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ABSTRACT
In multiple sclerosis (MS) and in its animal model, Experimental Autoimmune Encephalomyelitis (EAE), autoagressive
and regulatory cells traffic into the Central Nervous System (CNS), and may alter the course of the disease. Conse-
quently the role of immunocompetent cells is major determinants in EAE pathogenesis for instance, CD4+ T helper 1
cells, have been identified as a key element in determining the course of the disease; however other cells, can also
induce EAE, and have pathogenic and regulatory roles in EAE pathogenesis (induction and recovery). Experimental
autoimmune encephalomyelitis models are also useful tools in understanding the generation and organization of the
myelin-specific autoimmune repertoires and immunoregulatory loops involved in spontaneous recovery. The aim of
the present work is to outline how the pathogenic and the regulatory elements prevail in EAE, and correlate them with
other autoimmune disorders. These effects of pathogenic and regulatory cells, need to be considered for efficacious
therapy. A necessary step for the design of antigen-specific immunotherapies in the treatment of chronic autoim-
mune disorders in humans is to learn how manipulate the immune system, to know the biology of its cell populations.
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RESUMEN
Mecanismos regulatorios redundantes en enfermedades autoinmunes: El ejemplo de la encefalitis
autoinmune experimental. En la Esclerosis Múltiple (MS) y en su modelo animal Encefalitis Autoinmune
Experimental (EAE) células autoreactivas y reguladoras penetran el Sistema Nervioso Central (SNC), y determinan
el curso de la enfermedad. Consecuentemente el balance entre células inmunocompetentes será el principal
determinante en la patogénesis de la EAE. El subconjunto de células CD4+, ha sido identificado como un elemento
clave en determinar el curso de la EAE y MS, sin embargo otras células tienen funciones patogénicas y/o reguladoras
determinantes en la patogénesis de la EAE (inducción y remisión). Los modelos animales de EAE son herramientas
útiles para comprender la generación y la organización del repertorio autoinmune específico de la mielina y los
lazos inmunoreguladores involucrados en los procesos de remisión espontánea. El propósito de este trabajo de
revisión es resaltar que en la EAE y en otras enfermedades autoinmunes prevalecen simultáneamente elementos
patogénicos y reguladores. Para instaurar una terapia efectiva es necesario tener en consideración el alcance que
tienen los efectos de las células patogénicas y reguladoras. Aprender como manipular el sistema inmune,
conociendo la biología de sus poblaciones celulares, es un paso imprescindible en el diseño de inmunoterapia
específica de antígeno, para el tratamiento de los desórdenes autoinmunes.

Palabras Claves: EAE, MOG, células T efectoras, células T reguladoras, inmunoterapia,
enfermedades autoinmunes

Introduction
Experimental autoimmune encephalomyelitis (EAE) is
an inflammatory and demyelinating disease of the Central
Nervous System (CNS) and is one of the better studied
models of organ-specific autoimmune disease. EAE shares
many clinical and histological features with the human
disease Multiple Sclerosis (MS) [1-4]. CNS inflamma-
tion in both MS and EAE are characterized by disruption
of the Blood Brain Ba-rrier (BBB) by activated
autoreactive myelin-specific T cells, leading to tissue de-
struction and subsequent neurological dysfunction [5].

The CNS is an immune privileged site protected by
the BBB, which isolates nervous tissues from immune
competent cells. Unstimulated leukocytes do not readily

adhere to the vascular endothelium of BBB but inflam-
matory signals may induce the expression of proteins on
the endothelial cell surfaces that promote the adhesion
and extravasation of activated immune cells from the cir-
culation into brain tissue [6]. Thus during inflammatory
disorders such as autoimmune diseases, immune compe-
tent cells can penetrate BBB and reach targets where
they will continue or amplify the immune reaction.

The arrival of myelin-specific T cells in the CNS,
implies recognition of single or a limited number of
related self-determinants, which are normally pre-
sented by microglial cells [7], resulting in the expan-
sion of T cell clones [8]. This activated response

1. Raine C. Biology of disease. Analysis of
autoimmune demyelination: its impact
upon multiple sclerosis. Lab Invest 1984;
50:608-35.

2. Rivers TM, Schwentker FF. Encephalo-
myelitis accompanied by myelin destruc-
tion experimentally produced in monkeys.
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then expands against self-determinants of the same
molecule, (or other molecules) within the nervous
system [9]. These antigenic spreading phenomena
correlate to progression of EAE and probably re-
lapse in MS [10].

During the inflammatory process in EAE
ectopically organized lymphoid structures in CNS
are induced by lymphotoxins such as TNFβ. This
lymphoid neo-organogenesis may in turn re-stimu-
late neuroantigen-specific T cells, driving their clonal
expansion. Moreover, lymphoid neo-organogenesis
provides the site in which the amplification of the
autoimmune process and determinant spreading oc-
curs, permitting access to more highly specialized
lymphoid structures [11-14].

Another event is T cell apoptosis, which may be
exceptionally high during acute EAE. Apoptosis not
only affects autoreactive effector T-cell populations
but also secondarily recruited lymphocytes, could be
responsible for the spontaneous remissions observed
in the course of these diseases. Interferon Gamma
(IFNg), is a prototypical cytokine of T helper 1 (Th1)
cells, and is involved in EAE regulation by its role in
apoptosis [15-17].

EAE can be induced by challenge with encephalito-
genic proteins, peptides or even T cells clones, repre-
senting monophasic or polyphasic clinical courses in
which ascending paralysis is usually followed by spon-
taneous recovery.

The lack of spontaneous CNS-specific autoimmu-
nity in normal individuals implies the presence of
specific regulatory mechanisms maintaining immune
homeostasis. To regulate the immune response and
lower the potential for autoimmunity, the immune
system has several mechanisms to control the out-
growth and differentiation of activated cells. Profes-
sional regulatory T cells evolved redundant mecha-
nisms, including apoptosis-mediated clonal deletion,
anergy, and secretion of soluble factors such as
cytokines, which in turn diminish the autoreactivity
and sustain spontaneous recovery.

EAE is good model for studying the inflamma-
tory response generated and regulated by the im-
mune system. A comparable diversity of clinical
forms with MS, can also be observed in variants of
EAE animal models, which represent the stages in
the course of MS [18].

Autoantigens as immunogens in EAE
induction: The relevance of Myelin
Oligodendrocyte Glycoprotein (MOG)
EAE can be induced by a diversity of CNS antigens.
EAE has been induced in rodents and other species
by sensitization with a number of myelin related pro-
teins, including myelin basic protein (MBP) [19],
proteolipid protein (PLP) [20, 21], myelin-associ-
ated glycoprotein (MAG) [22], myelin oligodendro-
cyte basic protein (MOBP) [23], and with peptides
of these proteins, known as immunodominant
epitopes. Recently, myelin oligodendrocyte glyco-
protein (MOG) induced EAE has attracted increas-
ing attention [24, 25].

MOG is an exposed antigen of myelin, is specifi-
cally expressed in the CNS on the outermost lamel-
lae of the myelin sheath (Fig. 1), as well as the cell

body and processes of oligodendrocytes [26]. MOG
is an important target for autoimmune responses and
is responsible of inflammatory demyelination in the
CNS [27-29]. The encephalitogenic properties of
MOG are associated with the generation of
autoreactive MOG-specific T cells and the induc-
tion of antibody responses, which promote central
nervous system demyelination. Antibodies against
MOG cause demyelination in vitro and in animals
with induced EAE [30-32], and have also been found
in active lesions of patients with multiple sclerosis
[33]. Moreover MOG appears as a regulator of the
classical complement pathway, due to its capacity
to bind C1q. Activation of the classical complement
system is known to play an important role in au-
toimmune demyelination [34, 35].

Contrary to MBP or PLP specific T cell responses,
occurring in both MS patients and controls, periph-
eral blood lymphocytes of MS patients exhibit a pre-
dominance of T cell responses to MOG, which is
seldom observed in control donors [36], MOG ap-
pears as a prevalent antigenic molecule among my-
elin proteins. Autoantibodies to MOG have a re-
markable predictive value of the course of MS. The
initial detection of serum antibodies against MOG
after a clinically isolated syndrome, predicts early
conversion to MS. The absence of these antibodies
indicate that the patients may remain disease-free
for several years [37].

In susceptible animals, immunization with native
or recombinant MOG elicits a severe EAE that mim-
ics many of the clinical, pathological, and immuno-
logical features of MS, even if MOG derived pep-
tides, or passive transfer of MOG-specific T cells,
and autoantibodies against MOG are used in EAE
induction [25, 31].However, different outcomes of
immune response had been demonstrated after EAE-
induction immunizing with the MOG35-55 peptide in
diverse mouse strains.

MOG35-55 induces strong immune response in the
context of H-2b, leading to clinical EAE in B6 mice.
H-2s mice, as SJL do not develop disease in response
to MOG35-55, but instead mount a vigorous response
to a different peptide, MOG92-106, which is clini-
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Figure 1. Myelin Oligodendrocyte Glycoprotein is the most exposed protein of myelin. Tridimentional
model was reproduced with permission of PhD student L. Alonso.
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cally manifested as relapsing-remitting EAE [24, 38-
40]. We demonstrated the relevance of MOG as
autoantigen during EAE induction is demonstrated
by comparing immunized B6 mice with MOG35-55

and spinal cord homogenate (SCH), depleted of
CD25+ T cells. As depicted in figure 2 and table 1 the
onset of the disease is not different, contrary to the
severity and clinical course. The recovery in SCH
immunized mice is earlier than in the MOG immu-
nized group (unpublished results).

 Susceptibility changes among mouse strains even
if they are Major Histocompatibility Complex (MHC)
congeneic. For instance, SJL/J mice, a prototypical
strain used to study EAE bearing the same haplo-
type of B10.S mice, while is resistant to both active
and passive induction of EAE [41]. Another example
is the congeneic partner NOD and NOD.B6Idd3, (III
mice). The NOD strain (that spontaneously develop
autoimmune diabetes) is also susceptible to EAE.
Conversely its H-2 congeneic, NOD.B6Idd3 (III mice)
is both resistant to diabetes and EAE [42].

This suggests, that genes outside the MHC, like
anti-inflammatory or pro-inflammatory cytokines,
might also modulate disease susceptibility. On the
other hand, EAE-resistant mice produce predomi-
nantly anti-inflammatory cytokines upon immuniza-
tion with MOG35-55, both in the peripheral lymphoid
tissue and in the nervous system, and such immune
response may be implicated in enhancing self-tole-
rance and consequently inhibiting EAE [41, 42]. The
mechanism involved in the different disease manifes-
tations could include partial toleration events due to
autoantigens expression outside the CNS, different
migration pattern within the target organ, a differen-
tial competence of encephalitogenic T cells to infil-
trate the CNS and inherent properties of the T cells
themselves, such as the cytokine expression [18].

Adjuvants and immunoenhancers
for EAE induction
For efficient EAE inductions with encephalitogenic
peptides an inflammatory component which, antigenic
presentation and disrupts the mechanisms of periphe-
ral tolerance is required. On the other hand, it is nec-
essary to override BBB for the autorreactive cells gen-
erated in the periphery to reach targets in the CNS.

In 1950 Incomplete Freund’s adjuvants (IFA) was
first used in the induction of EAE [43], later with the
use of Complete Freund’s adjuvant (CFA) fewer in-
jections were required to reach the same goals. Killed
Mycobacterium tuberculosis (MT H37Ra) contained
in CFA, is the source of CpG motifs and heat shock
proteins (HSP), which are a danger signal for an adap-
tive response. It allows the generation of autorreactive
T cells and changes the physiological context of in-
flammation. The 70-kDa HSP has been suggested as
a potential autoantigen in MS [44]. However, these
are not the only danger signals, in terms of severity
and incidence of EAE induction, necessary to reach
an efficient model of disease [44, 45]. Still it is neces-
sary to change the accessibility of the CNS and
permeabilising BBB for peripheral autoreactivity
reaching targets in brain tissue.

The induction of EAE in mice or rats requires that
encephalitogenic antigens are mixed together with

MT H37Ra, but it is also indispensable to introduce
Pertussis Toxin (PT).

Coinjection of PT with neuroantigens in CFA en-
riched with Mycobacterium tuberculosis, enhanced the
incidence and severity of the disease. The mechanism
by which PT facilitates the induction of EAE has
been attributed to opening up the BBB enhancing its
vascular permeability and promoting the migration of
pathogenic T cells to the CNS. This interpretation
has recently come under scrutiny, and the generation
of autoimmune Th1 cells has been suggested as the
primary mode of action [46].

Indeed, PT has pleiotropic effects on the immune
system, such as T cells mitogenesis, augmentation of
cytokine and antibody production, and the promotion
of delayed type hypersensitivity responses [47, 48].
PT also induces T cell differentiation and clonal expan-
sion in EAE, via the activation of Antigen Presenting
Cells (APC) in lymphoid tissues and the CNS, provid-
ing both stronger co-stimulatory signals and growth fac-
tors for autoreactive T cells [49]. It has been suggested
that the mechanisms of PT binding on the surface of
APC, might be either cross-linking cell surface molecules
on T cells, or directly stimulating T cells together with
the co-stimulatory molecules expressed on APC [50].

By mapping of EAE-modifying loci in mice, eae9
has been identified as a PT-controlled locus, which

Table 1. Active immunizations using syngeneic spinal cord homogenate (SCH) and myelin 
oligodendrocite glycoprotein synthetic peptide (MOG35-55) with depletion of regulatory cells 
(CD4+CD25+) produce different forms of EAE in terms of clinical course, severity and 
recovery. The SCH-αCD25 EAE induced group have total recovery at day 22th. Contrary the 
MOG-αCD25 induced EAE have a progressive course of disease and do not recover. 

Clinical Score 
Groups 

Incidence 
(%) 

Onset Day 
(Mean ± SD) Mean ± SD Maxim 

Control 0 0 0 0 

MOG35-55-αCD25 100 14 ± 1.8 2.15 ± 1.2 4 

SCH-αCD25 100 13 ± 4.8 0.55 ± 0.1 1 

 

13.   Kumar V, Aziz F, Sercarz E, Miller A.
Regulatory T Cells Specific for the Same
Framework 3áRegion of the Vbeta 8.2
Chain Are Involved in the Control of Col-
lagen II-induced Arthritis and Experimen-
tal Autoimmune Encephalomyelitis. J Exp
Med 1997;185(10):1725-33.

14.  Targoni OS, Baus J, Hofstetter HH,
Hesse MD, Karulin AY, Boehm BO, et al.
Frequencies of Neuroantigen-Specific T
Cells in the Central Nervous System Versus
the Immune Periphery During the Course
of Experimental Allergic Encephalomyeli-
tis. J Immunol 2001;166(7):4757-64.

15.   Bauer J, Bradl M, Hickey WF, Forss-
Petter S, Breitschopf H, Linington C, et al. T-
Cell Apoptosis in Inflammatory Brain Le-
sions: Destruction of T Cells Does Not
Depend on Antigen Recognition. Am J
Pathol 1998;153(3):715-24.

16.   Chu CQ, Wittmer S, Dalton DK. Fail-
ure to Suppress the Expansion of the Ac-
tivated CD4 T Cell Population in Inter-
feron {gamma}-deficient Mice Leads to
Exacerbation of Experimental Autoim-
mune Encephalomyelitis. J Exp Med
2000;192(1):123-8.

17.   Schmied M, Breitschopf H, Gold R,
Zischler H, Rothe G, Wekerle H, et al.
Apoptosis of T lymphocytes in experimen-
tal autoimmune encephalomyelitis. Evi-
dence for programmed cell death as a
mechanism to control inflammation in the
brain. Am J Pathol 1993;143(2):446-52.

Figure 2. The SCH-anti-CD25 EAE induced group (circles) have a
median clinical score of 0.55 ± 0.1, a maximal clinical score of 1
and the total recovery were at day 22th. Contrary, the MOG35-55-
anti-CD25 induced EAE (square) have a median clinical score of
2.15 ± 1.2, a maximal clinical score of 4 with the course of the
disease being progressive, with  not recovery.
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overrides genetic checkpoints in the pathogenesis of
EAE. Surprisingly eae9 is located in a region encod-
ing lymphoid tissue-homing-chemokine receptor
CXCR5 and Interleukin 18 (IL-18) (Interferon gamma
inducing factor) [51].

CXCR5 is expressed at the CNS in astrocytes, mi-
croglial cells, oligodendrocytes, neurons, endothelial
cells [52], and in invariant NK (iNK) T cells, which
are involved in the transition from innate to adaptive
immunity at the site of inflammation and in second-
ary lymphoid tissues [53-55]. The ligand of CXCR5,
the chemokine CXCL13, is involved in the regulation
of the compartmentalization of T and B cells and
might be involved in lymphoid neogenesis of CNS in
MS and EAE onset [52, 56]. Recent reports state that
gene expression of CXCL13 is markedly and persis-
tently upregulated in the CNS of mice with relapsing-
remitting and chronic-relapsing EAE [57].

 IL-18, is produced by monocytes/macrophages,
dendritic cells, B cells and other APC cells as well
as astrocytes and microglia. IL-18 also promotes
NK cell and Th1 cell activity and may bridge innate
and adaptive immune responses. Anti IL-18 anti-
bodies may even prevent EAE, IL-18-deficient (IL-
18-/-) mice are defective in mounting autoreactive
Th1 and autoantibody responses, and are resistant
to MOG35-55 peptide-induced autoimmune encepha-
lomyelitis [58, 59].

Thus, the role of PT in EAE induction is wider
than initially thought and exemplifies how after mi-
crobial infections the interactions between innate and
adaptive immune systems in response to self-anti-
gens are favorable. It convincingly explains the ob-
served relationship between MS relapses and infec-
tious diseases [60].

Pathogenic roles of CD4+ T cells
It was once thought that autoreactive CD4 T cells
have a major role in autoimmune disease [61, 62],
however the frequency of such self-autoreactive T
cells are similar in normal individuals to those af-
flicted with autoimmunity [63]. Also in transgenic
mice, with artificial high frequency of self-reactive T
cells, the development of spontaneous autoimmune
diseases is uncommon [64, 65]. These findings sug-
gest that the mere presence of CD4 autoreactive T
cells is not sufficient for the development of autoim-
mune pathologies [66].

Direct evidence for the role of CD4+ T cells in EAE
induction has come from adoptive transfer studies in
which myelin specific CD4 T cell lines and clones
were shown to induce chronic relapsing encephalo-
myelitis and paralysis after transfer [45, 61, 62].

Most investigations in the past of EAE models
focused on CD4 T helper 1 (Th1) cells and the re-
sulting cascade of cytokines and chemokines involved
in pathogenesis. Certainly, it has been demonstrated
that CD4+ myelin specific T cells induced EAE pre-
dominantly via production of Th1 cytokines [67],
but not always, because CD4 T helper 2 (Th2) my-
elin specific T cells, could trigger EAE.

Lafaille and colleagues [68] and Pedotti and col-
laborators [69] have independently shown that trans-
fer of in vitro generated Th2 cells from MBP-spe-
cific TCR transgenic mice to Recombinant Activation

Gene 1 (RAG-1) knockout and to αβ T cell-defi-
cient mice, was able to induce EAE, but only with a
longer preclinical phase as compared with the trans-
fer of Th1 cells. In normal or γδ T cell-deficient
mice, they found resistance to EAE induced by Th2
cells [68]. Moreover, the coadmininstration of MBP-
specific Th2 and Th1 cells did not abrogate disease
induction in any recipient animals [68, 69]. This
indicates that disease induction by activated Th1
cells cannot be prevented by previously activated
Th2 cells. This has serious implications because it
was thought that immuno-modulators, which polar-
ize the response to Th2, could resolve the
autoreactivity mediated by Th1 cells. At this point
the protective pattern of autoimmunity, mediated
by Th2 should be carefully evaluated and correctly
classified, because the pattern of Th2 cytokines has
evolved and does not only depend of Il-4 or IL10 as
was once believed.

Regulatory role of CD4+ T cells
Induced EAE by an active challenge is usually fol-
lowed by spontaneous recovery. The improvement
process probably depends on cellular interactions
between encephalitogenic T cells and regulatory cells.
The course of passive EAE was unremitting in T-
Cell-deficient mice, but when these animals were re-
constituted with spleen cells from syngeneic wild-
type mice, the course of clinical disease mirrored that
of wild-type mice, thus restoring the regulatory ac-
tivity to normal [70].

B6 TCRβ-chain knockout mice that were adop-
tively transferred with an MOG35-55 encephalitogenic
T cell line, failed to recover from acute phase of pas-
sive EAE and the disease progressed more rapidly,
resulting in death for most. In contrast, wild-type B6
mice normally recovered from acute disease, followed
by one or more relapses [71]. This would suggest that
specialized regulatory T cells are involved in the counter
balance of adaptive immune response.

Regulatory CD4+CD25+ T cells populations, do
not contain previously activated CD4+ T cells and
inhibit T cells proliferation in a TCR-dependent man-
ner, perhaps through direct T-T cell interactions [72,
73]. Several mechanisms of action for CD4+CD25+

regulatory T cells have been postulated, fundamen-
tally those mediated by Cytotoxic T lymphocyte–
associated antigen 4 (CTLA-4) [74] and Interleukin
10 (IL-10) [75] . Another distinctive characteristic of
CD4+CD25+ T cells is its an exclusive transcription
factor foxp3 [76]. The transfer of CD4+CD25+ regu-
latory T cells has been reported to suppress EAE
mediated by naïve MOG-specific T cells, in recom-
bination-activating gene–1-deficient TCR-transgenic
mice [77, 78]. This indicates that regulatory T cells
may block both the initiation of autoimmune re-
sponses and inhibit the function of established
autoreactive effector cells.

In experiments of EAE induction, treatment with
anti-CD25 antibody following immunization resulted
in a significant enhancement of disease severity and
mortality (unpublished results) [75]. Conversely,
transfer of CD4+CD25+ regulatory T cells from naive
mice decreased the severity of active EAE. IL-10-
deficient mice were unable to suppress active EAE,
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suggesting that natural regulatory function are re-
lated to mechanism that involves Il-10 [79]. Supple-
mentation of regulatory T cells significantly reduced
the severity of the clinical disease both for active
and adoptive EAE induction, perhaps by promoting
a disease-protective immune response and prevent-
ing CNS inflammation by increased expression of
Interstitial Cell Attachment Molecule 1 (ICAM-1)
and P-selectin [80]. In support of this, the treatment
with recombinant IFN-β1b has a short-term up regu-
lating effect on soluble ICAM-1[81].

In the spinal cord of regulatory T cells recipients,
CNS inflammation as the degree of lymphocyte infil-
tration was substantially reduced [80]. Although
transferred regulatory T cell populations were not
detected within either the brain nor spinal cord dur-
ing the peak of EAE. It is possible to find more donor
cells in draining lymph nodes of regulatory T cell vs.
non-regulatory T cells recipients, suggesting a differ-
ential trafficking with regulatory populations, this is
supported by elevated ICAM-1 levels [80]. In brain
endothelial cells, ICAM-1-mediated signaling is a cru-
cial regulatory step in the process of lymphocyte
migration through the BBB, and as such it represents
an additional phase in the multistep paradigm of leu-
kocyte recruitment [81, 82].

CTLA-4 is a key co-stimulatory molecule for ac-
tivating CD25+CD4+ regulatory T cells to exert sup-
pression and control of self-reactive T cells. In vivo
blockade of CTLA-4 suffices to break natural self-
tolerance and elicit  pathological autoimmunity
[83].In experimental allergic encephalomyelitis,
CTLA-4 blockade during the onset of clinical symp-
toms mar-kedly exacerbated the disease, increasing
mortality. These enhancements of disease severity
were associa-ted with high production of the en-
cephalitogenic cytokines Tumor Necrosis Factor al-
pha (TNF-α), Interferon Gamma (IFN-γ) and
Interleukin 2 (IL-2), suggesting that the regulatory
role of CTLA-4 is in over attenuating inflammatory
cytokine production [84].

 Other types of antigen-specific CD4+ T cells exist
without a defined phenotype, implicated in the regu-
lation of the effector function of autoimmune T cells.
For instance, high Transforming Growth Factor Beta
(TGF-β) producing T cells [85], high IL-10, high IL-
4, high IFN-α [86] or high IL-10, low IL-4 producing
regulatory T cells class 1 (Tr1) [9]. The Tr1 regula-
tory cell, not only are the ultimate effector popula-
tion in the regulation of autoimmunity, but they also
induce naive T cells to provide long-term inhibition
of autoreactivity [9, 10].

Pathogenic role of CD8+ T cells in EAE
Contrary to what was once believed, not only are
there roles for CD4 Th1 and Th2 cells in EAE induc-
tion, CD8 + T cells can also induce this disease. In
fact, brain lesions in EAE and Multiple sclerosis
patients include inflammatory infiltrates of both
CD4+ and CD8+ T cells.

Immunochemistry of T cells interactions with its
cognate antigens and novel genetic studies about sus-
ceptibility to disease have shown evidence that in-
volves both CD4 and CD8 in the pathogenesis of
the autoimmune diseases. The gene products of Hu-

man Leukocyte Antigen (HLA) class II and I, are
elevated on inflamed oligodendroglial cells. Oligo-
clonal CD4+ and CD8+ T cell populations within
MS plaques, and CD8+ T cell clones specific for
myelin antigens, have been isolated from MS pa-
tients [45, 87, 88].

MBP-specific CD8 T cells isolated from wild-
type mice are able to mediate severe CNS autoim-
munity that exhibits similarities to MS not seen in
myelin-specific CD4 T cell–mediated EAE. Intrave-
nous injection of cytotoxic CD8+ T cell clones in-
jures the brain inducing ataxia, spasticity and hind
limb paralysis. Neuropathology also revealed CD8
perivascular cuffs in the vascular walls of the brain
[89]. Adoptive transfer of CD8-enriched MOG-spe-
cific T cells, induce a much more severe and perma-
nent disease, with brain lesions being more progres-
sive and destructive than disease actively induced
by immunization with pMOG35–55, demonstrating
the encephalitogenic potential of CD8+ MOG-spe-
cific T cells [45, 90]. These data are evidence that
support an essential role for CD8 T cells in autoim-
mune demyelination.

However, it is crucial to recognize that there are
differences between CD4-induced EAE and CD8-in-
duced EAE. These differences appear in attempts to
modulate disease with agents intended to abrogate the
cytokines TNFα and IFNγ.

When EAE is induced with CD4+ T cells, diseases
might be blocked with anti-TNFα antibody or agents

Figure 3. There are differences between the outcome of CD4+ T cells induced EAE and CD8+ T cells induced
EAE related to the therapeutic approach. In CD4+ induced EAE, diseases might be blocked with TNFα
antibody or agents that blocked TNFα receptor (TNFR); on the contrary, the use of anti-IFNγ impaired the
course of disease. In contrast, in CD 8 induced EAE, the disease is stopped by administration of recombinant
IFNγ and the intervention with TNFR system has no effect.
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that blocked TNFα receptor (TNFR). In this case,
the use of anti IFNγ impaired the progression of the
disease. In contrast, in a CD8-induced model of EAE,
the disease is arrested by administration of recombi-
nant IFNγ and intervention on TNFR system has no
effect [91] figure 3.

Multiple Sclerosis has several clinical forms, some
of them share a resemblance to CD8 T cells induced-
EAE and others are similar to CD4 T cell induced
EAE [92, 93]. For the design of novel therapeutic
tools, the identification of the molecular and cellular
events involved in the pathogenesis will determine in
the success of clinical trials. Thus, the selection of
EAE models based in its different pathogenic mecha-
nisms to asses immune-system interventions require
the exhaustive understanding of molecular and cellu-
lar events driving the course of the disease.

Regulatory roles of CD8+ T cells
Early studies of EAE in CD8 deficient mice suggested
that CD8 T cells with undefined antigen specificity
might function as suppressors or regulatory T cells in
CNS autoimmune disease [60, 94].

The ability of CD8+ T cells to regulate CD4+ T
cell responses have been mostly attributed, to the
CD8+ T cells’ production of cytokines [95] but other
studies have identified specific cognate interactions
between regulatory CD8+ T cells and activated CD4+

T cells. During antigen driven CD4+ T cell responses
in vivo, CD8+ T cells specifically regulate CD4+ T
cells in a T cell antigen receptor (TCR) Vβ-specific
manner [96-98].

After antigen activation CD4+ T cells express
membrane Qa-1/TCRVβ motifs that are recognized by
the αβTCR expressed by precursor regulatory CD8+

T cells. Qa-1 is a mouse homolog of human HLA-E,
and is only expressed at low levels on resting T cells
but is increased after antigen activation. Qa-1 ligand
is composed of Qa-1-β2-microglobulin heterodimers
that contain peptides derived from TCR Vβ.  Qa-1

restricted CD8+ T cells may eliminate a subpopula-
tion of activated autoreactive CD4+ cells through
TCR-dependent recognition of self peptide-Qa-1-com-
plexes [99]. These CD8+ T cells are induced to dif-
ferentiate and down-regulate CD4+ T cells express-
ing the particular Qa-1/TCRVβ motifs [100]. CD8
effector activity is supported by cell activation and
population expansion [101]. Recently it has been
demonstrated that TCR Vβ-derived peptides asso-
ciated with Qa-1 on activated autoreactive CD4+ cells
can activate CD8-dependent suppression and inhibit
autoimmunity [99].

Distinct functional subsets of CD8-T cells exist
with divergent roles in CNS autoimmunity, contrib-
ute to disease in different ways, as both pathogenic
and regulatory cells.

Pathogenic roles of B cells in EAE
The importance of the B cell function in autoimmu-
nity of the CNS had been neglected in spite of early
experiments showing that rats depleted of B cells,
were rendered resistant to EAE [102]. However, B
cells and antibodies (Ab) are essential players in the
pathogenesis of EAE and MS. Inappropriate activa-
tion of B cells by cross-reactive, or self-mimicking

pathogens could explain the reversal of tolerance. It is
thus conceivable that natural Ab are the source of
pathological Ab, generated by affinity maturation
through somatic mutation and immune globulin (Ig)
class switch [103].

 The identification of MOG as a major target for
autoantibody-mediated demyelination in EAE, revived
interest in the role of antibody in the pathogenesis of
MS. Intravenous injection of a MOG-specific mono-
clonal antibody in rats with EAE, induces extensive
demyelination, enhances the inflammatory response
and dramatically increases disease severity. Con-
versely, in the absence of MOG-specific monoclonal
antibody, the pathology of these disease is purely
inflammatory, confirming the demyelinating potential
of MOG-specific antibody [104].

Unless the BBB is compromised, circulating anti-
MOG antibodies are unable to enter the CNS and
initiate demyelination. Mice vaccinated with MOG
encoding DNA constructs, despite high titres of anti-
MOG antibody in the circulation, do not develop any
spontaneous neurologic deficit, nor subclinical patho-
logical changes in the CNS [105].Therefore, in the
pathogenesis of EAE the role of B cells and antibodies
is secondary to induction of an encephalitogenic T-
cell responses to MOG.

Regulatory role of B cells
Studies with B cell deficient mice showed that B
cells are necessary for recovery from EAE [105, 106].
Induction of EAE in B10.PL mice rendered deficient
of B cells by disruption of the µ heavy chain trans-
membrane exon (B10.PLµMT), showed that these
mice have a similar incidence of EAE induction com-
pared to controls. However B10.PLµMT had greater
variation in the speed of disease onset and severity.
They also failed to completely recover as compared
to B10.PL in which spontaneous recovery was the
norm [105]. On the other hand, B cell deficient mice
immunized with a MBP peptide have a long chronic
disease course, while wild-type mice show EAE pa-
ralysis followed by full recover [106]. It suggests
that B cells are not required for the activation of en-
cephalitogenic T cells and subsequent induction of
EAE, but may play a pivotal role in the immune
regulation of the disease.

It is common to observe in healthy humans and
mice autoantibodies to self-antigens [107-110], and
its presence across strains and species [111-113].
Even in cord blood of newborns auto-antibodies had
been detected, suggesting that their synthesis might
be independent of stimulation by foreign antigens
[114]. Autoantibodies, both of the IgG and IgM
isotypes, are detectable in the sera of C57BL/6 mice,
but it is known that these strains do not spontane-
ously develop autoimmune disease. Conversely the
C57BL/6 strain is susceptible to induction by immu-
nization to EAE [115].

It has been suggested that autoantibodies may be
associated with mechanisms that might prevent au-
toimmune disease. Transfer of autologous B cells ex-
pressing encephalitogenic determinants induced spe-
cific unresponsiveness and protected mice from
induction of EAE, even when the transfer was after
the disease onset. These protected animals were unre-
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sponsive to encephalitogenic determinants as measured
by a delayed type hypersensitivity (DTH) [116, 117].

Pathogenic roles of natural killer
T cells
Natural Killer (NK) T Cells recognize lipid antigens
on the major histocompatibility complex (MHC)
class I-like molecule CD1 and immediately secrete
large amounts of IFNγ, characteristic of a type 1
response and simultaneously IL-4 type 2 responses.
All of them can influence the fate of the immune
response, because they induce activation of both in-
nate and adaptive responses and the activation of
Natural Killer (NK) cells, dendritic cells, T cells and
B lymphocytes [118, 119].

Activation of Vα14 NKT cells in the context of
CD1 alters the cytokine profile of T cells reactive to
myelin antigens and their ability to induce EAE. Thus,
the stimulation of CD1 with α-Galactosilceramide,
which is a potent activator of NK T cells both in
vitro and in vivo, can either enhance or prevent dis-
ease. Depending on the nature of NKT cell response
in different murine strains, IFNγ secretion will be
involved in the exacerbation, whereas IL-4 will play
an important role in protection. The balance between
IFNγ and IL-4 secretion in response to activation via
CD1 determines whether the activation of Vα14 NK
T cells will enhance or diminish the disease [53].

Innate pathways of immunity are crucial to the up
regulation of co-stimulatory molecules on APC as well
as in providing an initial cytokine milieu necessary for
the development of acquired immunity. NK T cells
that rapidly secrete cytokines can thus influence the
outcome of immune response not only in infectious
but also in autoimmune diseases [53, 120].

In mice, the acquisition of NKT-cell competence to
secrete IL-4 and IFN-γ in vivo depends on co-stimu-
lation: stimulation through CD80/CD86 is required
for IL-4 and IFN-γ secretion, and stimulation through
CD40 is required for IFN-γ secretion [121]. Conse-
quently, blockade of CD86 polarized NKT cells to-
ward a TH2-like phenotype (with concomitant sup-
pression of EAE), and activation of APCs by treatment
with CD40 biased them towards a Th1-like pheno-
type and exacerbated EAE [54].

Regulatory role of NK-T cells
The observation that B6 mice depleted of NK T cells,
followed by immunization with MOG35-55, achieved
EAE with increased severity as compared with non
depleted B6 mice [122] indicating a regulatory role
for NK-T cells.

However it is unlikely that NK T cells are the
only regulatory populations. Mounting evidence in
mice where NK T cells are found at normal or in-
creased levels (recombination-activating gene–1
knockout mice or IL-7Receptor knockout mice) has
shown that passive EAE is more severe in these
strains that in wild-type mice. This indicates that
NKT cells are involved in a regulatory activity ei-
ther alone or in concert with NK cells. In vivo acti-
vation of NK cells, as assessed by production of
IFNγ, is dependent on the presence of an intact NKT
cell population. The role of NK or NKT cells in the
regulatory process is strengthened by the findings

that EAE in the absence of IFNγ is more severe [16,
123-127]. It has also been demonstrated that, acti-
vated CD4+ T Cells in the spleen and central nervous
system of IFNγ-KO mice during EAE markedly in-
creased in vivo proliferation and significantly de-
creased ex vivo apoptosis [16].

In the protection against microbes NK cells col-
laborate with adaptive immunity and enhance Th1
activity through producing IFNγ, but a possible role
of NK cells in immunoregulation has been suggested
because the impairment of this type of cell results
in exacerbation of neurological disorders [128,
129].The administration of the immunomodulatory
drug quinoline-3-carboxamide, that enhances NK cell
activity, suppressed the clinical and histological signs
of chronic relapsing EAE [130]. During EAE, the
proportion of NK cells in the peripheral blood in-
creased, but the absolute number of NK cells in the
spleen at this period decreased to one fifth of nor-
mal animals. These findings suggest that NK cells of
the spleen are recruited toward the CNS via the blood
stream [131]. Other evidence supports NK cells regu-
lating EAE in an independent pathway of NK-T
cells. Knockout mice for the gene β2-microglobulin
(β2-m) and recombinant activation gene- 2 (RAG–
2) can be more susceptible to EAE, particularly when
NK cells are deleted [114]. One way speculate that
depression of NK cell activity may lead to an en-
hancement or induction of autoimmune disease, in
those subjects with prior defect in the regulatory
system [122, 132, 133].

Pathogenic role of γδ T cells
Gamma delta T cells (γδ T Cells) are a distinct lympho-
cyte population that can exhibit reactivity with over-
expressed heat shock proteins at inflammatory sites.

Mounting evidence shows that γδ T Cells contrib-
ute to the development of EAE by accelerating the
inflammatory process in the CNS. γδ T Cells have
also been shown in CNS lesions of SJL mice, adop-
tively sensitized to develop EAE [134] and in active
MS plaques [135, 136].The depletion of γδ T Cells
reduced clinical and pathological signs of disease, as-
sociated with reduced expression of IL-1 beta, IL-6,
TNF-alpha, lymphotoxins and IFNγ [137]. The ex-
pression of activation markers on γδ T Cells and a
cytokine profile biased towards a Th1 pattern [134],
confirms a contributory role for these cells in the
pathogenesis of EAE.

Regulatory role of γδ T cells
In support of a preventive role of γδ T Cells in the
recurrence of EAE, EAE mice administered the T-Cell
receptor (TCR) gamma delta specific monoclonal an-
tibody, to deplete γδ T Cells in vivo, inducing aggra-
vation and disease recurrence [134], suggesting a pre-
ventive role in relapse of EAE.

On the other hand, after treatment with mycobac-
terial antigens previous to immunization with MBP,
a moderate increase of γδ T cells with suppression of
the immune response and a reduction in EAE sever-
ity results. Immune suppression may be due to the
production of TGF beta by γδ T lymphocytes [138]
and presumes a role of γδ T cells in maintenance of
self-tolerance.
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Pathogenic role of dendritic cells
Dendritic Cells (DC) are capable of breaking the state
of «self-ignorance» and inducing aggressive auto-reac-
tive T cells initiating adaptive immunity, and fre-
quently leading to autoimmunity. However, in the
development of autoimmune diseases, different types
of DC exhibit distinct properties for inducing Th1/
Th2 cell responses [139].

DC have been identified in the inflamed CNS [140].
The transfer of DC presenting a self-peptide MOG35-

55 into naive mice induced EAE. Interestingly in the
lymph nodes and spleens of these mice there were
MOG35-55-specific T cells of the Th1 phenotype [141].
This indicates that DC presenting a self-antigen can
induce the organ-specific autoimmune disorder EAE.

Regulatory role of dendritic cells
There seems to be a relevant role for DC in the initia-
tion of regulatory events of tissue specific immune
response in the CNS. DCs isolated from mice with
EAE exhibit a phenotype similar to immature bone
marrow-derived DC, characterized by intermediate
surface MHC class II and low expression of the co-
stimulatory molecule CD80. They are unable to prime
naive T cells, inhibit T cell proliferation stimulated
by mature bone marrow-derived DC, and have a Th2
cytokine profile mediated by TGFβ and IL-10. Thus
it is possible that DCs may contribute to preserving
immune privilege within the inflamed CNS [140].
Other evidence in favour of the immunosuppressive
role of DC is the result of transferring LPS-stimulated
DCs to mice with EAE. These cells, which have a
mature phenotype with upregulated CD40, CD80,
and CD86, significantly suppressed the severity of
clinical signs and inflammation in the CNS, compared
to immature DC-injected mice and PBS-injected mice.
Lymphocytes from LPS-stimulated DC-injected mice,
produced lower level of IL-12, IFN-gamma, but a
higher level of IL-10, as compared to immature DC-
injected and non-DC-injected mice [142].

Overproduction of Nitric Oxide (NO) and IFNγ by
DC induced decreasing autoreactive T cell by increas-
ing apoptosis in such cells. While spontaneous remis-
sion of EAE has been associated with prominent
apoptosis mediated by IFNγ [16, 143].

Contrary to what was once believed, DCs are able
to promote Th2 differentiation and have the potential
for suppression of inflammatory demyelination.

Summarizing
Regulation of the immune system and specifically of
autoimmune responses may occur at different physi-
ological levels. One of them is the ability to evoke
regulatory cells, which normally affect the passage
from basic physiologic autoimmunity, toward inflam-
matory or pathologic autoinmune response. Cells
with regulatory capacity may have multiple pheno-
types. Regardless of the more relevant of them, due
to their high capacity to arbitrate regulatory events,
are CD4+CD25+ T cells, it is also possible to induce
other regulatory cells, which will efficiently control
pathological autoreactivity. In this sense, interven-
tions in the immune system with IFNα has proved
to be useful in generating a regulated or immunosup-
pressive environment mediated by Tr1’s cytokines

[144]. It is also possible to induce antigen-specific
tolerance prospectively as a result of prolonged de-
livery of subcutaneous infusion of low doses of pep-
tides, which are able to transform mature T cells into
CD4+CD25+ regulatory T cells [145]. Altered Pep-
tides Ligands (APL), such Copaxone [146, 147] and
other peptides, even those derived from autoantigens
[148] could re-direct the immune response and pro-
mote selective stimulation of regulatory cells [149].

The immunization by attenuated autoreactive T
cells (T cell vaccination) can induce T-cell-dependent
inhibition of autoimmune responses, mediated by the
specific recognition of activated CD4+ T cells by sup-
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body producing cells.
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as strategies, on a sequential schedule that allows the

Box 1. Combined Therapy: Depletion of autoreactive clones with immunosuppresor therapy, followed by the
intervention with peptides, which preferentially expand some clones of desirable specificity, together with
IFNα, which will warrant polarizations toward a regulated system. Immunization with attenuated-autoreactive
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Therapeutic Approach Effect

Immunosuppressive Therapy Depletion of autoreactive clones
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with autologous peptides Expands clones of desire specificity

IFN  Treatmentα Polarization toward a regulated context
mediated by anti-inflammatory cytokines

T cell vaccination Induce T cell-dependent inhibition 
of autoimmunity

Anti-CD3 Treatment
Induce T cell-dependent inhibition 
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reprogramming of immune system. An example of
Combined Therapy is depicted in box 1.

Combined Therapy should be more safe, specific
and durable in terms of elimination of pathological
autoreactivity. Combined Therapy, besides its redun-
dancy, may improve by its robustness.

Conclusions
The successful therapy of MS and other chronic and
inflammatory autoimmune diseases will be the selec-
tive supression or functional interference with dis-
ease causing cells. Regrettably there is not an univer-
sal and precise protocol for testing immunomodulators
as therapeutics.

The identification of downstream cellular targets and
molecular mechanisms of T cell action, both as effector
and regulatory functions, during first stage or during an
advanced course of disease, further enhance the devel-
opment of treatments that inhibit immunopathology.

Although EAE has proven to be a particularly use-
ful animal model to understand mechanisms of both
immune-mediated CNS pathology and progressive
clinical course, it is necessary that a correct interpre-
tation and comprehension of each physiopathological
event involved in induction, reversion and ameliora-
tion of EAE. It is also indispensable to use this infor-
mation in the design of Combined Therapy. The di-
vergent role for immunocompetent cells, together with
their functionally distinct subsets, contribute to CNS
autoimmunity in different ways, both in pathogenic
and regulatory cells (Fig 4).
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