A diferentiable manifold with ($k_{\text {r }}$-($k-2$)) - structure of rank \mathbf{r}

$3-6^{6}$

by V.C. GUPTA*

SUMMARY

Recently, while studying a differentiable manifold with f-structure of rank r, Mishra [${ }^{[}$] has made use of a tensor as a vector valued linear function. The $\boldsymbol{\xi}(K,-(K-2))$ - structure has been defined and studied by the author in $[1]$. The purpose of the present paper is to study a differentiable manifold with $\boldsymbol{\xi}(K,-(K-2))$ - structure of rank r, following this approach. In this paper we have defined a metric tensor g in a differentiable manifold with $\boldsymbol{\xi}(K,-(K-$ -2)) - structure. We have considered the cases when K is odd or even, separately. A large number of results in terms of the operators s and t have been obtained.

1. The operators s and t :

Let us consider an n-dimensional real differentiable manifold V_{n} of differentiability chase C^{r+1}. Let there exist in V_{n} a vector valued linear function $\boldsymbol{\xi}$ satisfying

$$
\begin{equation*}
\frac{K}{X}-\frac{K-2}{X}=0^{* *},\left(2 \operatorname{rank} \xi-\operatorname{rank} \xi^{K-1}\right)=\operatorname{dim} V_{n}, \tag{1.1}
\end{equation*}
$$

for an arbitrary vector field X, where we adopt the following notation for bar over X :

$$
\begin{equation*}
\frac{K}{X} \underline{\operatorname{def}} \xi^{K}(X) \tag{1.2}
\end{equation*}
$$

$\operatorname{rank}(\xi)=r$ is constant everywhere and K is odd. Then ξ is called a $\boldsymbol{\xi}(K$, 一 - ($K-2)$) - structure of rank r and V_{n} is called an n-dimensional ifferentiable manifold with $\xi(K,-(K-2))$ - structure of rank r.

[^0]Agreement (1.1). In the above and in what follows, the equations containing X, Y hold for arbitrary vector fields X, Y etc.
Let us put

$$
\begin{equation*}
s(X) \stackrel{\operatorname{def}}{=} \frac{K-1}{X}, t(X) \operatorname{def} X-\frac{K-1}{X} \tag{1.3}
\end{equation*}
$$

Now we shall prove the following:
Theorem (1.1). For a vector valued linear function ξ satisfying (1.1), the operators s and t defined by (1.3) and applied to the tangent space at each point of the manifold are complementary projection operators.
Proof. By virtue of (1.1), (1.2) and (1.3), we have

$$
\begin{align*}
& s(X)+t(X)=X \tag{1.4}\\
& s^{2}(X)=s(s(X))=\begin{array}{l}
x x x x \\
x x x x
\end{array} \\
&=\left(\frac{K\left(\frac{K-1}{X}\right),}{X}\right)=\left(\frac{K-1}{X}\right), \\
&=\left(\frac{\frac{K-2}{K-2}}{X}\right)=\left(\frac{K-2}{X}\right), \tag{1.5}
\end{align*}
$$

$$
\begin{gathered}
\frac{K-(K-1)}{\left(\frac{K-2}{X}\right)=\left(\frac{1}{X-2}\right),} \\
t^{2}(X)=t(t(X))=t(X)-t\left(\frac{K-1}{X}\right), \\
=\frac{K-1}{X}=s(X) ; \\
\text { *** Here and in what follows, }\left(\frac{K-1}{X}\right) \text { means }=\ldots(2 K-2) \text { times }
\end{gathered}
$$

$$
=X-\frac{K-1}{X}-\frac{K-1}{X}-\left(\frac{\frac{K-1}{K-1}}{X}\right)
$$

$$
\begin{align*}
& =X-\frac{K-1}{X}=t(X) \tag{1.6}\\
t(s(X)) & =s(t(X))=s(X)-s\left(\frac{K-1}{X}\right), \\
& =\frac{K-1}{X}-\frac{\frac{K-1}{X-1}}{X}=0 .
\end{align*}
$$

This proves the theorem.
Theorem (1.2). We have
(1.8) $s\left(\frac{K-3}{X}\right)=\frac{K-3}{s(X)}=s(X)$,

$$
t\left(\frac{K-3}{X}\right)=\frac{K-3}{t(X)}=\frac{K-3}{X}-\frac{K-1}{X}
$$

(1.9) $\frac{K-2}{s(X)}=s\left(\frac{K-2}{X}\right)=\frac{K-2}{X}, \frac{K-2}{t(X)}=t\left(\frac{K-2}{X}\right)=0$;

$$
\begin{equation*}
\operatorname{rank}(s)=2^{r-n}, \operatorname{rank}(t)=2 n-2 r . \tag{1.10}
\end{equation*}
$$

Proof. By virtue of (1.1), (1.2) and (1.3), we have

$$
\begin{align*}
\frac{K-3}{s(X)} & =s\left(\frac{K-3}{X}\right) \\
& =\left(\frac{K-3}{X}\right)=\left(\frac{K-1}{X}\right), \\
& =\left(\frac{K-4}{X}\right)=\left(\frac{\frac{K-4}{K}}{X}\right), \tag{1.11}
\end{align*}
$$

$$
\begin{gather*}
=\left(\frac{\frac{K-(K-1)}{K-2}}{X}\right)=\left(\frac{\frac{1}{X-2}}{X}\right), \\
=\frac{K-1}{X}=s(X) ; \\
\frac{K-3}{t(X)}=t\left(\frac{K-3}{X}\right)=\frac{K-3}{X}-\left(\frac{K-1}{X}\right)=\frac{K-3}{X}-\frac{K-1}{X} . \tag{1.12}
\end{gather*}
$$

Barring X in (1.11) and using (1.1) and (1.3), we obtain

$$
\frac{K-2}{s(X)}=s\left(\frac{K-2}{X}\right)=\frac{K}{X}=\frac{K-2}{X} .
$$

Barring X in (1.12) and using (1.1) and (1.3), we obtain

$$
\frac{K-2}{t(X)}=t\left(\frac{K-2}{X}\right)=\frac{K-2}{X}-\frac{K}{X}=0 .
$$

The proof of (1.10) follows directly by virtues of the equations (1.1), (1.2) and (1.3).

Let $\pi_{2 r-n}$ and $\pi_{2 n-2 r}$ be the complementary distributions corresponding to the projection operators s and t respectively. Then $\pi_{2 r-n}$ and $\pi_{2 n-2 r}$ are ($2 r-n$) and ($2 n-2 \mathrm{r}$)-dimensional. Obviously, $n \leq 2 r \leq 2 n$.

Remark (1.1). If $\operatorname{rank}(\xi)=n$, then from (1.10) $t=0$. In this case (1.3) reduces to

$$
\begin{equation*}
X-\frac{K-1}{X}=0 . \tag{1.13}
\end{equation*}
$$

Barring X twice in (1.13), we have

$$
\frac{2}{X}-\left(\frac{\frac{1}{K}}{X}\right)=0
$$

or,

$$
\frac{2}{X}-\frac{K-1}{X}=0
$$

in consequence of (1.1). This in view of (1.13) yields

$$
\begin{equation*}
\frac{2}{X}-X=0 \tag{1.14}
\end{equation*}
$$

From which we conclude that $\boldsymbol{\xi}$ is an almost product structure.
2. $\boldsymbol{\xi}(K,-(K-2))$-structure:

In this section, we shall study some results connected with the $\xi(K,-(K-2))$ structure when K is odd.| We shall also define a metric tensor g in a differentiable manifold with $\leftrightarrow \xi(K,-(K-2))$-structure.
Theorem (2.1). $\boldsymbol{\xi}(K,-(K-2))$-structure is not unique. Let τ be a non-singular vector valued linear function in V_{n}. Then η defined by

$$
\begin{equation*}
\tau(\eta(X)) \underset{\operatorname{def}}{=} \frac{1}{\tau(X)} \tag{2.1}
\end{equation*}
$$

is also $\xi(K,-(K-2))$-structure.
Proof. In consequence of (2.1), we have

$$
\begin{equation*}
\frac{K-1}{\tau(\eta(X))}=\frac{K-2}{\tau\left(\eta^{2}(X)\right)}=\frac{K-3}{\tau\left(\eta^{3}(X)\right),} \tag{2.2}
\end{equation*}
$$

$$
=\frac{K-K}{\tau\left(\eta^{K}(X)\right)}=\tau\left(\eta^{\mathbb{E}}(\mathbf{X})\right) .
$$

Also from (1.1) and (2.1), we have

$$
\begin{align*}
\frac{K-1}{\tau(\eta(X))} & =\frac{K}{\tau(X)}=\frac{K-2}{\tau(X),} \\
& =\frac{K-K}{\tau(\eta(X))}=\frac{K-4}{\tau\left(\eta^{2}(X)\right),} \tag{2.3}
\end{align*}
$$

$$
=\frac{K-K}{\tau\left(\eta^{K-2}(X)\right)}=\tau\left(\eta^{K-2}(X)\right)
$$

From (2.2) and (2.3), we have

$$
\tau\left(\eta^{\mathbb{K}}(X)-\eta^{\mathbb{K}-2}(X)\right)=0 .
$$

Since τ is non-singular, we obtain

$$
\eta^{\mathbf{K}}(X)-\eta^{K-2}(X)=0 .
$$

This proves the statement.
Theorem (2.2). Let S and T be the operators for η corresponding to the operators s and t for $\xi(K,-(K-2))$-structure respectively. Then we have

$$
\begin{gather*}
\tau(S(X))=s(\tau(X)), \tau(T(X))=t(\tau(X)) ; \tag{2.4}\\
\tau(S(X)+T(X))=\tau(X) \tag{2.5}
\end{gather*}
$$

Proof. By virtue of (1.2), (1.3) and (2.1), we have

$$
\begin{aligned}
& \tau(S(X))=\tau\left(\eta^{K-1}(X)\right)=\frac{1}{\tau\left(\eta^{K-2}(X)\right),} \\
&=\frac{2}{\tau\left(\eta^{K-3}(X)\right)}=\frac{3}{\tau\left(\eta^{K-1}(X)\right),} \\
&=\frac{K-1}{\tau\left(\eta^{K-K}(X)\right)}=\frac{K-1}{\tau(X),} \\
&=s(\tau(X)) ; \\
& \tau(T(X))=\tau(X)-\tau\left(\eta^{K-1}(X)\right)=\tau(X)-\frac{K-1}{\tau(X)}=t(\tau(X)) .
\end{aligned}
$$

The proof of (2.5) follows directly by virtue of the equations (1.4) and (2.4).
Theorem (2.3). We have

$$
\begin{gather*}
\tau\left(S^{2}(X)\right)=s(\tau(X)), \tau\left(T^{2}(X)\right)=t(\tau(X)) ; \tag{2.6}\\
\tau(S(T(X)))=\tau(T(S(X)))=0 \tag{2.7}
\end{gather*}
$$

Proof. The proof of the theorem follows by virtue of the equations (1.5), (1.6), (1.7) and (2.4).

Theorem (2.4). We have

$$
\begin{align*}
& \frac{K-3}{\tau(S(X))}=s(\tau(X)), \frac{K-3}{\tau(T(X))}=\frac{K-3}{t(\tau(X))} ; \tag{2.8}\\
& \frac{K-2}{\tau(S(X))}=\frac{K-2}{s(\tau(X)),}, \frac{K-2}{\tau(T(X))}=0 . \tag{2.9}
\end{align*}
$$

Proof. The proof of the theorem follows by virtue of the equations (1.8), (1.9), and (2.4).

In the manifold V_{n} with $\boldsymbol{\xi}(K,-(K-2))$ - structure, we can always introduce a metric tensor g as follows. Let

$$
\begin{equation*}
g\left(\frac{K-2}{X}, \frac{K-2}{Y}\right) \stackrel{\operatorname{def}}{=} g\left(\frac{K-1}{X}, \frac{K-3}{Y}\right) \stackrel{\operatorname{def}}{=}\left(\frac{K-3}{X}, \frac{K-1}{Y}\right) . \tag{2.10}
\end{equation*}
$$

Since
(i) g is symmetric and
(ii) repeated operation of barring X or Y in (2.10) yields the same set of equations and there is no contradiction; therefore, we are justified in assuming g as given in (2.10).

Let es put

$$
\begin{equation*}
t^{*}\left(\frac{K-3}{X}, \frac{K-3}{Y}\right) \stackrel{\operatorname{def} g\left(t\left(\frac{K-3}{=}\right), \frac{K-3}{Y}\right) \stackrel{\operatorname{def}}{=} g\left(\frac{K-3}{X}, t\left(\frac{K-3}{Y}\right)\right) . . ~}{=} \tag{2.11}
\end{equation*}
$$

Then by virtue of 1.8 and (2.10), equation (2.11) becomes

$$
\begin{equation*}
t^{*}\left(\frac{K-3}{X}, \frac{K-3}{Y}\right)=g\left(\frac{K-3}{X}, \frac{K-3}{Y}\right)-g\left(\frac{K-2}{X}, \frac{K-2}{Y}\right) . \tag{2.12}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
g\left(\frac{K-2}{X}, \frac{K-2}{Y}\right)=g\left(\frac{K-3}{X}, \frac{K-3}{Y}\right)-t^{*}\left(\frac{K-3}{X}, \frac{K-3}{Y}\right) . \tag{2.13}
\end{equation*}
$$

Equations (2.10) and (2.13), in consequence of (1.1), (1.9) and (2.11), are both equivalent to

$$
\begin{equation*}
g\left(\frac{K-1}{X}, \frac{K-1}{Y}\right)=g\left(\frac{K-2}{X}, \frac{K-2}{Y}\right) . \tag{2.14}
\end{equation*}
$$

From (2.10) we also have

$$
\begin{equation*}
g\left(\frac{K-1}{X}, \frac{K-2}{Y}\right)-g\left(\frac{K-2}{X}, \frac{K-1}{Y}\right)=0 . \tag{2.15}
\end{equation*}
$$

In consequence of (1.1) and (2.10), equation (2.15) becomes

$$
\begin{equation*}
g\left(\frac{K-2}{X}, \frac{K-3}{Y}\right)-g\left(\frac{K-3}{X}, \frac{K-2}{Y}\right)=0 . \tag{2.16}
\end{equation*}
$$

Theorem (2.5). Let G be the metric for η corresponding to the metric g for $\boldsymbol{\xi}(K,-(K-2)$ - structure, such that

$$
\begin{equation*}
G(X, Y) \stackrel{\operatorname{def}}{=} g(\tau(X), \tau(Y)) . \tag{2.17}
\end{equation*}
$$

Then G also satisfies an equation of the form (2.13), i.e.

$$
\begin{align*}
& G\left(\eta^{\mathbb{K}-2}(X), \eta^{K-2}(Y)\right)= \tag{2.18}\\
& G\left(\eta^{K-s}(X), \eta^{K-s}(Y)\right)- \\
& \quad-T^{*}\left(\eta^{K-s}(X), \eta^{K-s}(Y)\right),
\end{align*}
$$

where

$$
\begin{equation*}
\stackrel{\operatorname{def}}{=} G\left(\eta^{K-s}(X), T\left(\eta^{K-s}(Y)\right)\right) . \tag{2.19}
\end{equation*}
$$

Proof. By virtue of (2.3), (2.8), (2.11), 2.13) and (2.17), we have

$$
\begin{gathered}
G\left(\eta^{\mathrm{K}-2}(X), \eta^{K-2}(Y)\right) \\
=g\left(\tau\left(\eta^{\mathrm{K}-2}(X)\right), \tau\left(\eta^{\mathrm{K}-2}(Y)\right)\right), \\
=\frac{K-2}{g(\tau(X),} \frac{K-2}{\tau(Y)),} \\
= \\
=\frac{K-3}{(\tau(X)}, \frac{K-3}{\tau(Y))}- \\
- \\
t^{*} \frac{K-3}{(\tau(X),} \frac{K-3}{\tau(Y)),}
\end{gathered}
$$

a difperentiable manifold with $\boldsymbol{\xi}(\mathrm{x}$, -($\mathrm{x}-2)$) -structure of rant r 61

$$
\begin{aligned}
& =\frac{K-3}{g(\tau(X)}, \frac{K-3}{\tau(Y))}- \\
& -g\left(t \left(\frac{K-3}{\tau(X))}, \frac{K-3}{\tau(Y)),}\right.\right. \\
& =\frac{K-3}{g(\tau(X)}, \frac{K-3}{\tau(Y))}- \\
& -g\left(\frac{K-3}{\tau(T(X)),} \frac{K-3}{\tau(Y)) .}\right.
\end{aligned}
$$

Now from (2.1) we have

$$
\begin{gather*}
\frac{K-3}{\tau(X)}=\frac{K-4}{\tau(\eta(X))}= \\
=\frac{K-5}{\tau\left(\eta^{2}(X)\right),} \tag{2.21}
\end{gather*}
$$

$$
=\frac{K-K}{\tau\left(\eta^{K-3}(X)\right)}=\tau\left(\eta^{K-3}(X)\right) .
$$

Therefore, in consequence of (2.17), (2.19) and (2.21), equation (2.20) becomes $\boldsymbol{G}\left(\boldsymbol{\eta}^{\boldsymbol{K}-\mathbf{2}}(\boldsymbol{X}), \boldsymbol{\eta}^{\boldsymbol{K}-\mathbf{2}}(\boldsymbol{Y})\right)$

$$
\begin{gathered}
=g\left(\tau\left(\eta^{K-s}(X)\right), \tau\left(\eta^{K-s}(Y)\right)\right)- \\
-g\left(\tau\left(\eta^{K-s}(T(X))\right), \tau\left(\eta^{K_{-s}}(Y)\right)\right), \\
=G\left(\eta^{K-s}(X), \eta^{K_{-s}}(Y)\right)- \\
-G\left(T\left(\eta^{K-s}(X)\right), \eta^{K-s}(Y)\right), \\
=G\left(\eta^{K-s}(X), \eta^{K-s}(Y)\right)- \\
\left.-T^{*}\left(\eta^{K-s}(X)\right), \eta^{K-s}(Y)\right) .
\end{gathered}
$$

Thus G satisfies an equation of the form (2.13).

62 v.c. GUPTA
3. The operators sand (K even):

Let us consider an n-dimensional real differentiable manifold V_{n} of differentiability class C^{r+1}. Let there exist in V_{n} a vector valued linear function $\boldsymbol{\xi}$ satisfying

$$
\begin{equation*}
\frac{K}{X}-\frac{K-2}{X}=0,\left(2 \operatorname{rank} \xi-\operatorname{rank} \xi^{\mathbb{K}-2}\right)=\operatorname{dim} \dot{V}_{n} \tag{3.1}
\end{equation*}
$$

for an arbitrary vector field X, where we adopt the following notation for bar over X :

$$
\begin{equation*}
\stackrel{\frac{K}{X}}{\stackrel{\operatorname{def}}{=} \xi^{K}(X),} \tag{3.2}
\end{equation*}
$$

$\operatorname{rank}(\xi)=r$ is constant everywhere and K is even. Then ξ is called $a^{\prime} \xi(K,-$ - ($K-2$)) - structure of rank r^{\prime} and V_{n} is called an n-dimensional differentiable manifold with $\boldsymbol{\xi}(K,-(K-2))$ - structure of rank r.

Agreement (3.1). In the above and in what follows, the equations containing X, Y hold for arbitrary vector fields X, Y, etc.

Let us put

$$
\begin{equation*}
s(X) \underset{=}{\operatorname{def}} \frac{K-2}{X}, t(X) \underset{=}{\operatorname{def} X}-\frac{K-2}{X} . \tag{3.3}
\end{equation*}
$$

Thus we have
Theorem (3.1). For a vector valued linear function $\boldsymbol{\xi}$ satisfying (3.1), the operators s and t defined by (3.3) and applied to the tangent space at each point of the manifold are complementary projection operators.
Theorem (3.2). We have

$$
\begin{gather*}
\left\{\begin{array}{l}
s\left(\frac{K-3}{X}\right)=\left(\frac{K-3}{s(X)}\right)=\frac{K-1}{X}, \\
t\left(\frac{K-3}{X}\right)=\frac{K-3}{t(X)}=\frac{K-3}{X}-\frac{K-1}{X} ;
\end{array}\right. \tag{3.4}\\
\frac{K-2}{s(X)}=\frac{K-2}{s(X)}=s(X), \frac{K-2}{t(X)}=\frac{K-2}{t(X)}=0 ; \tag{3.5}\\
\operatorname{rank}(s)=2 r-n, \operatorname{rank}(t)=2 n-2 r . \tag{3.6}
\end{gather*}
$$

The proofs of theorems (3.1) and (3.2) follow from the pattern of the proofs of theorems (1.1) and (1.2) respectively.

Let $\pi_{2 r-n}$ and $\pi_{2 n-2 r}$ be the complementary distributions corresponding to the projection operators s and t respectively. Then $\pi_{2 r-n}$ and $\pi_{2 n-2 r}$ are (2r-n) and ($2 n-2 r$) - dimensional. Obviously, $n \leq 2 r \leq 2 n$.

Remark (3.1). If rank (ξ) $=n$, then from (3.6) $t=0$. In this case (3.3) reduces to

$$
\begin{equation*}
x=\frac{K-2}{X}=0 \tag{3.7}
\end{equation*}
$$

Barring X twice in (3.7), we have

$$
\frac{2}{X}=\frac{K}{X}=0
$$

or,

$$
\frac{2}{X}=\frac{K-2}{X}=0
$$

in consequence of (3.1). This in view of (3.7) yields

$$
\begin{equation*}
\frac{2}{X}-X=0 \tag{3.8}
\end{equation*}
$$

From which we conclude that ξ is an almost product structure.
4. $\boldsymbol{\xi}(K,-(K-2))$-structure (K even $)$:

In this section, we shall study some results connected with the $\boldsymbol{\xi}$ (K, -- ($K-2)$) - structure when K is even. We shall also define a metric tensor g in a differentiable manifold with $\boldsymbol{\xi}(K,-(K-2))$ - structure.

Now we have the following theorems:
Theorem (4.1). $\xi(K,-(K-2))$ - structure is not unique. Let τ be a nonsingular vector valued linear function in V_{n}. Then η defined by is also $\xi(K,-(K-2))$ - structure.

$$
\begin{equation*}
\tau(\eta(X)) \stackrel{\operatorname{def}}{=} \frac{1}{\tau(X)} \tag{4.1}
\end{equation*}
$$

Theorem (4.2). Let S and T be the operators for η corresponding to the operators s and t for $\xi(K,-(K-2))$ - structure \longleftrightarrow respectively. Then we have

$$
\begin{gather*}
\tau(S(X))=s(\tau(X)), \tau(T(X))=t(\tau(X)) ; \tag{4.2}\\
\tau(S(X)+T(X))=\tau(X) \tag{4.3}
\end{gather*}
$$

Theorem (4.3). We have

$$
\begin{gather*}
\tau\left(S^{2}(X)\right)=s(\tau(X)), \tau\left(T^{2}(X)\right)=t(\tau(X)) ; \tag{4.4}\\
\tau(S(T(X)))=\tau(T(S(X)))=0 . \tag{4.5}
\end{gather*}
$$

Theorem (4.4). We have

$$
\begin{equation*}
\frac{K-3}{\tau(S(X))}=\frac{K-3}{s(\tau(X)),} \frac{K-3}{\tau(T(X))}=\frac{K-3}{t(\tau(X)) ;} \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{K-2}{\tau(S(X))}=s(\tau(X)), \frac{K-2}{\tau(T(X))}=0 . \tag{4.7}
\end{equation*}
$$

The proofs of theorems (4.1), (4.2), (4.3) and (4.4) are similar to those of theorems (2.1), (2.2), (2.3) and (2.4) respectively.

In the manifold V_{n} with $\xi(K,-(K-2))$ - structure, we can always introduce a metric tensor g as follows. Let

$$
\begin{equation*}
g\left(\frac{K-2}{X}, \frac{K-2}{Y}\right) \stackrel{\operatorname{def}}{=} g\left(\frac{K-1}{X}, \frac{K-3}{Y}\right) \stackrel{\operatorname{def}}{=} g\left(\frac{K-3}{X}, \frac{K-1}{Y}\right) . \tag{4.8}
\end{equation*}
$$

Since
(i) g is symmetric and
(ii) repeated operation of barring X or Y in (4.8) yields the same set of equations and there is no contradiction; therefore, we are justified in assuming g as given in (4.8).

Let us put

$$
\begin{align*}
& t * \frac{K-3}{(X,} \frac{K-3}{Y)} \stackrel{\operatorname{def}}{=} \tag{4.9}\\
& \quad \frac{K-3}{(t)} \frac{K-3}{Y)} \stackrel{\operatorname{def}}{=} g\left(\frac{K-3}{X}, \quad \frac{K-3}{t(Y))}\right.
\end{align*}
$$ Then by virtue of (3.4) and (4.8), equation (4.9) becomes

$$
\begin{gather*}
t * \frac{K-3}{(X,} \frac{K-3}{Y)}=g \frac{K-3}{(X,} \frac{K-3}{Y)} \tag{4.10}\\
-g \frac{K-2}{(X,} \frac{K-2}{Y)}
\end{gather*}
$$

Therefore

$$
\begin{gather*}
\frac{K-2}{(X,} \frac{K-2}{Y)}=g\left(\frac{K-3}{X}, \frac{K-3}{Y)}\right. \tag{4.11}\\
-t * \frac{K-3}{(X,} \frac{K-3}{Y)}
\end{gather*}
$$

Equations (4.8) and (4.11), in consequence of (3.1), (3.5) and (4.9), are both equivalent to

$$
\begin{equation*}
g \frac{K-1}{(X,} \frac{K-1}{Y)}=g\left(X, \frac{K-2}{Y)}\right. \tag{4.12}
\end{equation*}
$$

From (4.8) we also have

$$
\begin{equation*}
g\left(\frac{K-1}{X}, \frac{K-2}{Y)}-g\left(X, \quad \frac{K-2}{Y)}=0\right.\right. \tag{4.13}
\end{equation*}
$$

In consequence of (3.1) and (4.8), equation (4.13) becomes

$$
\begin{equation*}
g \frac{K-2}{X}, \frac{K-3}{Y)}-g\left(X, \quad \frac{K-3}{Y)}=0\right. \tag{4.14}
\end{equation*}
$$

Theorem (4.5). Let G be the metric for η corresponding to the metric g for $\xi(K,-(K-2))$ - structure, such that

$$
\begin{equation*}
G(X, Y) \stackrel{\operatorname{def}}{=} g(\tau(X), \tau(Y)) . \tag{4.15}
\end{equation*}
$$

Then \boldsymbol{G} also satisfies an equation of the form (4.11), i.e.

$$
\begin{align*}
G\left(\eta^{\mathbf{K}-2}(X),\right. & \left.\eta^{K-2}(Y)\right) \tag{4.16}\\
& =G \quad \eta^{\mathbf{K - s}}(X), \eta^{K-s}(Y) \quad- \\
& -T^{*}\left(\eta^{K-s}(X), \eta^{K-s}(Y)\right),
\end{align*}
$$

where

$$
\begin{align*}
& T^{*}\left(\eta^{K-8}(X), \eta^{K-s}(Y)\right) \operatorname{def} \tag{4.17}\\
&= G\left(T\left(\eta^{K-s}(X)\right), \eta^{\mathbf{K}-8}(Y)\right), \\
&= G\left(\eta^{K-8}(X), T\left(\eta^{K-s}(Y)\right) .\right. \\
&=
\end{align*}
$$

Proof. The proof of the theorem follows from the pattern of the proof of theorem (2.5).

Acknowledgements. I am grateful to Dr. M. D. Upadhyay, for his kind help and continual guidance during the preparation of this paper. I am also thankful to C.S.I.R., New Delhi, for financial assistance in the form of Post Doctoral Fellowship.

REFERENCES

1. Gupta, V.C.: On a structure defined by a (1,1) tensor field $\xi(\xi \neq 0, \mathrm{I}$) satisfying $\xi^{\mathrm{X}}-\xi^{\mathrm{K} \rightarrow}=0$, Acta Mexicana de Ciencia y Tecnologia, Vol. VIII, Nos. 1-2-3, 1974, pp. 65-72.
2. Mishra, R.S.: A differentiable manifold with f-structure of rank r, Tensor, N.S., Vol. 27, 1973, pp. 369-378.

Department of Mathematics
and Astronomy,
Lucknow University,
Lucknow (INDIA).

[^0]: *The manuscript of mathematical research paper entitled. "A differentiable manifold with $\boldsymbol{\xi}(K,-(K-2))$ - structure of rank $r "$ by V.C. Gupta, Department of Mathematics. Lucknow University Lucknow (INDIA), for publication in Acta Mexican de Ciencia y Pecnologia, MEXICO.
 ** In sections 1 and 2, we have taken K odd and in sections 3 and 4, K is taken even.

