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ABSTRACT
X-ray crystallography is the most powerful technique to determine the three-dimensional structure of proteins.
Several steps are required to solve the structure of proteins including cloning and expression of the gene, protein
purification, crystallization, X-rays diffraction, data collection and structure determination. The vast amount of data
generated by genomic studies has accelerated the development of new methodologies to increase the number of
three-dimensional structures solved. This review focuses on recent advances in the field of protein crystallography,
highlighting the high-throughput crystallization technologies.
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RESUMEN
La cristalografía en la era post-genómica. La cristalografía de rayos X es la técnica más poderosa para la
determinación de la estructura tridimensional de proteínas. Se requieren varios pasos para resolver la estructura de
las proteínas, incluyendo el clonaje y la expresión génica, purificación de la proteína, cristalización, difracción de
rayos X, colección de los datos y determinación de la estructura. La gran mayoría de los datos generados por
estudios genómicos han acelerado el desarrollo de nuevas metodologías para incrementar el número de estructuras
tridimensionales resueltas. En esta revisión se abordan los avances recientes en el campo de la cristalografía de
proteínas, resaltando las tecnologías de cristalización con alta capacidad de procesamiento.
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Introduction
The post-genomic era offers the potential to identify
genetic disorders in a host and to design therapies to
treat them. Genes encode proteins that can be targets
for drugs. The function of these proteins is determined
by their three-dimensional (3D) structure. Protein
structural information can aid in the development
of novel drugs, vaccines and diagnostics. Nowadays,
the most powerful technique to determine protein
structure is X-ray crystallography, which is totally
dependent on the need for highly ordered crystals.
Obtaining such crystals is the rate-limiting step to
structure determination and the current pressure to
produce crystals is greater than ever.

There are five broad areas in the field of macro-
molecular crystallization where significant advances
have occurred: (1) Physical studies and characte-
rization of the crystallization process; (2) Develop-
ment of new practical approaches and procedures;
(3) The use of genetic engineering to improve protein
purification and crystallization; (4) The creation of
new screening conditions based on information and
databases emerging from structural genomics; and (5)
Development and implementation of automation, ro-
botics, and mass screening of crystallization condi-
tions using very small amounts of protein. This review
focuses on recent advances in high throughput protein
crystallization technologies.

The state of the art in protein
crystallization
Obtaining atomic resolution 3D structures from pro-
tein crystals involves subsequent steps including
cloning, protein expression, protein purification, qua-

lity assessment, crystallization, X-ray diffraction, data
collection and structure determination.

The major obstacle to elucidate the 3D structure of
a protein is its crystallization and can be divided into
two steps: coarse screening to identify initial crys-
tallization conditions, followed by optimization of
these conditions to produce single diffraction-quality
crystals. Nowadays, there are no systematic methods
to ensure that ordered 3D crystals will be obtained
[1, 2]. Table 1 shows that 24.8% of the cloned proteins
have been purified, 9.1% crystallized and the crystal
structure was solved for only 3.6% of them (http://
targetdb.pdb.org/statistics/TargetStatistics.html).
These data highlight that even when proteins can be
cloned, expressed, solubilized, purified and crysta-
llization trials do yield some crystals, this does not
guarantee that the crystals will be good enough for

Table 1. Total number of proteins deposited by SG Centers in TargetDB 

Status Total number of proteins (%) Relative to "cloned" proteins 

Cloned 111306 100.0 

Expressed 74670 67.1 

Soluble 30922 27.8 

Purified 27597 24.8 

Crystallized 10143 9.1 

Diffraction-quality Crystals 4780 4.6 

Diffraction 5091 4.0 

Crystal Structure 3954 3.6 

In PDB 5413 4.9 

 

1. Manjasetty BA, Turnbull AP, Panjikar S,
Bussow K and Chance MR. Automated
technologies and novel techniques to
accelerate protein crystallography for
structural genomics. Proteomics (2008);8:
612-25.

2. Chayen NE. Optimization techniques
for automation and high throughput.
Methods Mol Biol (2007);363:175-90.
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structure determination [3]. A summary of the number
of protein structures solved over the years is shown
in figure 1 (http://www.rcsb.org/pdb/statistics/content
GrowthChart.do?content=molType-protein&
seqid=100). A big explosion achieved from the nineties
can be observed.

Cloning, expression and purification
of proteins for macromolecular
crystallography
The application of several genetic approaches in
protein purification processes have influenced in the
growth of the obtained macromolecular crystals. A
survey of crystallographic studies (excluding
membrane proteins) indicates that over 90% of crystal
structures are based on recombinant material [4, 5].
Bacteria, particularly E. coli, are preferred as protein
producers for biophysical studies [6]. The use of
recombinant proteins implies several advantages
compared to purification from natural sources, such
as: 1) the possibility to change the amino acid sequence;
2) the addition of tags or the fusion to other proteins
for affinity purification; 3) the synthesis of isolated
domains; 4) the easiness of labeling with Selene-
methionine for phasing purposes and 5) the availability
of higher amount of proteins.

Approximately 75% of the proteins used for crys-
tallization studies are expressed as fusion constructs
[7], using a number of small proteins and tags for
affinity purification as well as for improving solubility.
A wide range of systems for protein expression in
different hosts is available. The fusion partners such
as the hexaHis tag [8, 9], glutathione-S-transferase
(GST) [10], and maltose-binding protein (MBP) [11]
are particularly popular among structural biologists.
Some of the less commonly used include thioredoxin
[12], Z-domain from protein A [13], NusA [14] GB1-
domain from protein G [15, 16]. None of the tags is
universally superior, and often only parallel expression
experiments can determine which the best strategy is.
Families of vectors allowing for parallel assays of this
kind have been developed [17-20].

Many proteins contain highly flexible or even
completely unfolded fragments that dramatically
interfere with crystallization. This is particularly true
for large multidomain signaling proteins, in which the
unstructured linker regions often account for more
than 50% of the molecule. This can be accomplished
in three ways: elimination of flexible N- and/or C-
terminal polypeptides, removal of internal flexible
W-loops, or extraction of individual domains from a
multidomain protein. Truncations and deletions
constitute the most frequently used protein engineering
tool [21], with numerous examples of this approach
available in the literature [4].

Protein heterogeneity and its propensity to aggre-
gate are among the reasons why purified proteins
do not crystallize or crystallize poorly. Even in cases
where the protein sequence is homogeneous, mixed
populations of proteins may coexist due to their inhe-
rent flexibility, different folding states and stability.
Since proteins are not rigid bodies, a protein molecu-
le can display different shapes and, in consequence,
assemble poorly in a crystalline lattice. The hetero-
geneity in the amino acid sequence renders molecules

of different size and shape. So, the protein of interest
is contaminated with variants of itself or with other
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types of proteins or foreign materials that may hinder
crystal nucleation or growth [22].

Once a biologically active recombinant protein is
eluted from the last chromatography step, it can suffer
from denaturation, proteolysis, oxidation or other de-
caying processes, leading to lose of biological activity
or structure. A protein molecule changes constantly
while samples are waiting for crystallization setups
or kept in storage. Therefore, no single protein crysta-
llization trial will be exactly alike. Common treatments
against conformational and chemical heterogeneity
consist of mixing inhibitors and adding reducing agents
to protein samples, changing expression systems and
altering pH, temperatures or salt concentrations [23].
However, these actions would require an individual
case consideration and, in consequence, are impractical
in high-throughput formats [22].

Poor solubility of the protein is another common
problem in crystallization experiments. Even if the
protein is expressed predominantly in the soluble
fraction, particularly if it is expressed as a fusion
protein, it may precipitate at concentrations required
for crystallization after its cleavage from the carrier
protein. Solubility is a function of surface hydro-
phobicity [24, 25] and can be advantageously altered
by mutational modification of selected surface re-
sidues. Provided that the protein is stable and pro-
perly folded, an alternative and rarely used approach
is to introduce a solubilizing motif [26-28]. Preparing
a protein for crystallization experiments necessarily
includes a previous step of high-speed centrifugation
or filtration to remove and minimize insoluble protein
species that may lead to heterogeneity and aggregation.

Protein expression, solubility and purification proce-
dures may be completely automated. Several biotech-
nology companies have developed integrated solutions
for large scale recombinant protein purification. Syrrx
(San Diego, CA, USA) employs a system that purifies
sufficient protein for crystallization, combining robotic
centrifugation and sonication with a parallel column
chromatography system capable of purifying 96-192
proteins per day [29]. In this system, other steps, in-
cluding desalting and concentration, are carried out
offline before the samples are ready for crystallization.
Affinium Pharmaceuticals (Toronto, Canada) developed
the ProteoMax system to process cell extracts, purify
and concentrate protein samples suitable for analy-
sis. This system clarifies the cell lysate, performs the
column chromatography, desalts and concentrates the
purified material. In optimal cases, the protein is ready
for structural studies after these steps. By obviating
centrifugation, and integrating all steps into an au-
tomated system, ProteoMax completely performs
high-throughput purification [30].

Crystallization
Crystallization techniques
The automation of cloning, expression and purification
processes has had a great impact in obtaining a huge
amount of pure proteins for several purposes. To keep
up with this demand, it is critical to employ automated
crystallization, crystal visualization and optimization
techniques [30].

Current commercial screening kits and computer
algorithms for designing arrays of potential conditions
are readily accessible, therefore it is no longer a pro-
blem to conduct trials automatically [31, 32]. The
automatic generation of high-throughput screening
crystallization trials is under way [32-34] as well as
automated follow-up and analysis of the results.

The first semi-high-throughput experiments for
both screening and optimization were reported in
1990 as microbatch trials under oil [35]. Many proteins
have been successfully crystallized using the mi-
crobatch method [36-39].

A recent tendency is to perform the initial crys-
tallization trials in a myriad of conditions with small
amounts of biological material, using droplets of very
small volume, of the order of tens of nanolitres. Pre-
paration of thousands of small droplets of varying,
but strictly prescribed composition can be very effec-
tively performed by robots. Indeed, crystallization
was one of the first steps of X-ray structure analysis
where automation was successfully introduced [40]
and currently many academic and industrial labo-
ratories are equipped with various crystallization
robots.

Conventional methods used in protein crysta-
llization include batch [41-46], liquid-liquid (free
interface) diffusion [47-49], vapor diffusion (using
either sitting or hanging drops) [50, 51], capillaries
[52, 53] and gels [54]. Currently, the two methods
chosen for high-throughput crystallization develop-
ment are microbatch [35, 55] and sitting or hanging
drop vapor diffusion. Both techniques are capable of
working with very small volumes of protein solution
(nL) and exhibit comparable performances.

For microbatch, the mixed droplet is placed in a
well or depression and covered with oil to prevent or
reduce evaporation. The gas permeability of the oil
layer can be adjusted to allow for the slow evaporation
of the drop resulting in a similar concentration effect.
In some microbatch approaches, there can be diffi-
culties in getting the reagents through the oil and in
forcing them to coalesce in a single droplet. All auto-
mated crystallization approaches require automated
liquid dispensing methods, capable of accurately
dispensing very small volumes of liquids (mL) with a
wide variety of surface properties and viscosity [56].

For hanging drop, a mixed droplet is placed on a
coverslide which is inverted, and sealed above a well
containing the undiluted crystallization solution. For
sitting drop, the droplet is placed directly on a shelf
adjacent to a well containing the crystallization solution
and the entire tray is sealed to prevent evaporation.

In both methods, the mixed droplet is allowed to
equilibrate with the well solution through vapor
diffusion. This results in a gradual concentration of
the ingredients which will hopefully lead to super-
saturation and crystallization.

Each of these methods has strengths and weaknesses
irrespective of their amenability to automation. The
hanging drop has been the most commonly used
crystallization method in recent years in the traditional,
non-automated setting [56]. A benefit of hanging drop
is the individual access to each crystallization ex-
periment in a given tray. Since each well is individually
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sealed, crystals can be harvested from one well without
disturbing others. In addition, it is easier to harvest
crystals from a hanging drop, since they are likely to
grow at the bottom of the drop where they do not
interact with the surface.

On the other hand, sitting drop advantageously
maintains the vapor-diffusion nature of a hanging
drop experiment while greatly simplifying the setup
procedure. Even without robotics, many sitting drop
experiments can be set up simultaneously using multi-
channel hand pipettors. However, recovery of crystals
from sitting drop trays can be more difficult. It has
also been difficult to design sitting drop trays with
optical properties that are optimized for automated
imaging, although some improvements have been made
in this sense.

Crystallization robots
The first automated crystallization robot was designed
by Cox and Weber in 1987 [57]. Regardless of the
crystallization methodology, the primary task of a
crystallization robot is to create mixed droplets of
protein and crystallization solutions at the desired
volume and place them in a crystallization tray. Each
method presents unique difficulties in effectively
carrying out this seemingly simple task. For hanging
drop, the process of presenting coverslides to the pi-
petting mechanism and then sealing them onto the
wells requires special attention. For sitting drop, the
difficulties often involve ensuring that the droplet
remains in the middle of its shelf rather than being
drawn to the walls by static electricity making subse-
quent observation very difficult. Since all of the wells
are sealed simultaneously once the tray is set up, sitting
drops must be dispensed quickly or in a humidified
environment so that the drops do not evaporate before
they are sealed.

Although the automated production of macromo-
lecular crystals is not necessarily the only issue of
concern, it could integrate solutions to other problems
like protein availability. Rupp et al [58] pointed out
that protein availability is the true limitation given the
current status of automation, and we therefore must,
at the very least, focus on the use of the smallest
possible quantities of protein to obtain crystals. This
restriction on protein quantity does not only pertains
to the volume of crystallization drops but also to the
equipment and processes used to set them up either
through automation or by hand [22].

Over the last several years, a number of specialized
crystallization robots have appeared on the market.
Many of them use innovative approaches to address
these difficulties and some have achieved admirable
success [34, 58-70]. Nanovolume crystallization ser-
vices are now commercially available from Syrrx, who
offer the setup of 1000 crystallization trials using on-
ly 100 ml of solution. The dominant characteristics
of these systems are that they are generally based
upon use of higher-density 96-, 384-, or even 1536-
well plates and that they use 1 mL or less of protein
solution per experiment. Several systems have been
described that use only 100 nL or less of macromo-
lecule solution per crystallization [32, 61, 62, 71].
Recently, a low-cost manual approach to rapidly
setting up drops as small as 25 nL has been described

which is suitable for laboratory use [72]. However,
the high prices of automated systems difficult their
massive application.

The reduction of volumes to nanoliter scale has
significantly reduced the amount of protein required
and, together with the high throughput crystallization
in 96 well or higher microplate format, it has permitted
the simultaneous analysis of numerous crystallization
parameters and conditions [73]. In this context, va-
riables such as pH, ionic strength, temperature and
concentration of salts and detergents can be screened
and up to 100, 000 crystallization trials conducted
per day [5].

Crystals grown from sub-microliter-sized drops are
suitable for X-ray diffraction studies. There is evidence
that smaller crystals may actually diffract to higher
resolution [72, 74]. Empirical observations suggest
that crystals nucleate and grow faster and precipitate
less, when the reactions are carried our in smaller
volumes [75]. Additionally, more rapid vapor equi-
libration kinetics has been theoretically shown with
smaller drop size [67, 76].

A revolutionary approach to crystallization scree-
ning has come from the use of microfluidics technology
[77]. Hansen et al. [75, 78] have described a micro-
fluidics-based liquid-liquid diffusion apparatus. There
are 144 parallel reactions executed in each chip. The
volume of the crystallization chambers is 25 nL and
the volumetric ratios of protein and precipitant solu-
tions are pre-set by design with three ratios of 1:4, 1:1
or 4:1 for each protein-precipitant pair. The device is
claimed to have picoliter accuracy and can be linearly
scaled up to larger numbers of fixed conditions. This
technology has now been commercialized by Fluidigm
Corporation with a device that can screen 96 different
crystallization conditions using only a few nanograms
of material [79].

Another recently example, the automation and
miniaturization of high-throughput protein crysta-
llization is SPINE (Structural Proteomics, Europe)
[80], a project created to drive the development and
hardware uptake for robotic handling of nanolitre
quantities of protein, to trial new strategies for crysta-
llization and to automate the processes involved in
crystal imaging and recognition [81].

Crystal optimization
Crystal optimization aims to turn poor quality crystals
into diffraction-quality crystals that can be used for
structure determination. There are a variety of methods
that can be used to improve crystal quality including
crystal seeding [82], which has been shown to be very
effective to grow diffraction-quality crystals of pro-
teins where little or no nucleation is normally observed.
Microseed matrix seeding is an extension of conven-
tional seeding techniques in which microseeds from
the nucleation step are transferred into new conditions
where all drop components vary to screen the growth
of well ordered crystals. This technique has been
successfully applied to improve the diffraction quality
of crystals of the yeast cytosine deaminase [83].
Recently, this method has been automated so that
crystals grown from one set of conditions can be seeded
into a secondary screen of 96 solutions by using a
crystallization robot [84].
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Images
Crystallization robots are often linked to devices that
automatically inspect all crystallization setups through
an optical microscope and are able to classify the in-
dividual drops for the presence of various features,
such as amorphous precipitate, microcrystals, sizable
crystals etc. Several efforts are currently in progress
towards the reliable automatic identification of crystals
in the drops. The final judgment of the preclassified
crystals is ultimately performed by the human eye
because it is currently not possible to automate the
process of fishing out the selected crystals from the
drop. This may change in the not too distant future.
One proposed way of circumventing this problem is
based on growing crystals in special ‘matrixes’ and
inserting all setups with drops into the X-ray beam
for diffraction experiments [85-87].

Automated image capture offers various advanta-
ges over human inspection, namely ergonomics and
throughput. With an image capture system, most pro-
tein drops can be examined on a computer, but it is
used only for a limited number of cases. Using auto-
mated methods, the drops can be inspected more
frequently and each observation time-stamped pre-
cisely. Moreover, digitized images of protein drops
can be analyzed using a myriad of artificial intelligence
techniques which, though not yet competitive with
human expertise, can be trained to recognize patterns
not obvious to the human eye [30].

Pusey et al. recently reviewed several automated
crystallization plate reading systems that have become
commercially available [22]. These systems are fo-
cused on rapid acquisition and storage methods for
subsequent human analysis. Rapidity of image ac-
quisition, color, illumination and the use of bright- or
dark-field polarization and image resolution are major
selling points along with the ability of carrying out
the scoring from ones desktop computer, not over a
microscope. The scoring typically goes directly into a
database, which may be subsequently analyzed for
future optimization or other crystallization experi-
ments [22].

Diversified Scientific provides image analysis soft-
ware with their instrumentation [88]. The software
then resolves whether a crystal is present or not. If a
crystal is found, it is further scored for quality on the
basis of straightness of edges, defects, fractures, etc.
However, intermediate outcome scoring, for example
phase changes, precipitates and spherulites, is appa-
rently not carried out.

The Hough transform has been used as the basis
for a crystallization drop analysis system [89]. This
approach starts by defining the drop edges to set the
boundaries for subsequent analytical operations. The
primary attributes are whether the edges are straight
or irregular, and there are five levels of classification:
crystals, aggregated crystals, interesting objects, skins
or junk. The software is able to correctly identify 86%
of human-identified crystals and 77% of unfavorable
objects.

Both visual and automated analysis methods be-
come more difficult as the size of the crystallization
drop is decreased. Higher magnifications mean a lower
depth of field and greater difficulty in resolving fea-
tures. Cumbaa et al. [90] described a technique for
automated evaluation of 400 nL batch crystallization
drops set up under oil in 1536-well plates. The tech-
nique was found to be 85% accurate when compared
to human-scored results. Features that generally gave
false positives included skinned over drops and spec-
kled precipitate. Microcrystals, as well as dendrites,
also gave false negative results. Other methods have
been developed to discriminate between crystals and
other microparticles. Asanov et al. [91] found that in-
trinsic protein fluorescence was a potentially rapid
and efficient method of screening existing protein crys-
tals for their likely X-ray diffraction quality. Hampton
Research commercially markets the dye methylene
blue under the trade name Izit for distinguishing
between protein and salt crystals. The dye can diffuse
through the solvent channels of protein crystals, not
present in those of salt or other small molecules, and
bind to the protein, giving a blue colored crystal and a
clear solution (www.hamptonresearch.com/products).

Conclusion
X-ray crystallography is one of the most common
techniques for protein structure analysis. The advance
in technologies for protein crystallization and the
implementation of automated tools have clearly
reduced the amount of time required to setup a series
of crystallization experiments. The automation of
nearly every stage of the crystallization process leads
this methodology to be applied in structural genomics
projects, increasing technical capabilities for academic
and industrial scientists. However, high throughput
protein expression and crystallization still represent
the main challenges to the process of automated
structure determination, which requires novel ex-
perimental techniques and computational tools.
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