretion and toxicity (ADME-Tox) properties should be considered to develop
a new drug, because they are the main cause of failures for candidate molecules in drug design. The early
evaluation of these properties durin drug design could save time and money. Physicochemical properties, tridimen-
sional (3D) structural information, and mathematical methods can be combined to develop an in silico approach to
predict ADME-Tox properties. Some of these in silico methods can be used to predict these properties in a large
number of compounds at an early stage in drug design, but there is no general methodology for the computer
prediction of ADME-Tox properties. In this review we summarize some of the models and available programs to
predict ADME-Tox properties.
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RESUMEN
Metodología actual para la evaluación de propiedades ADME-Tox de moléculas candidatas a medicamentos.
Las propiedades ADME-Tox (absorción, distribución, metabolismo, excreción y toxicidad) deben tenerse en cuenta
en el desarrollo de nuevos medicamentos. Estas propiedades son la principal causa del fallo de moléculas candidatas
durante el diseño de medicamentos. La evaluación de estas propiedades en etapas tempranas del diseño de
medicamentos permite ahorrar tiempo y gastos. Propiedades físico-químicas, información de estructuras tri-
dimensionales y métodos matemáticos pueden ser combinados para desarrollar modelos in silico para predecir
propiedades ADME-Tox. Algunos de estos métodos in silico se pueden usar para predecir estas propiedades a un
gran número de compuestos en etapas tempranas del diseño de medicamentos, pero no hay una metodología
general para la predicción de las propiedades ADME-Tox. Esta revisión resume algunos modelos y programas
disponibles para predecir propiedades ADME-Tox.

Palabras clave: ADME, absorción, distribución, metabolismo, excreción, toxicidad, diseño de fármacos, QSAR,
descriptores moleculares, farmacocinética

Introduction
The fact that a chemical compound could be active
and selective does not necessarily make it an attractive
candidate for drug development. There are certain
properties that make a drug different from other
compounds. An appropriate concentration of the drug
must circulate in the body for a reasonable length of
time to achieve a desired beneficial effect with a mi-
nimum of adverse effects. For this process, oral drugs
have to dissolve or suspend in the gastrointestinal
tract and be absorbed through the gut wall, then they
pass the liver to reach the blood stream. From there,
the drug will be distributed to various tissues and
organs and finally binds to its molecular target and
exert its desired action. The drug is then subjected to
hepatic metabolism followed by its elimination as bile
or via the kidneys.

Several pharmacokinetics properties are involved
in this mechanism. Bioavailability depends on ab-
sorption and liver first-pass metabolism. The volume
of its distribution, together with its clearance rate,
determines the half-life of a drug and therefore its
dosage. Poor biopharmaceutical properties, such as
poor aqueous solubility and slow dissolution rate can
lead to poor oral absorption and hence low oral bio-
availability.

Promising drugs candidates often fail because of
unsatisfactory absorption, distribution, metabolism,

excretion, and toxicity (ADME-Tox) properties as
reported for about 63% of the compounds proposed
for pre-clinical development [1].

The conversion of active compounds into qualified
clinical candidates has proved to be a challenge. At the
molecular level, a coordinated system of transporters,
channels, receptors and enzymes act as gatekeepers to
foreign molecules affecting the ADME-Tox properties
of a given molecule in very different ways. A fast eva-
luation of ADME properties at the early stages of
drug discovery could save both time and money.

This review summarizes some in silico approaches
to predict ADME-Tox properties.

ADME-Tox at the early stage
To identify compounds that have good pharmacoki-
netic and toxicological profiles, ADME-Tox studies
should be started as early as possible in the discovery
process [2-4] enabling all properties to be optimized
simultaneously.

Traditional ADME-Tox assays were designed as
detailed experimental approaches to characterize a
process by its underlying mechanisms, e.g. the cha-
racterization of the metabolism or transport of a
compound would involve investigations at multiple
concentrations and time points [5, 6] with a throughput
of a few compounds per week. However, these appro-
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aches might still be useful as secondary assays during
optimization or preclinical development.

New formats of in vitro ADME-Tox assays serving
early discovery have been developed from traditional
assays through protocol simplification and making
use of technological advancements. Examples include
the measurement of metabolic stability or permeability
of a compound at a single concentration and single
time point [7] or the evaluation of the cytochrome
P450 (CYP450) inhibition potential of a compound
at a single concentration, instead of determining the
50% inhibitory concentration (IC50) or inhibition
constant value (Ki) [8], high-throughput solubility
assays (Turbidometry [9], laser nephelometry[10]),
permeability assay (Caco-2 cells [11, 12], Madin-
Darby canine kidney (MDCK) cells [13], parallel arti-
ficial membrane permeation assay (PAMPA) [14, 15]),
and metabolism assays (hepatocytes [16], S9 fractions
[17], recombinant enzymes [18]). On the other hand,
computer models have appeared to further expand
the ADME-Tox tools. These models are promising as
early screening tools for drug candidates and for de-
signing more successful combinatorial or in silico
libraries, where there is a very small amount of the
compound or no compound at all and a computational
approach is then the only option for collecting this in-
formation.

Commercially available tools for calculating physi-
cochemical properties and ADME-Tox-related para-
meters are often used [19-22]. However, the predictions
are far from perfect, and the results obtained from
such tools have to be interpreted with great care [23].
The use of generic models can only be recommended
if they have been validated for a particular project.
If new compound classes outside of the training sets
are evaluated, the result can be very misleading.

The optimal approach for the ADME-Tox support
of discovery will be one that uses both in vitro and in
silico experiments in a complementary way ensuring
that ADME-Tox is used and considered at almost
every stage of the discovery process, from hit
identification to lead optimization (Figure 1) [19].

In the hit identification stage, the primary goal of
the in silico ADME-Tox models is to identify com-
pounds or series of compounds with at least accep-
table drug-like properties that are then disregarded.
Another goal is to identify potential weaknesses and
liabilities in the selected series highlighting the issues
that will be focused in the improvement/optimization
efforts. In the lead identification stage, the objective
is to identify a small number of chemical series with
the activity, selectivity and drug-like properties re-
quired for a potential candidate.

The application of in silico ADME-Tox should fo-
cus on predictions of chemical modifications of com-
pounds that will improve ADME-Tox properties. In
vitro assays are used to measure the ADME-Tox
properties of the newly synthesized compounds. This
information is valuable for the refinement of the in
silico ADME-Tox models.

Similar to lead identification, the lead optimiza-
tion on ADME-Tox properties consist of an iterative
workflow, starting from in silico prediction, to che-
mical synthesis, to experimental testing and confir-
mation, and to model refinement.

In silico ADME-Tox models in drug
discovery
The current available computer tools to predict ADME
properties can be classified in data-based and structure-
based approaches.

Data-based approaches include quantitative struc-
ture-activity relationship (QSAR) [24] and quanti-
tative structure-property relationship (QSPR) [25].
These approaches use statistical tools to explore the
linear or nonlinear relationship between certain struc-
tural descriptors and observed parameters of a par-
ticular ADME-Tox property [26-29]. Various kinds
of quantitative descriptors based on 2-dimensional or
3-dimensional molecular structures have been pro-
posed, including fragment, topological and global
physicochemical descriptors. On the other hand, to
relate the target property to the descriptors, linear
methods (e.g., multiple linear regression and partial
least squares) and non-linear methods (e.g., feed-
forward artificial neural network) have been applied
for multivariate analysis [30].

Data-mining and machine-learning methods ori-
ginally developed and used in other fields are now al-
so successfully being used for this purpose. Examples
of such methods include neural networks [26, 31],
self-organizing maps [32], recursive partitioning [33,
34] and support vector machines [35, 36].

There are also data-based methods that do not use an
explicit mathematical model. They are mostly based on
molecular similarity/dissimilarity, including k-nearest
neighbor method [37] and stochastic artificial neural
network [38]. The property of unknown compounds
can be predicted from those compounds that are regis-
tered in a data base and have similar chemical structure.

Data-based methods are relatively simple and are
applicable in almost all ADME-Tox properties. Such
models require minimal computer power and have high
throughputs of up to thousands or millions of mole-
cules per hour.

Structure-based methods use three-dimensional
structural information and quantum mechanics to
assess the interaction potential between the small mo-
lecules studied with macromolecules, for example,
enzymes or transporter proteins, that are involved in
a certain ADME-Tox process [39-41]. They requi-
re 3D structures of ligands and macromolecules,
and thus, require more computer power compared
to the empirical models resulting in a relatively lo-
wer throughput, varying from tens to a few hundred
compounds per hour.

Hit identification Lead identification Lead optimization

Identify compounds or
series with at least
acceptable drug-like
properties.

Empirical models

Prediction of chemical
modifications that will
improve the ADME-Tox 
properties.

Empirical / mechanistic 
models

Similar to the process of
lead optimization.
Model refinement using
experimental data.

Mechanistic models

ADME
In silico

Model
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Figure 1. In silico ADME-Tox predictions at different stage of drug design. The purpose of these
predictions is different in each stage. The models used at the beginning of the drug design have to work
fast to evaluate a large number of compounds, and at the later stages, they have to be more accurate.
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If no structural information is available, an alter-
native is to use pharmacophore models, which can be
built from the overlapping of known substrates of
the protein. Pharmacophoric groups can be identified
from structure-activity data by comparing the struc-
ture of active compounds with one another [30].

The main limitation to the widespread use of in
silico ADME-Tox methods is their predictability [19].
The predictability of data-based models is generally
limited to the chemical space that is covered by the
compounds in the training set or those fairly close to
them. Structure-based models, however, have an ex-
panded chemistry space because they are based on
atomic and molecular interactions between the ligand
and the corresponding protein. In both cases, the use
of the most diverse set of molecules available, for mo-
del development, will ensure a better prediction and
broaden applicability.

Prediction of physicochemical
properties
Physicochemical properties of a drug have an impor-
tant impact on pharmacokinetics; their measure-
ment and calculation help prioritize compounds for
screening, since they can be used to predict ADMET
properties, and enable early decisions in drug disovery.

pKa
The negative logarithm of the acid ionization constant
(pKa) is defined as the ability of an ionizable group of
an organic compound to donate a proton in an aqueous
medium; ionization can affect solubility, lipophilicity,
permeability and absorption of a compound.

Different algorithms were developed to calculate
pKa depending on the nature of the chemical structu-
re, including the acid-strengthening and/or base-
weakening factors of the substituted aliphatic acids
and bases; Taft’s equation; Hammett’s equation for
phenols, aromatic carboxylic acid, aromatic amines,
hetero-aromatic acids and bases; and the extension of
Hammett’s and Taft’s equations to hetero-cycles. Frag-
ment methods have proven to be very useful and are
available as commercial systems [42]. Ab initio quan-
tum mechanics calculations have been used extensively
[43] as well as semi-empirical quantum mechanics [44].

Xing and Glen estimated the pKa using a novel tree
structured fingerprint describing the ionizing centers
[45]. Ionization models were developed using a com-
bination of descriptors mapped onto the molecular
tree constructed around the ionizable center using
partial least squares with cross-validation.

LogP and LogD
LogP is the logarithm of the partition coefficient in an
octanol/water system; it refers to the neutral state of
molecules and serves as a quantitative descriptor of
lipophilicity. In the presence of partially dissociated
compounds the ionization of a molecule is an additional
factor that must be considered, since the partition
then becomes pH dependent. The pH dependent
distribution coefficient (logD) is related to logP through
the ionization constant, pKa. Many drug molecules
contain ionizable groups and hence partition across
cell membranes, through pores and via active transport
mechanisms that are mostly pKa dependent.

The first and still most popular commercial com-
puter software used to calculate octanol-water par-
tition coefficients from molecular structure is ClogP,
developed by Pomona MedChem Project [20, 21].

Many computer algorithms that calculate parti-
tion coefficients have been developed since the in-
troduction of ClogP. These methodologies can roughly
be divided into (i) fragmental approaches using
additive contributions of functional groups and frag-
ments as well as their interactions such as ClogP, log-
Kow [46] ACD/logP DB [47] and KlogP [48]; (ii)
atom contribution approaches, such as AlogP98 [49]
These approaches employ multiple regression equa-
tions to establish models based on a training set; (iii)
topological approaches such as MlogP [50], VlogP
[51]; and (iv) a neural network study [52]. Another
route to logP is the direct calculation of the free energy
change for transferring a solute from an aqueous to an
organic solution by a thermodynamic treatment [53,
54]. These methods can usually be generalized to other
two-phase systems.

Polar surface area
The polar surface area (PSA) is commonly computed
as the van der Waals surface area of all nitrogen and
oxygen atoms, plus the area of the hydrogen atoms
attached to them. The PSA descriptor can not dis-
tinguish between non-polar compounds or account
for non-polar atom groups, thereby failing to dis-
criminate between molecules with identical PSA but
different sizes and lipophilicities. Thus, the PSA will
reflect the ability of the solutes to leave the hydrogen
binding environment, but not the affinity for the
internal membrane or size-related effects [55].

For molecules that are able to adopt different con-
formations, the dynamic polar surface area (PSAd)
should be a more appropriate predictor [56], To cal-
culate the PSAd of a molecule, all three-dimensional
conformations of the compounds are first constructed
using molecular mechanics calculations and the PSAd
is then obtained as the Boltzmann-weighted average
of the van der Waal’s surface areas calculated for all
low-energy conformations of a compound.

Several studies have proved the PSA to be a useful
descriptor of biological permeation. van der Water-
beemd and Kansy [57] were the first to correlate biolo-
gical permeation with polar surface area. They found
a strong correlation between brain uptake and the hy-
drophilic part of the calculated van der Waals surface.

Drugs with a PSA greater than 140 Å2 have been
found to exhibit poor intestinal absorption [28, 58-60]
whereas an upper limit of 60-90 Å2 has been found
for blood-brain partition [59, 61].

Lipophilicity
The lipophilicity of a drug is its tendency to prefer a
lipidic, or oil-like environment to an aqueous one. It is
the key physicochemical parameter linking membra-
ne permeability (drug absorption and distribution)
with the clearance (elimination) route. Although lipo-
philicity is a property ascribed to the drug compound,
it is highly dependent on the choice of a lipidic envi-
ronment [62], because behind this property lies a net
of intermolecular interactions such as hydrogen bon-
ding and dipole effects.
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Most lipophilicity calculation approaches rely on
fragment values, although simple methods based on
molecular size and hydrogen-binding indicators for
functional groups to calculate log P values have also
been shown to be extremely versatile [25].

Solubility
The solubility of drugs in water closely affects their
biological activity. It is one of the important factors
determining oral bioavailability. Low solubility is
detrimental to good and entire oral absorption.

Several algorithms to predict aqueous solubility
have been proposed. One of the simple ways to es-
timate a drug solubility is to use logP. It provides an
estimate of the strength of the interaction of the com-
pound with water [63]. The strong dependence of
solubility on properties such as logP has formed the
basis of several methods where calculated logP is
augmented with additional terms [64-66].

Molecular simulations offer another route for
assessing the energetic of a compound in water, Mon-
te Carlo simulations with solute embedded in a bath
of rigid water molecules to derive cohesive properties
can be used to predict solubility [67], this approach
performs relatively complex simulations for each
different solute, thus, the computational load impo-
sed is the main drawback; Jorgensen and Duffy ha-
ve addressed this by using simulations as a way of
deriving properties that can be used in a fast QSPR
(quantitative structure property relationship) model.

Quantum mechanics (QM) is also used to predict
solubility. An approach developed by Cramer-Truhlar
[68] performs the QM calculation assuming that the
compound is embedded in a continuous dielectric me-
dium, which allows the polarization of the compound
to be more accurately modeled. Klamt and co-workers
[69] have produced the QM-based COSMO-RS me-
thod, which goes further by embedding both solute
and solvent in a perfect conductor to calculate their
polarization charge densities. Integrating over the two
surfaces (solute and solvent) allows the method to
calculate the chemical potential of the solute in the
solvent, leading to an estimation of its solubility.

Permeability
Cell membrane permeation is a prerequisite for drug
absorption (oral, transdermal, ocular, pulmonary),
distribution (across the blood-brain barrier or blood-
retina barrier) and elimination by the hepatocytes in
the liver, and may also undergo reabsorption through
the tubular membranes of the kidney. Since the ma-
jority of drugs are administered via the oral route, the
most widely studied form of biological permeation is
the human intestinal absorption (HIA). Likewise,
evaluation or prediction of drug permeation across
the blood-brain barrier is also important, due to a large
number of drugs act via the central nervous system,
producing either therapeutic or adverse effects.

The main properties of a drug influencing its per-
meation through biological membranes are lipophi-
licity, hydrogen-bonding capacity, charge and size [70].
The lipophilicity is the most widely used physicoche-
mical property to predict drug permeation in biological
systems [71].

The relationship between logP and permeability is
non-linear, with decreases in permeability at both low
and high logP. These non-linearities are believed to be
due to: (a) the limited diffusion of poorly lipophilic
molecules into the phospholipid cell membrane, and
(b) the preferential partitioning of highly lipophilic
molecules into the phospholipid cell membrane, pre-
venting passage [72] through the aqueous portion of
the membrane [73-75].

Prediction of ADME and related
properties

Absorption
Many factors influence the gastrointestinal tract
absorption of drugs, and would fundamentally be
classified into three categories: physicochemical (pKa,
solubility, stability, diffusivity, lipophilicity, and salt
form), physiological (gastrointestinal pH, gastric
passage, small and large intestine transit time, active
transport and efflux, and gut wall metabolism), and
formulation factors (drug particle size and crystal form,
and dosage form such as a solution, tablet, capsule,
suspension, emulsion, gel, and modified release) (Figu-
re 2) [30]. Formulation factors are usually optimized
experimentally and physiological factors cannot be
controlled, then prediction interests are centered on
physicochemical properties of the compounds.

There are several known mechanisms of intestinal
drug absorption. The major mechanism for drug uptake
through the intestinal epithelium is passive diffusion
driven by a concentration gradient; depending on the
molecule’s hydrophilicity, passive diffusion can occur
through the lipid/aqueous environment of the cell
membrane (trans-cellular transport) or the passage
through the water-filled tight junctions formed by the
fusion of lipid membranes of adjacent cells (para-
cellular transport). In addition, some molecules that
enter the cytoplasm of epithelial cells can be actively
transported back by specific transporters to the intes-
tinal lumen; this efflux process is mainly a function of
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Figure 2. ADMET properties depends on many factors. Physicochemical properties are related with some
of these properties such as: absorption, distribution and excretion (as a particular case of distribution).
The structure of the molecule is important for its interaction with some proteins (e.g. transporters,
enzymes, receptors). All these properties contribute to the pharmacokinetic of the drug candidate.



Ania de la Nuez and Rolando Rodríguez Prediction of ADME-Tox properties

Biotecnología Aplicada 2008; Vol.25, No.2101

a transporter in the plasma membrane called P-gly-
coprotein (P-gp).

Solubility and the intestinal permeability of the
drug are the most important properties that deter-
mine absorption after oral administration [76, 77].
However, their use in predicting oral absorption is a
difficult task because both properties are pH depen-
dent and they should be considered in the dynamically
changing complex environment of the gastrointesti-
nal tract.

Almost all of the computational approaches curren-
tly used to predict absorption are based on the assum-
ption that absorption is passive, and can be predicted
from molecular descriptors of the compound. Perhaps
the most widely used model for the prediction of
passive intestinal absorption is the Rule-of-five
model introduced by Lipinski [9]. The Rule-of-five
considers that a molecule will be poorly absorbed or
poorly soluble when the following cut-offs are ex-
ceded: logP > 5, molecular weight > 500, the number
of hydrogen bond (H-bond) donors (counted as hy-
drogens attached to N or O atoms) > 5, or the number
of H-bond acceptors (approximated as the number of
N and O atoms) > 10, and to have particularly poor
absorption or solubility if any two of these bounds
are exceeded. The Rule-of-five model has the ad-
vantages of being simple, easy to interpret, and fast
to compute [78]. However it has recently been des-
cribed that many natural products are exceptions of
the Rule-of-five, and might also show good oral
bioavailability [79], as well as others compounds with
molecular weight (MW) > 500 but with reduced mo-
lecular flexibility and constrained polar surface area
[60, 79].

In the modeling of the intestinal absorption of
molecules, the PSA is one of the most widely used
descriptors. Several reports are available showing an
experimental correlation of PSA with the apparent
permeability through a Caco-2 monolayer [80] or
Caco-2 cells and rat ileum [58]. The PSAd values take
into account the shape and flexibility of a drug, while
it has also been shown that the PSA calculated for a
representative single conformer performs as well as
the PSAd used to predict permeability [28].

Wessel and co-workers have reported a neural net-
work model to predict percent human intestinal absor-
ption (%HIA) [81]. The descriptors they used were
topological, electronic, geometric, charged-partial
surface area (CPSA) and other related ones. These
methods, however, are not applicable to a large number
of compounds, because estimations of PSA and CPSA
require conformational analysis and molecular orbital
calculations, which are computationally impracticable
for a large set of compounds.

Others also use PSA to predict oral absorption [31]
developing an artificial neural network model to predict
%HIA of compounds from their molecular structure
parameters. These parameters are the PSA, the fraction
of polar molecular surface area (FPSA, polar molecular
surface area/ molecular surface area), the sum of the
net atomic charges of oxygen atoms (Q(O)), the sum
of the net atomic charges of nitrogen atoms with net
negative atomic charges (Q(N)), the sum of the net
atomic charges of hydrogen atoms attached to oxygen
or nitrogen atoms (Q(H)), and the number of carboxyls
(nCOOH).

Other approach to predict Caco-2 cell permeability
was developed by Fujiwara and co-workers [82].
They calculated molecular descriptors of structurally
diverse compounds with a semi-empirical molecular
orbital calculation method, and then applied an artificial
neural network to the multivariate analysis between
molecular descriptors and Caco-2 cell permeability.
This approach was compared with a multiple linear
regression with respect to the predictability of Caco-
2 cell permeability and revealed that the neural network
model had a fairly good predictability as far as Caco-
2 cell permeability is concerned, and better than the
simple and quadratic regression model.

A methodology combining a genetic algorithm search
with neural network analysis applied to the modeling
of Caco-2 cell apparent permeability was developed
by Di Fenza and co-workers [83]. Several molecular
descriptors of the compounds were calculated and the
optimal subsets were selected using a genetic algo-
rithm. The selected descriptors were shown to possess
physico-chemical connotations which are in excellent
accordance with the well-known relevant molecular
properties involved in the cellular membrane permea-
tion phenomenon: hydrophilicity, hydrogen bonding
propensity, hydrophobicity and molecular size. The
predictive ability of the models, although rather good
for a preliminary study, is somewhat affected by the
poor precision of the experimental Caco-2 measu-
rements. The generalization ability of one model was
checked on an external test set. The result obtained is
of interesting practical application and stresses that
a successful model construction is strictly dependent
on the structural space representation of the data set
used for model development.

Linear discriminant analysis (LDA) has been used
to obtain quantitative models that discriminate higher
absorption compounds from those with a moderate to
poorer absorption [84]. The models were based on a
data set of measured Caco-2 cell permeability, consisting
of 157 structurally diverse compounds. The best LDA
model has an accuracy of 90.58% and 84.21% for
training and test set, respectively. In a virtual screening
of 241 drugs with the reported values of the percentage
of human intestinal absorption (%HIA), the percenta-
ge of good correlation was greater than 81%. In addition,
multiple linear regression models were developed to
predict Caco-2 permeability with determination coeffi-
cients of 0.71 and 0.72. These results suggest that the
proposed method is a good tool for studying the oral
absorption of drug candidates [84].

Two dimension (2D) descriptors have also been
used for human intestinal absorption prediction. Ya-
mashita and co-workers [85] predicted Caco-2 cell
permeability from 2D topological descriptors, which
was optimized by a genetic algorithm combined with
partial least squares. The predictability of this model
was comparable to that of the artificial neural network
model where the same permeability data were pre-
dicted from quantum chemical descriptors [82].

A rapid and reliable method to predict the %HIA of
compounds based on their 2D descriptors was deve-
loped by Niwa [38]. The %HIA values were modeled
using a general regression neural network and a pro-
babilistic neural network, variants of normalized radial
basis function networks. Both networks performed
well to model the %HIA values.
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Hou and co-workers developed models to predict
human intestinal absorption by using the genetic func-
tion approximation technique, and for a training set
of 455 compounds [86]. The best prediction model
contains four molecular descriptors: topological po-
lar surface area, the predicted distribution coefficient
at pH = 6.5, the number of violations of the Lipinski’s
rule-of-five, and the square of the number of hydrogen-
bond donors. The high quality of the classification
model was validated by the satisfactory predictions
on the training set (correctly identifying 95.9% of the
compounds in the poor-absorption class and 96.1%
of the compounds in the good-absorption class) and
on the test set (correctly identifying 100% of the com-
pounds in the poor-absorption class and 96.8% of the
compounds in the good-absorption class).

In another approach, Hou and co-workers studied
the performance of a support vector machine (SVM)
to classify compounds with high or low fractional ab-
sorption (%FA > 30% or %FA < or = 30%) [87]. SVM
classification models have been generated to investiga-
te the impact of specific molecular properties on %
FA. Among these important molecule descriptors, the
topological polar surface area (TPSA) and predicted
apparent octanol-water distribution coefficient at
pH 6.5 (logD6.5) show the best classification perfor-
mance. The analyzed data set consists of 578 structural
diverse drug-like molecules, which have been divided
into a 480-molecule training set and a 98-molecule test
set. The best SVM classifier can give satisfactory
predictions for the training set (97.8% for the poor-
absorption class and 94.5% for the good-absorption
class). Moreover, 100% of the poor-absorption class
and 97.8% of the good-absorption class in the external
test set could be correctly classified. This illustrates
that SVMs combined with simple molecular descrip-
tors can provide an extremely reliable assessment of
intestinal absorption in an early in silico filtering
process.

Ito and co-workers [88] have developed a phar-
macokinetic model for drug absorption that includes
metabolism by CYP3A4 inside the epithelial cell, P-
gp-mediated model efflux into the lumen, intracellular
diffusion from luminal side to basal side, and sub-
sequent permeation through the basal membrane. They
demonstrated that the fraction absorbed was elevated,
by the simultaneous inhibition of both CYP3A4 and
P-gp.

A set of well-defined structural elements required
for interaction with P-gp has been derived from the
analysis of a set of known P-gp substrates [89-91].
The key recognition elements in this model are two or
three electron-donor groups with a fixed spatial se-
paration. The inhibition of P-gp would increase the
intestinal absorption of P-gp substrates [92].

The MolSurf program has been used to generate
descriptors to build a PLS model to predict P-gp-
associated ATPase activity [93]. This model identi-
fied the main contributing descriptors for predicting
ATPase activity as the size of the molecule surface,
polarizability and hydrogen-bonding potential.

Swaan et al [94] examined the structure-affinity
relationship for the small intestinal oligopeptide carrier
(PepT1) using CoMFA, the model obtained showed a
high correlation between carrier permeability and ste-

ric (73% contribution) and electrostatic (23% contri-
bution) molecular fields with a cross-validate r2 of
0.754, besides, CoMFA has been used in modeling the
intestinal bile acid carrier [95], and P-gp [96, 97].

A P-gp pharmacophore model consisting of two
hydrophobic points, three hydrogen-bond-acceptor
points and one donor point was reported [98]. A three-
dimensional QSAR P-gp model was generated using
the Catalyst program [99] and this model made it
possible to qualitatively rank predicting IC50 values
for P-gp inhibitors.

Crivori and co-workers developed several models
to predict substrates and inhibitors of P-gp. A method
for discriminating P-gp substrates and non-substrates
has been set up based on calculated molecular des-
criptors and multivariate analysis [100]. The drugs of
the training set were previously classified as P-gp
substrates or non-substrates on the basis of the efflux
ratio from Caco-2 permeability measurements. The
descriptors were calculated with the Volsurf program
and were correlated to the experimental classes using
partial least squares discriminant analysis. The model
was able to correctly predict the behavior of 72% of
an external set of 272 proprietary compounds.

On the basis of the P-gp inhibition data, a partial
least squares discriminant analysis using GRIND-
pharmacophore-based descriptors was performed to
model P-gp substrates having poor or no inhibitory
activity versus inhibitors having no evidence of signi-
ficant transport [100]. The model was able to discri-
minate between 69 substrates and 56 inhibitors taken
from the literature with an average accuracy of 82%.
The model also allowed the identification of some key
molecular features that differentiate a substrate from
an inhibitor, which should be taken into consideration
in the design of new candidate drugs.

A robust predictive pharmacophore model was tar-
geted in a supervised analysis of three-dimensional
(3D) pharmacophores from 163 published compounds
to differentiate non-substrates from substrates of
Pgp [101]. A comprehensive set of pharmacophores
has been generated from conformers of whole mo-
lecules of both, substrates and non-substrates of P-
glycoprotein. Four-point 3D pharmacophores were
employed to increase the amount of shape informa-
tion and resolution, including the ability to distinguish
chirality. A novel algorithm of the pharmacophore-
specific t-statistic was applied to the actual structure-
activity data and 400 sets of artificial data (sampled
by decorrelating the structure and Pgp efflux activi-
ty). A simple classification tree using nine distinct
pharmacophores was constructed to distinguish non-
substrates from substrates of Pgp. An overall accu-
racy of 87.7% was achieved for the training set and
87.6% for the external independent test set. Fur-
thermore, each of nine pharmacophores can be in-
dependently used as an accurate marker for potential
Pgp substrates [101].

Software packages are available commercially for
predicting human intestinal fraction absorbtion based
on estimates of solubility and intestinal permeability
(Table 1).

GastroPlus simulates gastrointestinal absorption
and pharmacokinetics for drugs administered orally
or intavenously in humans and animals. Oral absorp-
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Table 1. Programs for in silico prediction of ADME-Tox properties 

Program Developer Purpose and Function Models used Instrumentation 

GlastroPlus 
 
 

Simulation-plus, Inc. 
www.simulation-plus.com 

Simulations and predictions of the 
gastrointestinal dissolution, transit, 
absorption, bioavailability, and 
pharmacodynamics. Prediction of the 
first-passage effect in the gut and 
liver and plasma concentration-time 
profiles. 

Physiologically-based 
mechanistic advanced 
compartmental absorption 
and transit model  

Gastrointestinal simulation linked to 
pharmacokinetics and pharmacodynamic 
models 
 
 

iDEA 
 
 

LionBioscience, Inc. 
http://www.lionbioscience.com/

solutions/idea 

Absorption Module predicts the 
fraction dose absorbed over time, 
mass absorbed, soluble mass, 
insoluble mass, absorption rate, and 
intestinal drug concentration.  
Metabolism Module predicts the 
extent of first pass metabolism for a 
compound. 
  

A knowledge based model 
relying on in vitro data and 
clinical data of a proprietary 
database of chemical 
structures 
 
 
 

Uses chemical structure to predict various 
absorption properties.  
Absorption Model uses in vitro data to construct 
a physiological model. 
Metabolism Model  is linked to the Absorption 
Module for inputs and predicts bioavailability 
from metabolic turnover and protein binding 
data 

COMPACT 
(computer-optimized 

molecular 
parametric analysis 
of chemical toxicity) 

University of Surrey, Guildford, 
UK 

Identification of potential 
carcinogenicity and toxicity mediated 
by one or more cytochromes P450. 

Enzyme modeling systems 
based on theoretical and 
mechanistic considerations 

Computes the shape and molecular orbital 
energy levels of a chemical structure and 
evaluates whether it can interact with the active 
site of cytochrome P450 I or to the binding site 
of the Ah receptor and thereby induce cancer  

Camitro 
 
 

Camitro Corporation 
 
 

Predicts aqueous solubility, blood-
brain barrier partitioning, human 
intestinal absorption and  
cytochrome P450 (CYP3A4) 
metabolism and CYP  (CYP2D6 and 
2C9) inhibitory potential. 

Enzyme modeling systems 
based on theoretical and 
mechanistic considerations 
 

Uses surface and electronic properties of the 
molecule taking into account theoretical energy 
differences by reaction/diffusion. 
Metabolism models combined 
empirical/quantum chemical approach to 
predict enzyme-substrate binding affinities, 
metabolic sites, and relative rates of 
metabolism 

MetabolExpert 
 
 
 

CompuDrug Chemistry Ltd 
www.compdrug.com 

Generates metabolites with quickly 
identifying sites on the molecule 
where metabolic transformation may 
occur.  

A knowledge base of 
structure-metabolism rules 
with open architecture 
 

Rules based on examples from the literature 
and on the basis of possible sites and 
restrictions from the compound under study 

METEOR 
 
 

Lhasa, Ltd 
www.chem.leeds.ac.uk/luk/ 

meteor 

Prediction of the metabolic fate  
of a query chemical structure.  

A knowledge base of 
structure-metabolism rules 
together with a reasoning 
engine 

The only information needed is the molecular 
structure of the chemical 
The reasoning model takes into account the 
lipophilicity (log P estimate) and the most likely 
metabolites generated 

META Case Western Reserved 
University, Cleveland, OH, USA  

Predict the sites of potential 
enzymatic attack and the nature of 
the chemical formed by such 
metabolic transformations  
 
 

empirically based expert 
system 

Uses dictionaries of biotransformation 
operators. Biotransformations are based on 
recognition of key functional groups. Different 
biotransformations receive different priorities 

MultiCASE 
 
 
 

MultiCASE Inc. 
www.multicase.com 

Use databases for carcinogenicity, 
mutation, teratogenicity, 
biodegradation, endocrine disruption 

Knowledge-based systems 
 

Divides the molecule into various molecular 
fragments,  then creates organized dictionaries 
of these fragments and develops QSAR 
correlations to determine which fragments are 
relevant to model toxicity 

DEREK 
 
 
 

Lhasa, Ltd 
www.chem.leeds.ac.uk/luk/ 

derek 

Predicts genotoxicity, mutagenicity,  
carcinogenicity, skin sensitization. 
It highlights potential toxicological 
hazards covering a wide range of 
endpoints from irritancy to 
hepatotoxicity 

A knowledge base that 
contains alerts describing 
structure-toxicity 
relationships 

Uses structure-based alerts that define 
toxophores. Alerts cover a wide range of 
toxicological end points, including 
carcinogenicity, mutagenicity, and skin 
sensitization 

TOPKAT  
 
 
 
 

Accelrys 
www.accelrys.com 

Predicts toxicity endpoints based  
on chemical structure, including 
rodent carcinogenicity, Ames 
mutagenicity, rat oral LD50, rat 
chronic lowest-observable adverse 
effect level, developmental toxicity 
potential and skin sensitization  

Statistically based system 
that consists of a suite  
of QSAR models 
 
 

Robust and cross-validated QSAR models, 
based upon two-dimensional molecular, 
electronic and spatial descriptors, for assessing 
various measures of toxicity 

OncoLogic 
 
 

EPA's Office of Pollution 
Prevention and Toxics (OPPT) 

and LogiChem, Inc 
http://www.epa.gov/oppt/newc

hems/tools/oncologic.htm 

Predicts the carcinogenic potential  
of chemicals 
 
 

based on knowledge rules 
 

The program applies SAR analysis to predict 
the potential cancer-causing effects of a 
chemical and applies the knowledge gained 
from studies of how chemicals cause cancer in 
animals and humans 
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Table 1. Programs for in silico prediction of ADME-Tox properties 

Program Developer Purpose and Function Models used Instrumentation 

HazardExpert 
 
 

CompuDrug Chemistry Ltd 
www.compudrug.com 

Prediction of the compound's toxicity 
class: oncogenicity, mutagenicity, 
teratogenicity, membrane irritation, 
sensitivity, immunotoxicity, 
neurotoxicity. 
 

rule-based system 
 
 

An artificial neural network based approach 
using atomic fragmental descriptors. 
Predicts the toxicity of organic compounds 
based on toxic fragments.  

VirtualToxLab 
 

Biographics Laboratory 3R 
http://www.biograf.ch/index.ph
p?id=projects&subid=virtualtoxl

ab 

Provides access to a series of mQSAR 
models for the estimation of the toxic 
potential of chemical compounds 
towards selected human target 
receptors (e.g. AhR, AR, ERα/β, GR, 
PPARγ, TRα/β) and enzymes (e.g. 
CYP 3A4). 

multidimensional 
quantitative structure-activity 
relationship model 

mQSAR platform -featuring the Quasar and 
Raptor technologies- augmented by 
Yeti/AutoDock and Symposar for generating 
the pharmacophore hypotheses. The 
VirtualToxLab runs on Macintosh, Linux and 
Unix platforms. The interface has been written 
using the Java programming language to allow 
for an easy and platform-independent access. 

 
tion simulation is based on an advanced version [22]
of the compartmental absorption-transit model [102]
and provides estimates of the fraction of the dose ab-
sorbed. Permeability in each compartment is scaled
according to the pH of that compartment, the logP
and the pKa values of the drug. QMPRPlus must be
used for pure in silico predictions, which takes an
input file of multiple structures and generates esti-
mates for lipophilicity (logP), effective permeability,
apparent permeability, diffusivity, and water solu-
bility; the estimates of QMPRPlus are derived from
correlation models using a variety of data from human
and in vitro studies together with primary molecular
descriptors of chemical structures.

iDEA simulates human physiology and accounts
for regional variations in intestinal permeability, so-
lubility, surface area and fluid movement. The system
is based on the STELLA (Structural Thinking Expe-
rimental Learning Laboratory with Animation) simu-
lation software, a physiologically based absorption
model defining each intestinal segment as a separate
compartment. It is used for the description of fluid
movement in the gastrointestinal tract with a calcu-
lation of drug absorption in each intestinal segment
over time [103, 104]. The summation of the flux
calculations in each segment gives the total absorption
rate. The absorption model is coupled with a physio-
logical metabolism model, which provides estimates
for the rate and extent of first pass metabolism in
humans; the combined system allows the prediction
of bioavailability for a compound from in vitro data.

Distribution
Once a compound is absorbed, it must be distributed
in the body to reach its target. The distribution will
depend on the structural and physicochemical pro-
perties of the compound (Figure 2), Most drugs exhibit
a non-uniform distribution in the body with variations
that are largely determined by their ability to pass
through membranes and their lipid/water solubility.

The initial interaction of the compounds will be
with plasma proteins, these proteins exert a large
influence on the distribution process because drugs
can bind to a variety of them such as albumin (acidic
drugs), alpha1-acid glycoprotein (basic drugs) lipo-
proteins (neutral and basic drugs), erythrocytes and
alpha, beta, gamma-globulins [105]. Considering the
high concentration of albumin, the drug-free concen-

tration can be effectively reduced for drugs strongly
bound to plasma proteins, although the affinity of
drugs for plasma proteins is usually lower than for
the receptor or enzyme targets.

Drug-protein complexes in plasma also serve as
drug reservoirs. The effective concentration to be targe-
ted and the potential side effects influence the amount
of binding to plasma proteins that can still be tolerated
and how precisely this parameter has to be tuned for
a new drug entity [105]. Tissue distribution is an im-
portant determinant of the pharmacokinetic profile
of a drug; an its understanding may also help in pre-
dicting the pharmacodynamic effects of a drug in
specific tissues.

Drug distribution can be estimated using tissue:
plasma ratios or the volume of a steady state distri-
bution (Vss). There are several methods available to
predict tissue distribution using either tissue: plasma
ratios or the volume of distribution at a steady state
(Vss). All methods are based on the assumption that
there is a passive diffusion between tissue compart-
ments, even when for some drugs active influx or efflux
can play an important role in determining the volume
of distribution at a steady state (Vss).

The identification of the tissue: plasma partition
coefficients (Kp) needed for an initial prediction of
the volume of steady state distribution (Vss) of a drug
in humans was studied by Bjorkman [106]. There were
excellent linear correlations between Vss calculated
by means of only two Kp values and the originally
calculated Vss. Thus, the initial estimation of the Vss
of a new drug can normally be based on only two Kp
values, those of muscle and fat. The muscle Kp can be
used to represent all lean tissues, including the residual
“carcass”, and fat Kp can be used for the distribution
of basic drugs to the lungs.

Physiological information on tissue composition
(lipid/water/protein fraction), the blood composition
(lipid/water/protein) and the blood flowing into the
tissues are often used to develop a partitioning mo-
del. Poulin and co-workers [107, 108] developed tissue
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Poulin and Theil [109] illustrated physiologically based
pharmacokinetic models to estimate “a priori” the
overall plasma and tissue kinetic beha-vior under “in
vivo” conditions. Tissue distribution of two lipophilic
bases and one neutral, more hydrophi-lic, drug were
predicted by this approach. The results indicated that
most of the simulated concentration-time profiles of
plasma and 10 tissues were in reaso-nable agreement
with the corresponding experimental data determined
in vivo.

Such approaches have been evaluated in the phar-
maceutical industry and have been shown to be of
considerable value in early drug discovery for pre-
dicting Vss and tissue distribution predicting within
0.5-2.0-fold of the Vss value determined in vivo. This
could be improved by including additional conside-
rations for certain types of compounds [110].

Plasma protein binding is also taken into considera-
tion, [110] using three simple measurements to predict
the distribution volume of a new compound: human
plasma protein binding, experimental logD and pKa.
The method relies on a correlation derived between
the unbound fraction in tissues, calculated from the
human volume of distribution data and human plasma
protein binding using the Oie-Tozer equation [111],
and a composite of physicochemical properties. This
method is as accurate as other reported methods based
on animal pharmacokinetic data, using a similar set of
compounds, and ranges between 1.62 and 2.20 as
mean-fold error.

Another approach was developed to predict the
human serum albumin binding (logK(HSA)) of neu-
tral molecules using the set of 5 COSMO-RS sigma-
moments as descriptors [112]. This model was built
on a data set of 92 compounds and achieved an r2 of
0.67 and an rms error of 0.33 log units. The model was
validated by leave-one-out cross-validation tests,
which resulted in q2 = 0.63 and a qms error of 0.35 for
the logK(HSA) model.

The QSAR derived from the analysis of the rela-
tionship between physicochemical data/properties/
structures and experimental data on Vss or tissue:
plasma ratios from in vivo studies with specific groups
of compounds has been used in Vss predictions. A
QSAR tool was developed to predict human and rat Vss
and used three different statistical methodologies: Ba-
yesian neural networks, classification and regression
trees, and partial least squares [113]. Results indicated
that human and rat models could be very useful in the
early stages of the drug discovery process.

QSPR techniques for the prediction of volume of
distribution have also been used [114]. Structural
descriptors consisted of partitioning, quantum mecha-
nics, molecular mechanics, and connectivity parame-
ters and genetic algorithm or step-wise regression
analyses were used in the selection of the variable and
model development, validating the models by a leave-
many-out procedure. QSPR analyses resulted in a
number of significant models for acidic and alkaline
drugs separately, and for all drugs; although separate
QSPR models for acidic and alkaline drugs resulted in
lower prediction errors than models for all drugs, an
external validation study showed a limited applica-
bility for the equation obtained for acidic drugs.

Blood-brain barrier penetration
The blood-brain barrier (BBB) is an important element
in the regulation of the internal environment of the
brain. Drugs  that act in the CNS need to cross the
BBB, in contrast, drugs with a peripheral target may
not cross the BBB to avoid CNS side effects.

Tight junctions between endothelial cells as well as
the lack of an aqueous pathway between cells restrict
the movement of polar molecules across the cerebral
endothelium [115]. In addition to specific transport
mechanisms (P-glycoprotein or receptor-mediated
transport, peptide transporters, and other transport
systems such as GLUT-1, system L1, and system ASC)
passive diffusion is one of the most important ways
to penetrate the barrier.

‘Rule-of-five’-like recommendations regarding
the molecular parameters that contribute to the abili-
ty of molecules to cross the BBB have been made to
aid BBB-penetration predictions [61]; for example,
molecules with molecular mass of < 450 Da or with
PSA < 100 A2 are considered more likely to penetrate
the BBB.

Early predictions logBB (logarithm value of brain
to plasma concentration ratio) involved classical QSAR
approaches using various physicochemical parameters
such as the octanol-water partition coefficient (logP)
[116], molecular size descriptors [117, 118] and solva-
tion parameters [119, 120]. A combination of mole-
cular descriptors was used to predict log BB using
lipophilicity, polarity, polarizability, and hydrogen-
bonding parameters and partial least-squares statis-
tics [121], and it was demonstrated that topological
and constitutional descriptors used in partial least-
squares correlate well with experimental logBB data
[122]. Although the QSPR methodology was found
to be useful in the accurate prediction of logBB data
for a relatively small set of compounds, other methods
combined QSPR and PSA with molecular volumes
to yield a function used to calculate logBB giving an
acceptable accuracy [57].

Abraham and co-workers [119, 120] developed two
successful linear models. The descriptors they used
include logP, excess molar refraction, dipolarity/
polarizability, hydrogen bonding acidity, hydrogen-
bonding alkalinity, and McGowan molecular volume.
A potential problem in their models is that the descrip-
tors are not easy to calculate for structurally diverse
drug candidates. Afterwards, more studies were pu-
blished [28, 59, 121-125] using molecular descriptors
that are easier to calculate such as molecular volume,
surface area, shape, topological indices, logP, etc. Most
of these studies use some conformationdependent and/
or experimentally determined descriptors and therefore
do not conform to the desirable features stated above.

There is a model using PSA as the only descriptor
[59], calculating the PSAd from all low-energy confor-
mations of a particular compound. The results showed
an excellent correlation with the experimental logBB
data [59], for the protocol, however, it includes an ex-
tensive conformational analysis for each molecule,
which clearly prevents its application in a virtual high-
throughput screening. A similar model was also deve-
loped by Clark [28], but these models cannot distin-
guish the difference in BBB penetration of hydrocarbon
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compounds, because by definition PSA is the molecular
surface area contributed by nitrogen and oxygen atoms
only. In an effort to account for hydrophobic contri-
butions, Clark introduced logP as an additional des-
criptor [28], demonstrating that static PSA combined
with ClogP [20, 21] is a good estimate of logBB.

Efforts have been made in seeking a better hydro-
phobicity descriptor for drug transport properties.
Based on the consideration that to be transported
across the lipid bilayer, a molecule must pass through
the outer hydrated polar part of the bilayer as well as
through the much more hydrophobic membrane inside,
one would naturally think that an ideal parameter
should be similar or related to logP. Young et al.
investigated the performance of the logPcyclohexane-water

partition coefficient and found that the difference
(ΔlogP) between logPoct and logPcyclohexane-water correlates
better with the logBB of 20 histamine H2 receptor
antagonists [126], and other authors found that the
brain permeability of a series of structurally diverse
histamine H1 receptor antagonists was better explained
by logDoct than by ΔlogP [127].

Combinations of molecular descriptors such as
lipophilicity, polar and hydrophobic surface areas,
structural parameters and net charge at physiologi-
cal pH, have been used for the prediction of passive
membrane transport. Computational PLS regression
models using these descriptors were developed to
predict CNS penetration of drug-like organic molecules
[128]. For modeling, a dataset of 77 structurally diver-
se compounds was used with reported steady-state
rat brain to plasma ratios (BPR). Information on
steady-state cerebrospinal fluid distribution (CSF to
plasma ratio or CSFPR) was available for 37 of these
compounds. They were CNS active and were therefore
assumed to penetrate the blood-brain barrier and/or
the blood-fluid barrier. Using these PLS models, the
dataset could be described accurately (r(2) = 0.78,
StErrorEst = 0.30 and r(2) = 0.75, StErrorEst = 0.28
for BPR and CSFPR, respectively). The present mo-
dels provide a cost-effective and efficient strategy to
guide synthetic efforts in medicinal chemistry at an
early stage of the drug discovery and development
process.

A model for the prediction of blood-brain parti-
tioning (logBB) was developed using the set of 5
COSMO-RS sigma-moments as descriptors [112].
Sigma-moments were obtained from quantum chemical
calculations using the continuum solvation model
COSMO and a subsequent statistical decomposition
of the resulting polarization charge densities. The
model for blood-brain partitioning was built on a data
set of 103 compounds and yielded a correlation
coefficient of r2 = 0.71 and an rms error of 0.40 log
units. The model was validated by leave-one-out cross-
validation tests, which resulted in q2 = 0.68 and a qms
error of 0.42 for the logBB model.

The methodology for predicting the distribution
of compounds between Blood and Brain, i.e. their
brain/blood partition coefficients (logBB values), was
stu-died using a non-linear regression analysis by
Zhang and co-workers [129]. The equations were
established on the basis of the different states (neutral,
cationic and anionic) of the compounds distributing
into the three main brain components (lipid, protein

and water). The equations bear strong fitting and
predictive power for the distribution of compounds
(total set: n = 160, r  = 0.906, s = 0.326; training
set: n = 139, r = 0.908, s = 0.320; testing set: n = 21,
r = 0.903, s = 0.297), and can describe the distribution
of the different states of the compounds in the three
components of the brain. The compounds in the
dataset contained many different types, such as drug
molecules, small structure-simple molecules, car-
boxylic acids and also alkaloids. Therefore the equa-
tions were very useful and instructional for the
prediction of the compound distribution into the brain
and blood.

On the basis of the thermodynamic condition of
the passive transport across membranes, Keseru and
Molnar demonstrated that brain penetration of mo-
lecules can be described as a function of solvation free
energy [130]. The equation derived from 55 molecu-
les showed a good predictive ability. Rapid calculation
of Gsolv by the generalized Bohr surface area (GB/
SA) continuum solvation model enabled us to develop
a virtual screening tool on the high-throughput scale.
Comparing the predictive power of Richter’s GSOLV
to methods in the literature, they concluded that their
approach outperforms other log BB prediction tools,
calculating log BB faster than 6 s/molecule.

Metabolism
The metabolic fate of a compound depends on a large
number of variables related to both the chemical itself
(chemical structure, physicochemical properties, etc.)
and the biological system (enzyme and its environ-
ment) [131] (Figure 2). A drug that is rapidly me-
tabolized will require multiple daily dosing or con-
tinuous infusion to maintain an adequate therapeutic
plasma level. Likewise, a highly stable drug, not readily
metabolized and eliminated, could have a prolonged
half-life, which might influence its safety.

A typical drug metabolism pathway is the oxidation
of the drug (phase I oxidation), followed by conjugation
of the oxidized moiety with highly polar molecules,
such as glucose, sulfate, methionine, cysteine or glu-
tathione (phase II conjugation).

The key enzymes for phase I oxidation are the
isoforms of the cytochrome P450 (CYP) family. The
major human CYP isoforms involved in drug meta-
bolism are CYP1A2, CYP2A6, CYP2C9, CYP2C19,
CYP2D6, CYP2E1 and CYP3A4, of which CYP3A4,
CYP2C9, CYP2C19 and CYP2D6 are responsible
for approximately 80% of the known oxidative drug
metabolism reactions [132]. The key phase II enzymes
include UDP-dependent glucuronosyl transferase
(UGT), phenol sulfotranferase (PST), estrogen sul-
fotransferase (EST), and glutathione-S-transferase
(GST). These enzymes also exist as multiple isoforms.

Several aspects of metabolic behavior such as bio-
transformation, binding to enzymes, and catalytic
reaction, may be predicted in silico [133, 134] and
several methods have been developed mostly based
on the knowledge of the structure and mechanism
of the enzymes (protein structure; 3D-structure and
accessibility of the binding site; catalytic activity;
mechanisms; specificity and regioselectivity), or ba-
sed on the physicochemical properties of the com-
pound (molecular sites sensitive to oxidation or
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conjugation, structure of the chemical, molecular
surface properties, electronic structure, quantum
mechanics properties, etc).

Due to the importance of cytochrome P450 in drug
metabolism many models have been developed to
predict both substrates and inhibitors. 3D models of
cytochrome P450 using the x-ray structure of bacterial
cytochromes P450 as templates, were developed
[135]. By docking some substrates into the active site
of their metabolizing enzymes it was found that sub-
strates binding into the active site of isoform CYP2D6
are mainly favored by hydrogen bonding and elec-
trostatic interactions between the substrate and two
residues of the enzyme, in contrast, van der Waals
attraction interactions mainly contribute to stabilize
the complex involving both CYP1A2 and CYP3A4.
The use of several molecular and intermolecular-
interaction descriptors has also been proposed, for
translating the qualitative structural information of
substrate/cytochrome interaction models into semi-
quantitative models of substrate specificity.

Pharmacophore models have been developed to
assess the effects of 14 inhibitors on 7-benzyloxy-4-
trifluoromethylcoumarin (BFC) metabolism by recom-
binant CYP3A4, CYP3A5 and CPY3A7, on directly
comparing potential structural features and positio-
ning differences for each enzyme. The CYP3A4 phar-
macophore was characterized by the wide distance
(14.3 A) between the furthest aromatic ring (hydropho-
bic) feature and the hydrogen-bond acceptor, whereas
CYP3A5 and CYP3A7 contained the hydrogen-bond
acceptor feature and a compact arrangement of three
hydrophobic features. This could indicate that com-
pounds that inhibit the metabolism of BFC by CYP3A4
are likely to have key hydrophobic interactions further
away from the hydrogen-bond acceptor than in those
molecules that inhibit CYP3A5 and CYP3A7 [136].

Inhibition of cytochrome P450 enzymes is unwanted
because of the risk of severe side effects due to drug-
drug interactions. Burton and co-workers explored the
use of detailed biological data combined with a statis-
tical learning method for predicting the CYP1A2 and
CYP2D6 inhibition [137]. Data were extracted from
the Aureus-Pharma highly structured databases which
contain accurate measures and detailed experimental
protocol concerning the inhibition of the two cytochro-
mes. The methodology used was Recursive Partitioning.
Models structuring was preceded by the evaluation of
the chemical space covered by the datasets. The des-
criptors used are available in the MOE software suite.
CYP2D6 datasets provided 11 models with an accuracy
of over 80%, while CYP1A2 datasets had 5 high-
accuracy models. Theses models can be useful to predict
the ADME properties during the drug discovery pro-
cess and are recomended for high-throughput screening.

Two in silico Gaussian kernel weighted k-nearest
neighbor models based on extended connectivity fin-
gerprints that classify CYP2D6 and CYP3A4 inhibi-
tion were developed by Jensen and co-workers [138].
Data used for modeling consisted of diverse sets of
1153 and 1382 drug candidates tested for CYP2D6
and CYP3A4 inhibition in human liver microsomes.
For CYP2D6, 82% of the classified test set compounds
was predicted for the correct class. For CYP3A4, 88%
of the classified compounds were correctly classi-

fied. CYP2D6 and CYP3A4 inhibition were addi-
tionally classified for an external test set on 14 drugs,
and multidimensional scaling plots showed that the
drugs in the external test set were in the periphery of
the training sets. Furthermore, fragment analysis we-
re performed and structural fragments frequent in
CYP2D6 and CYP3A4 inhibitors and non-inhibitors
were found.

The software Catalyst has often been used for phar-
macophore modeling drug metabolizing enzymes such
as CYP2B6 [139], CYP2C9 [140], CYP2D6 [141], and
CYP3A4 [142], and transporters such as P-glyco-
protein [99, 143] and organic cation transporter [144].
CoMFA models have also been used for the mode-
ling of inhibitors for enzymes like: CYP1A2 [145],
CYP2A5 [146], CYP2A6 [146, 147], CYP2C9 [41,
148], CYP2D6 [149] and rat MAO A and b [150, 151].

In the case of phase II metabolism, only two X-ray
crystal structures of UGT are recently available in the
Protein Data Bank, UGT71G1 alone and in a complex
with UDP-glucose [152].

Prior to the crystal structures, some in silico models
were developed focused on the structures of UGT
substrates, one of the first models of substrates for
UGT were pharmacophore models of UGT1A1 [153]
and UGT1A4 [154]. Common pharmacophore models
demonstrated the importance of two hydrophobic
domains separated from the glucuronidation site by 4
A and 7 A, respectively. The UGT1A1 and UGT1A4
models demonstrated useful predictive capability.
However, difficulty in generating sufficient high-
quality data, atypical glucuronidation kinetics, and
possible multiple binding orientations of substra-
tes within the UGT active site currently limit this
approach [155].

Computer systems to predict xenobiotic metabo-
lism are commercially available (Table 1). These soft-
wares mainly predict phase I metabolism, although
some of them also predict phase II reactions. COM-
PACT (Computer-Optimized Molecular Parametric
Analysis of Chemical Toxicity) [156, 157] has modules
that assess the ability of xenobiotics to form enzyme-
substrate complexes and undergo metabolic activation
by the CYP1A and CYP2E subfamilies of cytochromes
P450. The COMPACT model uses sterical and
electronic parameters. Improved criteria for CYP1A
and CYP2E1 substrate specificity have recently been
reported [158].

Camitro’s metabolism models are based on a novel,
combined empirical and quantum chemical approach
to predict enzyme-substrate binding affinities, meta-
bolic sites, and relative rates of metabolism at discre-
te sites within a molecule. The model is based on the
evaluation of the energy necessary to attract a hydrogen
atom from different groups, facilitating, for example,
the calculation of aromatic oxidation or S-oxidation
[39]. The main focus of the models are on the three
major cytochrome P450 enzymes: CYP3A4, CYP2D6,
and CYP2C9, which mediate over 90% of human drug
metabolism, having other modules for absorption,
based on a diffusion model, and blood-brain barrier
partition based on the partition coefficient.

META [159, 160] is an expert system that can pre-
dict the sites of potential enzymatic attack and the
nature of the chemicals formed by such metabolic
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transformations. The program uses dictionaries of bio-
transformation operators created by experts in the
field of xenobiotic metabolism to represent known
metabolic pathways [159]. Activation of a biotransfor-
mation operator within the program is based on the
recognition of key functional groups within the com-
plete chemical structure [160]. The program evaluates
stable metabolites and transform them further build
up a complete metabolic tree. Processing continues in
this way until the program is able to generate water
soluble metabolites that are to be excreted.

MetabolExpert predicts the metabolism of exoge-
nous compounds in plants and mammals. The system
is composed of biotransformation databases, a know-
ledge-base and prediction tools [161]. The transforma-
tion knowledge-base is based on ‘if/then’ type rules
derived from the literature and the users can modify
or delete a given rule. Each biotransformation rule
includes four components: the substructure changed
during the transformation, the new substructure formed
during the transformation, a list of substructures at
least one of which must be present in the molecule for
the biotransformation to occur and a list of substruc-
tures whose presence prevents the transformation
from occurring. There are two types of predictions in
MetabolExpert. In the first, the system tries to match
basic biotransformations to the compound structure.
The second type of analysis is an extended prediction
model in which metabolites generated from basic
transformations are compared to transformations in
‘learned’ trees.

METEOR [162], developed by LHASA is a com-
puter system which uses a knowledge-base of
structure-metabolism rules (biotransformations)
to predict the metabolic fate of a query chemical
structure [161]. The reasoning engine in METEOR
takes into account the knowledge of chemical reac-
tion mechanisms, lipophilicity, competition between
possible reactions, etc. METEOR’s biotransformation
rules are generic reaction descriptors rather than sim-
ple entries in a reaction database. The users can build
their own biotransformation and rules. The system
uses a rich internal structure representation language
[163], so the expression of specific functional group
transformations can be made context-sensitive. The
only information needed by the program to make the
prediction is the molecular structure of the compounds.
The system can compare potentially competing bio-
transformations [163] and the user can choose to ana-
lyze queries at a number of available search levels.
METEOR and MetabolExpert are considered easy
to use, give rapid answers and are linked to a toxicity
prediction system [164]. They enable the interaction
of the user in the generation of the metabolic tree,
namely to distinguish between phase I and phase II
reactions. These programs and their combinations
usually predict many more metabolites than those
observed experimentally; nevertheless some meta-
bolites observed in vivo are not correctly predicted.

Excretion
Drugs are eliminated from the body by metabolism
and excretion. The most common routes of elimina-
tion are renal and / or bile excretion. The kidney is the
major contributor to drug excretion and also to the

excretion of certain metabolites. Large molecules and
many drugs conjugated with glucuronic acid are ge-
nerally excreted in the bile. Drugs eliminated in the
bile are available for re-absorption in the gastrointes-
tinal tract. This re-absorption after their ‘elimination’
through the bile results in the ‘recycling’ of drugs and
prolongs the time required for the drug to be irrever-
sibly eliminated.

The kidney has developed high capacity transport
systems to rapidly eliminate the large amounts of
foreign compounds delivered to it. Even drugs that are
‘eliminated’ only by hepatic metabolism often depend
on renal excretion for the ultimate elimination of the
xenobiotic from the body. Filtration through the glo-
merular membranes is the main mechanism for drug
and metabolite excretion into the urine. However, some
drugs are excreted by active transport mechanisms
serving as substrates for tubular or biliary epithelial
transporters. In recent years, much study has been
focused on understanding the cellular and molecular
basis of drug transport systems responsible for this
elimination [165, 166]. Active transport systems such
as organic anion transporting polypeptides, peptide
transporters, organic anion transporters and organic
cation transporters can also carry compounds and/or
their metabolites across the basolateral surface of renal
or hepatic membranes, resulting in drug elimination
[165]. Organic anion transporters can also bring drugs
from the blood into the renal tubular cells and organic
cation transporters transfer the drug from inside the
cells into the tubular lumen [166]. Other families of
transporters, such as: P-gp, BCRP and MDR, mediate
the efflux across apical surfaces resulting in secretion
and elimination.

There has been very little work on the in silico
modeling or prediction of excretion [164]. Passive
excretion can theoretically be predicted using some
of the approaches for the prediction of tissue dis-
tribution, since it is determined by similar physico-
chemical and physiological properties (blood flow,
protein binding, lipophilicity, pKa ), possibly with
different limits, e.g. glomerular filtration and molecular
weight. However, in practice metabolic stability in
vitro / in vivo and initial animal pharmacokinetic stu-
dies would give the first indications on the potential
significance of the renal excretion route [164]. In sili-
co modeling of the P-gp substrates and inhibitor can
be used to predict excretion because it acts as an
effluent pump from inside the renal cell into the
collecting duct [166].

Toxicity
Drug toxicity is a property of paramount importance.
A desirable drug would have a high therapeutic index;
being the plasma level required for exerting a toxic
effect, significantly higher than that required for the-
rapeutic efficacy. Human toxicity continues to occur
in clinical trials of drug candidates that are apparen-
tly found to be safe during preclinical trials.

There are also indications that some substructures
found in drugs can form reactive metabolites involved
in toxicity. These substructures include arylacetic and
arylpropionic acids, aryl hydroxamic acids, oximes,
anilines, anilides, hydrazines, hydrazides, hydantoins,
quinones, quinone methides, nitroaromatics, hetero-
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aromatics, halogenated hydrocarbon, some halogenated
aromatics, which are chemical groups that can be
oxidized to acroleins, and medium-chain fatty acids
[167].

Toxicity prediction is a wearisome task; it could be
species-specific, organ-specific (Figure 2), and could
involve multiple host factors and chronic dosing re-
gimes, all of which cannot be adequately modeled
experimentally. Hepatotoxicity is a major manifes-
tation of drug toxicity, and it is known that toxicity
can be influenced by drug metabolism, therefore
screening for toxicity using intact hepatocytes is an
approach being adopted in many drug discovery and
development laboratories.

The human Ether-a-go-go Related Gene (hERG)
potassium channel blockage has become a growing
concern for both regulatory agencies and pharma-
ceutical industries who invest substantial effort in the
assessment of the cardiac toxicity of drugs. In silico
tools to filter out potential hERG channel inhibitors
at early stages of the drug discovery process have
considerable potential for saving time and money, since
patch-clamp measurements are very expensive and
no crystal structures of the hERG-encoded channel
are available.

A predictive QSAR model for hERG blockade was
developed by Kramer and co-workers [168]. This
model differentiates the specific and nonspecific
binding. Specific binders are identified by preliminary
pharmacophore scanning. In addition to descriptor-
based models for the compounds selected as hitting
one of two different pharmacophores, they also use a
model for nonspecific binding that reproduces blocking
properties of molecules that do not fit into either of
the two pharmacophores. PLS and SVR (Support
Vector Regression) models based on interpretable
quantum mechanics derived descriptors on a literature
dataset of 113 molecules reach overall R(2) values of
between 0.60 and 0.70 for independent validation sets
and R(2) values of between 0.39 and 0.76 after
partitioning according to the pharmacophore search
for the test sets. These findings suggest that hERG
blockade may occur through different types of binding,
so that several different models may be necessary to
assess hERG toxicity [168].

Li and co-workers developed binary classification
models based on a large and diverse library of 495
compounds. The models combine pharmacophore-
based GRIND descriptors with a support vector
machine (SVM) classifier in order to discriminate
between hERG blockers and non-blockers [169]. The
models were applied at different thresholds from 1 to
40 microns. The model at a 40 micron threshold
showed the best performance and was validated
internally (Matthew’s coefficient correlation of 0.40
and F-measure of 0.57 for blockers and 0.81 for non-
blockers, using a leave-one-out cross-validation). On
an external set of 66 compounds, 72% was correctly
predicted (F-measure of 0.86 and 0.34 for blockers
and non-blockers, respectively). The model was also
tested on a large set of hERG bioassay data recently
made publicly available on PubChem (http://pub
chem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=376) to
achieve an accuracy of about 73% (F-measure of 0.30
and 0.83 for blockers and non-blockers, respectively).

Even if there is still some limitation in the assessment
of the hERG blockers, the performance of this model
shows an improvement of between 10% and 20% in
the prediction of blockers compared to other methods,
which can be useful in screening potential hERG
channel inhibitors.

Some of available expert systems for toxicity pre-
diction are VirtualToxLab, OncoLogic, MultiCASE,
TOPKAT, DEREK for Windows and HazardExpert
(Table 1).

VirtualToxLab includes a 6D-QSAR concept and
validated a series of 10 virtual test kits based on the
aryl hydrocarbon, estrogen alpha/beta, androgen,
thyroid alpha/beta, glucocorticoid and peroxisome
proliferator-activated receptor gamma as well as on
the enzymes CYP3A4 and CYP2A13, respectively
[170, 171]. The test kits are based on the three-di-
mensional structure of their target protein (i.e. ER
(alpha/beta), AR, TR(alpha/beta), CYP450) or a
surrogate thereof (AhR) and were trained using a
representative selection of 362 substances [170]. The
test kits were trained using a representative selection
of 628 substances and validated with 194 compounds
different therefrom. The surrogates have been tested
against a total of 798 compounds and are able to pre-
dict a binding affinity close to experimental uncertain-
ty, with only six of the 188 test compounds calculated
having more than a factor of 10 off the experimental
binding affinity and a maximal individual deviation that
does not exceed a factor of 15. These results suggest
that this approach is suited for the in silico identification
of adverse effects triggered by drugs and environmental
chemicals. An Internet Portal to the VirtualToxLab was
also developed to provide easy access to this technolo-
gy [171]. Upon uploading the 3D coordinates of one
or more compounds of interest, the compounds will
be automatically processed and tested against the se-
lected virtual test kits by means of consensus scoring.
The user can interactively monitor the simulation
process and have access to all results.

The OncoLogic Cancer Expert System was deve-
loped under a cooperative agreement between EPA’s
Office of Pollution Prevention and Toxics (OPPT) and
LogiChem Inc. OncoLogic can analyze a chemical
structure to determine the likelihood that it may cause
cancer; this is done by applying rules of structure
activity relationship (SAR) analysis and incorporating
certain knowledge of chemicals that could cause cancer
in animals and humans. This program is being released
by EPA at no cost and runs on a Windows PC.

The MultiCASE (multiple computer automated
structure evaluation) [172-174] approach evaluates a
data set by trying to identify the structural features
responsible for the activity (biophores). It then creates
organized dictionaries of these biophores and deve-
lops QSAR correlations that can be used to predict
the activity of unknown molecules. A new molecule
will be evaluated against the dictionary and the
appropriate QSARs it has created and, based on the
results, it gives a prediction for the projected activity
of the molecule in the corresponding test.

The TOPKAT (Toxicity Prediction by Komputer
Assisted Technology) [175, 176] system predicts to-
xicity endpoints based on chemical structure, inclu-
ding rodent carcinogenicity, Ames mutagenicity, rat
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oral LD50, rat chronic lowest-observable adverse
effect level, developmental toxicity potential and skin
sensitization. These predictions are achieved through
sets of biostatistic expressions derived from well-
characterized databases. The QSAR model uses two-
dimensional molecular, electronic and spatial descrip-
tors. Toxicity models can be used with large 100,000-
plus data sets for virtual high-throughput screening
and library design, helping to identify toxicity pro-
blems at the identification and optimization stages of
the drug development process.

Deductive Estimation of Risk from Existing Know-
ledge for Windows (DEREK for Windows) [162, 177,
178] provides a qualitative assessment of toxicity
potential using structure-based alerts that define
toxophores. The program applies structure-activity
relationships ((Q)SARs) and other expert knowled-
ge rules, with an emphasis on the understanding of
mechanisms of toxicity and metabolism, to derive a
reasoned conclusion about the potential toxicity of
the query chemical. The system is able to perceive
chemical sub-structures within molecules and relate
these to a rule-base linking the sub-structures with
likely types of toxicity.

HazardExpert is a toxicity prediction system ba-
sed on the structure of the compounds and predicts
different effects such as: carcinogenic, mutagenic,
teratogenic, and neurotoxic. HazardExpert gives to-
xicokinetic and toxicodynamic investigation of the

whole molecule by calculating its molecular weight,
pKa and logP values. The bioavailability of the
compounds can also be considered by a simple but
powerful model. In some cases, the drug’s metabolites
are responsible for the toxic effect. To predict the
toxicity of both the parent compound and the meta-
bolites, some toxicity prediction programs can be
linked with metabolism by a metabolism prediction
program. For example, DEREK can be linked with
METEOR, and Hazard Expert has been used together
with the COMPACT system for evaluating human
carcinogenicity data [179].

Conclusions
It is clear from the literature that there is neither a
general methodology nor a trend for the computer
prediction of ADME-Tox properties. A number of pro-
grams are available and can be used for the estimation
of several physicochemical properties and many of
them have been around for many years. Methods and
algorithms based on very specific molecular descriptors
are now being developed. In general the main limitation
for the development of new methods and for the usage
of the more general available programs is still the lack
of enough chemical, physicochemical and biochemical
data for a thorough statistical assessment of the quality
of the models, making the examples of a successful
application of the ADME-Tox models, exceptional and
very elaborated.
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