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A diferentiable manifold with
(k, -(k-2)) - structure of rank r

P

SUMMARY

Recently, while studying a differentiable manifold with f-structure of rank r,
Mishra[?] has made use of a tensor as a vector valued linear function. The
E(K,— (K—2)) — structure has been defined and studied by the author
in{*]. The purpose of the present paper is to study a differentiable manifold with
€ (K,— (K—2)) — structure of rank r, following this approach. In this paper
we have defined a metric tensor g in a differentiable manifold with § (K, — (K —
—2)) — structure. We have considered the cases when K is odd or even,
separately. A large number of results in terms of the operators s and ¢ have been
obtained.

by V.C. GUPTA*

1. The operators s and t:

Let us consider an n-dimensional real differentiable manifold V, of diffe-
rentiability clase C™'. Let there exist in V, a vector valued linear function §

satisfying

K K-—2 .
(1.1) 5 = O™ (2 rank E—rank ) = dim V.,

for an arbitrary vector field X, where we adopt the following notation for bar
over X:

(12) ~ def & (X),

rank (E) =r is constant everywhere and K is odd. Then § is called a ‘§ (K,—
— (K —2)) — structure of rank  and V, is called an n-dimensional dif-
ferentiable manifold with § (K,— (K —2)) — structure of rank r.

* The manuscript of mathematical research paper entitled. “A differentiable manifold
with € (K, — (K — 2)) — structure of rank r”’ by V.C. Gupta, [Department emati
cknow University/Lucknow (INDIA), for publication in Acta Mexicana de Ciencia y Tec-
nologia, .
*# In sections 1 and 2, we have taken K odd and in sections 3 and 4, K is taken even.
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Agreement (1.1). In the above and in what follows, the equations containing
X, Y hold for arbitrary vector fields X, Y etc.
Let us put

K_l,t(X) defX—K_l

(1.3) 5 (X) def

Now we shall prove the following:

Theorem (1.1). For a vector valued linear function § satisfying (1.1), the oper-
ators s and ¢ defined by (1.3) and applied to the tangent space at each point of
the manifold are complementary projection operators.

Proof. By virtue of (1.1), (1.2) and (1.3), we have

(1.4) s(X) +t(X) =X;
2 (X) =5 (s (X)) = xnx =L
xXxx X
K—1%% K_9
K—1 K
K—2 K—4
K—2 K
= = F )
(15)

K—(K—1) 1
K—2 K—2

= (—) = (=)

K—1
2 (X) =t (¢ (X)) =t (X)—¢(

)s

K—1

=s(X);

K-1

=... (2K-2) times
) means X

D¢

##% Here and in what follows, (
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K—1
_x K—1 K—1 K—1
T X x Tx ) o
(1.6)
=X—K_l=t(X);
K—1
t(s (X)) =s(t (X)) =s(X)—s( ),
K—1
K—1 K—1
(1.7) = — = 0.
X X
This proves the theorem.
Theorem (1.2). We have
a8 (-2
o K} = =S N
X s (X) )

, K—=3 K—3 K—3 K—1
(X)_t(X)— X x

K—2 K—2 K—2 K—2  K—2
e A LA SrYs o =t =0

(1.10) rank (5s) = 2*", rank (¢) = 2n— 2r.
Proof. By virtue of (1.1), (1.2) and (1.3), we have

K—3 K—3
= ( )s

s(X). X
K—1 K—4
K—3 K
—(T)——( a ),
K—4 K—6
K—2 K

(1.11) = ( ) =(



56 v.c. GUPTA

K—(K—1) 1
-2 =&,
K—1
= X = s(X);
K—1
K—3 K—3 K-—3 K—3 K—3 K—1

Barring X in (1.11) and using (1.1) and (1.3), we obtain

K—2 _s(K—'2) _K_K-—2
s(X) - x ' x  Xx °

Barring X in (1.12) and using (1.1) and (1.3), we obtain

K—2 _K—2 K—2 K
= t( ) = —==0.
t(X) X X X

The proof of (1.10) follows directly by virtues of the equations (1.1), (1.2) and
(1.3).

Let gy and mz,, be the complementary distributions corresponding to the
projection operators s and ¢ respectively. Then 72, and s, are (2r —n) and
(2n — 2r) -dimensional. Obviously, n < 2r < 2n.

Remark (1.1). If rank (E) = n, then from (1.10) ¢ =0. In this case (1.3) re-
duces to

(1.13) x_X=-1_,
Barring X twice in (1.13), we have
1
K
:Yz—_(_X—) =0
> 2 K—1
¥~ x %

in consequence of (1.1). This in view of (1.13) yields

2
(1.14) < —X=0.
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From which we conclude that § is an almost product structure.
2. E(K, — (K — 2))-structure:

In this section, we shall study some results connected with the E(K,— (K — 2))-
structure when K is odd.| We shall also define a metric tensor g in a differentiable
manifold with & E(K, —(K — 2) ) -structure,

Theorem (2.1). E(K,—(K — 2))-structure is not unique. Let r be a non-singular
vector valued linear function in V,,. Then 5 defined by

1
(2.1) r(n(X)) d=ef %)
is also §(K,—(K — 2) ) -structure.
Proof. In consequence of (2.1), we have
K—1  K-—2 K—3

(0 (X)) (X)) (X)),

(2.2)
K—K
=———— = 7(9"(X)).
ey - )
Also from (1.1) and (2.1), we have
K—1 K K—2

(X)) | #X)  (X),

K—K _ K—4

2.3 = =
(23) (n (X))  (n*(X)),

__K—K _ .y
ey )

From (2.2) and (2.3), we have

#(1K(X) — 7%2(X)) = 0.



58 v.c. cuPTA

Since r is non-singular, we obtain
7*(X) — 9**(X) =0.
This proves the statement.

Theorem (2.2). Let S and T be the operators for 5 corresponding to the operators
s and ¢ for §(K, —(K — 2) )-structure respectively. Then we have

(2.4) 7(§(X)) = s((X)), 7(T(X)) = t(s(X));
(2.5) 7(S(X) + T(X)) = r(X).
Proof. By virtue of (1.2), (1.3) and (2.1), we have

1
7(8(X)) = ("2 (X)) = 7(5*2(X)),

2 3
=7(*2 (X)) = (5 (X)),

_K=1  p
= D) =
= s(«(X));
K—1

7(T(X)) = 7(X) —7("*(X)) = 7(X) — = t(r(X)).

(X)

The proof of (2.5) follows directly by virtue of the equations (1.4) and (2.4).
Theorem (2.3). We have

(2.6) 7(§2(X)) = s(+(X)), 7(T*(X)) = t(r(X));

(2.7) 7(S(T(X))) = +(T($(X))) =0.

Proof. The proof of the theorem follows by virtue of the equations (1.5), (1.6),
(1.7) and (2.4).
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Theorem (2.4). We have

K—3 K—3 K-—3
(28) 7(S(X)) = s((X)), 7(T(X)) = t((X));

K—2 K—2 K-—2
(2.9) 7(§(X)) = s(=(X)), 7(T(X)) =0.

Proof. The proof of the theorem follows by virtue of the equations (1.8), (1.9),
and (2.4).

In the manifold V, with §(K,— (K —2) ) — structure, we can always introduce
a metric tensor g as follows. Let

(2.10) (——2K—)df( IK )def( 3KY_1.

Since

(i) g is symmetric and
(ii) repeated operation of barring X or Y in (2.10) yields the same set of equations
and there is no contradiction; therefore, we are justified in assuming g as given in

(2.10).

Let es put

K—3 K—3 K—3 K-—3 K—3 K-—3

) def g (¢(——) , ——) def g(—5—, H(—F—))-

(2.11) ¢* (

Then by virtue of 1.8 and (2.10), equation (2.11) becomes

K—3 K—3 —3 K 3 2 K—2
2.12 t* , = —_— y .
212) (2, B0 =gt ) —e(= —
Therefore

K—2 K—2 K—3 K—3 K—3 K-—3
1 = — . .
(2.13) g( ¥ 7 ) = &( R ) ( 3 7 )

Equations (2.10) and (2.13), in consequence of (1.1), (1.9) and (2.11), are both
equivalent to

K—1 K—1 K—2 K—2

(2.14) o) m e

).
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From (2.10) we also have

K—1 K—2  K—2 K—I
X v 8~ x Ty

(2.15) g( ) = 0.

In consequence of (1.1) and (2.10), equation (2.15) becomes

K—2 K—3 K—3 K—2
) —e&(

) ’ )=0
X Y X Y

(2.16) &(

Theorem (2.5). Let G be the metric for 5 corresponding to the metric g for
E (K,— (K—2) — structure, such that

(2.17) G (X,Y) dgfg(-r (X)), (Y)).
Then G also satisfies an equation of the form (2.13), i..
(2.18) G (%*(X),n**(Y)) =

G (n*2(X),n"*(Y)) —

— T*(n%*(X),n*2(Y)),
where
T* (9%2(X),n*2(Y)),
def G(T'(n**(X)), 9**(Y)),
(2.19) def G(n*>(X), T(n*(Y))).

Proof. By virtue of (2.3), (2.8), (2.11), 2.13) and (2.17), we have
G (7**(X),n**(Y))

=g (v (0" *(X)), 7 (n**(Y))),

K—2K—2
= g(7(X), 7(Y)),
K—3 K—3

= g(7(X), 7(Y)) —
K—3 K—3
—t*(+(X), (),

(2.20)
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K—3 K—3
= g(r(X), 7(Y)) —

K—3 K—3
—g(t(r(X)), 7(Y)),

K—3 K—3
= g(v(X), 7(Y)) —

K—3 K—3
—&(+(T(X)), 7(Y)).

Now from (2.1) we have

K—3 K—4
(X) =7(n(X)) =

K—5
= v(n*(X)),
(221)
K—K

= 7(9%3(X)) = 7(9**(X)).
Therefore, in consequence of (2.17), (2.19) and (2.21), equation (2.20) becomes

G(n**(X), n**(Y))
= g(r(n"*(X)),r(n"**(Y))) —

— g(r(F(T(X))), 7(s*>(Y))),
= G(1"*(X), 7*(Y)) —
— G(T(45°(X)), 7=*(¥)),
= G(1™*(X), /™*(Y)) —
— T*(152(X)), 7*()).

Thus G satisfies an equation of the form (2.13).
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3. The operators s and t (K even):

Let us consider an n-dimensional real differentiable manifold V, of differentia-
bility class C™*. Let there exist in V, a vector valued linear function § satisfying

K K-—2
(3.1) X— X =0, (2rankt— rank £5?) = dim V,,

for an arbitrary vector field X, where we adopt the following notation for bar
over X:

K
(3.2) X def EX(X),

rank (E) = r is constant everywhere and K is even. Then § is called a’§ (K, —
— (K —2)) — structure of rank 7’ and V, is called an n-dimensional differentia-
ble manifold with § (K,— (K —2)) — structure of rank r.

Agreement (3.1). In the above and in what follows, the equations containing X, Y
hold for arbitrary vector fields X, Y, etc.

Let us put

K—2 K—2

(3.3) s(X)def X ,t(X)defX — X

Thus we have

Theorem (3.1). For a vector valued linear function § satisfying (3.1), the opera-
tors s and ¢ defined by (3.3) and applied to the tangent space at each point of the
manifold are complementary projection operators.

Theorem (3.2). We have

K—3 K—3 K—1
(34) ) =) =T
(K=3, _K=3 K—3 K—1
X ' wx) x @ x
K—2 K—2 K—2 K—2
(33) @ s Tm T am Y

(3.6) rank (s) = 2r-n, rank (t) = 2n-2r.
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The proofs of theorems (3.1) and (3.2) follow from the pattern of the proofs
of theorems (1.1) and (1.2) respectively.

Let 72— and my,— be the complementary distributions corresponding to the
projection operators s and ¢ respectively. Then w5, and .., are (2r-n) and
(2n — 2r) — dimensional. Obviously, n < 2r < 2n.

Remark (3.1). 1If rank (E) = n, then from (3.6) ¢ = 0. In this case (3.3)
reduces to

K—2
3.7 X = = 0.
(37) :
Barring X twice in (3.7), we have
2_kK_,
X X
or,
_2_=K—2 ~0,
X X

in consequence of (3.1). This in view of (3.7) yields

2
3.8 ——X=0.
(38) X

From which we conclude that § is an almost product structure.
4. E(K,— (K—2)) — structure (K even):

In this section, we shall study some results connected with the § (K, —
— (K —2)) —structure when K is even. We shall also define a metric tensor g
in a differentiable manifold with § (K, — (K — 2) ) — structure.

Now we have the following theorems:
Theorem (4.1). E (K,— (K —2)) — structure is not unique. Let + be a non-

singular vector valued linear function in V,. Then 5 defined by
is also & (K,— (K —2)) — structure,

(4.1) (7 (X)) def

T
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Theorem (4.2). Let S and T be the operators for 5 corresponding to the operators
s and ¢ for E (K,— (K —2)) — structure «——> respectively. Then we have

(4.2) 7 (§(X)) = s(r(X)), (T (X)) = t(+(X)) ;
(4.3)  (S(X) + T (X)) = 7 (X).
Theorem (4.3). We have

(44) 7 ($*(X)) = s (¢(X)), 7 (T*(X)) =t (+(X)) ;
(4.5) 7 (S(T(X))) =7 (T(S(X))) =0.

Theorem (4.4). We have J—

(4.6) K—3 _ K—3 K—3 _ K—3
TS@) @), T(TX) (X)) ;
K—2 K—2
4.7 2T s (r(X)),——= =
(7) TS AR Te3))

The proofs of theorems (4.1), (4.2), (4.3) and (4.4) are similar to those of
theorems (2.1), (2.2), (2.3) and (2.4) respectively.

In the manifold V, with E (K,— (K —2)) — structure, we can always in-
troduce a metric tensor g as follows. Let

K—2 K—2 K—1 K—3 K—3 K—1
(48) —— ——— def
e( X, Y )=¢ X, Y )=¢ X, Y)

Since

(i) g is symmetric and

(ii) repeated operation of barring X or Y in (4.8) yields the same set of equations
and there is no contradiction; therefore, we are justified in assuming g as given in

(4.8).

Let us put
K—3 K-—3
(4.9) def
t*( X, Y ) =
K—3 K-—-3 K—3 K—3
def

gt( X , Y),=¢( X, t(Y)).
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Then by virtue of (3.4) and (4.8), equation (4.9) becomes

K—3 K-—3 K—3 K-—3
(4.10)
t*(Xs Y)=g(X, Y)
K—2 K-—2
—g (X, Y )
Therefore
K—2 K-—-2 K—3 K-—3
(4.11)

g( X, Y) =g( X, Y )

K—3 K—3
—t* (X, Y)

Equations (4.8) and (4.11), in consequence of (3.1), (3.5) and (4.9), are both
equivalent to

K—1 K—1 K—2 K-—2
e( X, Y)=¢(X, Y)

(4.12)

From (4.8) we also have

K—1 K-—2 K—2 K-—1

(4.13) )
g( X, Y ) —eg( X, Y )=0

In consequence of (3.1 )and (4.8), equation (4.13) becomes

K—2 K-—3 K—3 K-—2

(4.14)
g( X, Y ) —g( X, Y )=0

Theorem (4.5). Let G be the metric for 5 corresponding to the metric g for
E (K,— (K —2)) — structure, such that

(4.15) G(X,Y) def g(+(X),7(Y)).
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Then G also satisfies an equation of the form (4.11), ie.
(4-16) G(n** (X), 0" (Y))
=G 7 (X), 9 (Y) —
—T* (" (X), 9" (Y)),
where
(4.17) T*(9"*(X), #**(Y)) def G(T(y"*(X)), 7**(Y)),

def G(y%*(X), T(45*(Y)).

Proof. The proof of the theorem follows from the pattern of the proof of theorem
(2.5).
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