coucos

On a structure defined by A (1.1) Tensor field $\xi(\xi \neq 0,1)$ satisfying $\xi^{\mathrm{x}}-\xi^{\mathrm{K}-2}=\mathbf{0}$.

V. C. Gupta *
(Recieved, july 1974)

SUMMARY

In this paper we have considered the structure defined by a tensor field ξ ($\xi \neq 0$, I) of the type (1.1) satisfying $\xi^{K}-\xi^{K-2}=0$. In section 1 , we have taken k odd and defined the operators l^{*}, m^{*} and deduced some results in terms of these operators. Some results are as follows:

$$
\begin{gathered}
\xi^{K-2} l^{*}=l^{*} \xi^{K-2}=\xi^{K-2}, \quad \xi^{K-2} m^{*}=m^{*} \xi^{K-2}=0 . \\
p l^{*}=\xi^{K-2}, p m^{*}=m^{*}, \quad v l^{*}=-\xi^{K-2}, v m^{*},=m^{*} .
\end{gathered}
$$

where p and q are tensors.
In section 2, we have taken k even and most of the results are similar to those of section 1 .

1. Let M^{n} be an n-dimensional differentiable manifold of class C^{∞} and let there be given a tensor field $\xi(\xi \neq 0, I)$ of the type (1.1) and of class C^{∞}, satisfying:

$$
\begin{equation*}
\xi^{K}-\xi^{K-2}=0 . \tag{1.1}
\end{equation*}
$$

where $\left(2 \operatorname{rank} \xi-\operatorname{rank} \xi^{K-1}\right)=\operatorname{dim} M^{n} . \dagger$
Let us define the operators $l^{*} m^{*}$ by

$$
\begin{equation*}
l^{*}=\xi^{K-1}, m^{*}=\left(I-\xi^{K-1}\right), \dagger \tag{1.2}
\end{equation*}
$$

I denoting the identity operator. Then we have.
Theorem (1.1): For a tensor field $\xi(\xi \neq 0, I)$ satisfying (1.1) the operators l^{*}, m^{*} defined by (1.2) and applied to the tangent space at a point of the manifold are complementary projection operators.
\dagger In section 1 we have taken k odd.

Proof: By virtue of (1.1) and (1.2) we have

$$
\begin{aligned}
l^{*}+m^{*} & =\xi^{K-1}+I-\xi^{K-1}=I \\
l^{* 2} & =\xi^{2 K-2}=\xi^{K} \cdot \xi^{K-2} \\
& =\xi^{K-2} \cdot \xi^{K-2}=\xi^{K} \cdot \xi^{K-4} . \\
& =\xi^{K-2} \cdot \xi^{K-4}=\xi^{K} \cdot \xi^{K-6} \\
& =\xi^{K-2 .} \xi^{K-(K-1)}=\xi^{K-2} \cdot \xi \\
& =\xi^{K-1}=l^{*} \\
m^{* 2} & =I+\xi^{K-2}-2 \xi^{K-1}=I+\xi^{K-1}-2 \xi^{K-1} \\
& =I-\xi^{K-1}=m^{*} \\
l^{*} m^{*} & =\xi^{K-1}\left(I-\xi^{K-1}\right)=\xi^{K-1}-\xi^{2 K-2} \\
& =\xi^{K-1}-\xi^{K-1}=0=m^{*} l^{*}
\end{aligned}
$$

which proves the theorem.
Let L^{*} and M^{*} be the complementary distributions corresponding to the projection operators l^{*}, m^{*} respectively.

Let the rank of ξ be constant and be equal to r, then from (1.1) we have

$$
\operatorname{dim} L^{*}=2 r-n \text { and } \operatorname{dim} M^{*}=(2 n-2 r)
$$

Here $\operatorname{dim} M^{*}$ is even but $\operatorname{dim} L^{*}$ is not necessarily even. Obviously

$$
n \leq 2 r \leq 2 n
$$

We call such a structure a $\xi(k-(k-2))$ structure of rank r and the manifold M^{n} with this structure a $\xi(k,-(k-2))$ manifold.

Theorem (1.2):For a tensor field $\xi(\xi \neq 0, I)$ satisfying (1.1) and $\boldsymbol{l}^{*}, m^{*}$ defined by (1.2) we have

$$
\begin{align*}
\xi^{K-2} l^{*}=l^{*} \xi^{K-2} & =\xi^{K-2}, \xi^{K-2} m^{*}=m^{*} \xi^{K-2}=0 . \\
\xi^{K-1} l^{*} & =l^{*}, \xi^{K-1} m^{*}=0 . \tag{1.3}
\end{align*}
$$

Proof: By virtue of (1.1) and (1.2), we have

$$
\begin{aligned}
\xi^{K-2} l^{*} & =\xi^{K-2}\left(\xi^{K-1}\right)=\xi^{2 K-3} \\
& =\xi^{K .} \xi^{K-3}=\xi^{K-2 .} \xi^{K-3}
\end{aligned}
$$

$$
\begin{aligned}
& =\xi^{K .} \xi^{K-5}=\xi^{K-2} . \xi^{K-5} . \\
& =\xi^{K} \cdot \xi^{K-K}=\xi^{K-2} . \xi^{K-K} . \\
& =\xi^{K-2}=l^{*} \xi^{K-2} . \\
\xi^{K-1} l^{*} & =\xi\left(\xi^{K-2} l^{*}\right)=\xi\left(\xi^{K-2}\right)=\xi^{K-1}=l^{*} . \\
\xi^{K-2} m^{*} & =\xi^{K-2}\left(I-\xi^{K-1}\right)=\xi^{K-2}-\xi^{2 K-3} \\
& =\xi^{K-2}-\xi^{K-2}=0=m^{*} \xi^{K-2} . \\
\xi^{K-1} m^{*} & =\xi\left(\xi^{K-2} m^{*}\right)=0 .
\end{aligned}
$$

Corollary 1.1) : ξ acts on L^{*} as an almost product structure operator.
Proof: By virtue of (1.1) and (1.2) we have

$$
\xi^{2} l^{*}=\xi\left(\xi l^{*}\right)=\xi\left(\xi^{K-2}\right)=\xi^{K-1}=l^{*} . \xi l^{*}=l^{*} \xi=\xi\left(\xi^{K-1}\right)=\xi^{K}=\xi^{K-2 .}
$$

Hence the result.
Corollary (1.2): The $\xi(k,-(k-2))$ structure of maximal rank is an almost product structure.

Proof: If the rank of $\xi=n$, then $\operatorname{dim} L^{*}=n$ and $\operatorname{dim} M^{*}=0$.
In this case $m^{*}=0$ and $l^{*}=\mathrm{I}$.
Hence $\boldsymbol{\xi}$ satisfies

$$
I=\xi^{K-1}=0
$$

Applying ξ twice to this equation, we get
i.e.

$$
\begin{aligned}
& \xi^{2}-\xi^{K+1}=0 \text { or } \xi^{2}-\xi\left(\xi^{K}\right)=0 \\
& \xi^{2}-\xi\left(\xi^{K-2}\right)=0 \text { or } \xi^{2}-\xi^{K-1}=0
\end{aligned}
$$

in consequence of (1.1). Since

$$
I-\xi^{K-1}=0
$$

we get

$$
\xi^{2}-I=0 .
$$

Hence the result.
Theorem (1.3): If in M^{n}, there is given a tensor field $\xi, \xi \neq 0$ and $\xi^{K-1} \neq I$, of class C^{∞} such that $\xi^{K}-\xi^{K-2}=o$, then M^{n} admits an almost product structure $\zeta=2 \xi^{K-1}=I$ where $\zeta=l^{*}-m^{*}$.

$$
\begin{aligned}
\xi & =l^{*}-m^{*}=\xi^{K-1}-\left(I-\xi^{K-1}\right) \\
& =2 \xi^{K-1}-I .
\end{aligned}
$$

Then $\zeta \neq I$ if $\xi^{k-1} \neq I$. For if possible, suppose $\zeta=I$, then $\xi^{k-1}=I$, contrary to the hypothesis.

Also

Thus

$$
\begin{aligned}
\zeta^{2} & =4 \xi^{2 k-2}+I-2 \cdot 2 \xi^{k-1} \\
& =4 \xi^{k-1}+I-4 \xi^{k-1}=I .
\end{aligned}
$$

Hence the result.
Theorem (1.4): Let $\underset{h}{p}$ and q be tensors defined by

$$
\begin{equation*}
p=\left(m^{*}+\xi^{K-2}\right), q=\left(m^{*}-\xi^{K-2}\right) \tag{1.4}
\end{equation*}
$$

and l^{*}, m^{*} be defined by (1.2). We have

$$
\begin{align*}
& p l^{*}=\xi^{K-2}, p m^{*}=m^{*}, q l^{*}=-\xi^{K-2}, q m^{*}=m^{*} . \\
& p^{2} l^{*}=l^{*}, p^{2} m^{*}=m^{*}, q^{2} l^{*}=l^{*}, q^{2} m^{*}=m^{*} \tag{1.5}
\end{align*}
$$

i.e. $\quad p$ and q act on L^{*} as an almost product structure operator and on M^{*} as an identity operator.

Proof: In consequence of (1.1), (1.2), (1.3) and (1.4), we have

$$
\begin{aligned}
p l^{*} & =\left(m^{*}+\xi^{k-2}\right) l^{*}=m^{*} l^{*}+\xi^{k-2} l^{*}=0+\xi^{k-2} l^{*}=\xi^{k-2} . \\
p^{2} l^{*} & =p\left(p l^{*}\right)=\left(m^{*}+\xi^{k-2}\right) \xi^{k-2}=m^{*} \xi^{k-2}+\xi^{2 k-4} \\
& =0+\xi^{k} \cdot \xi^{k-4}=\xi^{k-2} \cdot \xi^{k-4} \\
& =\xi^{k} \cdot \xi^{k-6}=\xi^{k-2} \cdot \xi^{k-6} \\
& =\xi^{k} \cdot \xi^{k-(k-1)}=\xi^{k-2} \cdot \xi \\
& =\xi^{k-1}=l_{!}^{*} \\
p m^{*} & =\left(m^{*}+\xi^{k-2}\right) m^{*}=m^{* 2}+\xi^{k-2} m^{*}=m^{*}+0=m^{*} \\
p^{2} m^{*} & =p\left(p m^{*}\right)=p\left(m^{*}\right)=m^{*} \\
q l^{*} & =\left(m^{*}-\xi^{k-2}\right) l^{*}=m^{*} l^{*}-\xi^{k-2} l^{*} \\
& =0-\xi^{k-2} l^{*}=-\xi^{k-2} .
\end{aligned}
$$

$$
\begin{aligned}
q^{2} l^{*} & =q\left(q l^{*}\right)=\left(m^{*}-\xi^{k-2}\right)\left(-\xi^{k-2}\right)=-m^{*} \xi^{k-2}+\xi^{2 k-4} . \\
& =0+\xi^{k} \cdot \xi^{k-4}=\xi^{k-2} \cdot \xi^{k-4} \\
& =\xi^{k} \cdot \xi^{k-6}=\xi^{k-2} \cdot \xi^{k-6} \\
& =\xi^{k} \cdot \xi^{k-(k-1)}=\xi^{k-2} \cdot \xi \\
& =\xi^{k-1}=l^{*} \\
q m^{*} & =\left(m^{*}-\xi^{k-2}\right) m^{*}=m^{* 2}-\xi^{k-2} m^{*}=m^{*}-0=m^{*} \\
q^{2} m^{*} & =q\left(q m^{*}\right)=q\left(m^{*}\right)=m^{*}
\end{aligned}
$$

Hence the result.
Tileorem (1.6) : Let

$$
\begin{equation*}
\bar{p}=\frac{\xi^{k-1}+\xi^{k-2}}{\sqrt{2}}, \quad \bar{q}=\frac{\xi^{k-1}-\xi^{k-2}}{\sqrt{\overline{2}}} \tag{1.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\bar{p} \bar{q}=\bar{q} \bar{p}=0, \quad \bar{p}^{2}-\sqrt{2} \bar{p}=0, \quad \bar{q}^{2}-\sqrt{2} \bar{q}=0 \tag{1.7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\bar{p}^{2}+\bar{q}^{2}=\sqrt{2}(\bar{p}+\bar{q}), \quad \bar{p}^{2}-\bar{q}^{2}=\sqrt{2}(\bar{p}-\bar{q}) . \tag{1.8}
\end{equation*}
$$

Proof: By virtue of (1.6) and (1.1), we have

$$
\begin{aligned}
& \bar{p} \bar{q}=\bar{q} \bar{p}=\frac{1}{2}\left[\xi^{2 k-2}-\xi^{2 k-4}\right]=\frac{1}{2}\left[\xi^{k} \cdot \xi^{k-2}-\xi^{2 k-4}\right] \\
& =\frac{1}{2}\left[\xi^{k-2} \cdot \xi^{k-2}-\xi^{2 k-4}\right]=\frac{1}{2}\left[\xi^{2 k-4}-\xi^{2 k-4}\right]=0 . \\
& \bar{p}^{2}=\frac{1}{2}\left[\xi^{2 k-2}+\xi^{2 k-4}+2 \xi^{2 k-3}\right], \\
& \bar{q}^{2}=\frac{1}{2}\left[\xi^{2 k-2}+\xi^{2 k-4}-2 \xi^{2 k-3}\right] .
\end{aligned}
$$

Now

$$
\begin{aligned}
\xi^{2 k-3} & =\xi^{k} \cdot \xi^{k-3}=\xi^{k-2} \cdot \xi^{k-3} \\
& =\xi^{k} \cdot \xi^{k-5}=\xi^{k-2} \cdot \xi^{k-5} . \\
& =\xi^{k} \cdot \xi^{k-k}=\xi^{k-2} \cdot \xi^{k-k} \\
& =\xi^{k-2} \cdot \xi^{2 k-2}=\xi^{k} \cdot \xi^{k-2}=\xi^{k-2} \xi^{k-2}=\xi^{2 k-4} \cdot \xi^{2 k-2} \\
& =\xi^{2 k-4}=\xi^{k-1} .
\end{aligned}
$$

Hence

$$
\bar{p}^{2}=\frac{1}{2}\left[2 \xi^{K-1}+2 \xi^{K-2}\right]=\xi^{k-1}+\xi^{k-2}=\sqrt{2} \bar{p} .
$$

and

$$
\bar{q}^{2}=\frac{1}{2}\left[2 \xi^{k-1}-2 \xi^{k-2}\right]=\xi^{k-1}-\xi^{k-2}=\sqrt{2} \bar{q} .
$$

Consequently

$$
\bar{p}^{2}-\bar{q}^{2}=\sqrt{2}(\bar{p}-\bar{q}) .
$$

and

$$
\bar{p}^{2}+\bar{q}^{2}=V \overline{2}(\bar{p}+\bar{q}) .
$$

2. Let M^{n} be an n dimensional differentiable manifold of class C^{∞} and let there be given a tensor field $\xi(\xi \neq 0, I)$ of type (1.1) and of class C^{∞}, satisfying

$$
\begin{equation*}
\xi^{k}-\xi^{k-2}=0 \tag{2.1}
\end{equation*}
$$

where (2 rank $\xi-\operatorname{rank} \xi^{k-2}$) $=\operatorname{dim} M^{n} . \dagger$
Let us define the operators l^{*}, m^{*} by

$$
\begin{equation*}
l^{*}=\xi^{k-2}, m^{*}=\left(I-\xi^{k-2}\right), \dagger \tag{2.2}
\end{equation*}
$$

I denoting the identity operator. Then we have
Theorem (2.1). For a tensor field $\xi(\xi \neq 0, I)$ satisfying (2.1), the operators l^{*}, m^{*} defined by (2.2) and applied to the tangent space at a point of the manifold are complementary projection operators.
Proof: The proof is similar to that of theorem (1.1).
Let L^{*} and M^{*} be the complementary distributions corresponding to the projection operators l^{*}, m^{*} respectively.

Let the rank of ξ be constant and be equal to r, then

$$
\operatorname{dim} L^{*}=(2 r-n) \text { an } \operatorname{dim} M^{*}=(2 n-2 r) .
$$

Here the $\operatorname{dim} M^{*}$ is given but $\operatorname{dim} L^{*}$ is not necessarily even. Obviously, $n \leq 2 r \leq 2 n$.

We call such a structure a $\xi(k,-(k-2))$ structure of rank r and the manifold M^{n} with this structure a $\xi(k,-(k-2))$ manifold.

We shall now state the following theorems. The proofs following a manner as as in the previous section.

[^0]Theorem (2.2) : For a tensor field $\xi(\xi \neq o, I)$ satisfying (2.1) and l^{*}, m^{*} defined by (2.2) we have

$$
\begin{align*}
& \xi^{k-2} l^{*}=l^{*}, \xi^{k-2} m^{*}=0 . \\
& \xi^{k-1} l^{*}=\xi^{k-1}, \xi^{k-1} m^{*}=o . \tag{2.3}
\end{align*}
$$

Corollary (2.1): ξ acts on L^{*} as an almost product structure operator.
Corollary (2.2): The $\xi(k,-(k-2))$ structure of maximal rank is an almost product structure.-

Theorem (2.3): If in M^{n}, there is given a tensor field $\xi, \xi \neq o$ and $\xi^{k-2} \neq I$, of class C^{∞} and such that $\xi^{k}-\xi^{k-2}=o$, then M^{n} admits an almost product structure $\zeta=2 \xi^{k-2}-I$, where $\zeta=l^{*}-m^{*}$.

Theorem (2.4): Let p and q be tensors defined by

$$
\begin{equation*}
p=\left(m^{*}+\xi^{k-1}\right), q=\left(m^{*}-\xi^{k-1}\right) \tag{2.4}
\end{equation*}
$$

and l^{*}, m^{*} be defined by (2.2). We have

$$
\begin{align*}
& p l^{*}=\xi^{k-1}, p m^{*}=m^{*}, q l^{*}=-\xi^{k-1}, q m^{*}=m^{*} . \\
& p^{2} l^{*}=l^{*}, p^{2} m^{*}=m^{*}, q^{2} l^{*}=l^{*}, q^{2} m^{*}=m^{*} . \tag{2.5}
\end{align*}
$$

i.e. p and q act on L^{*} as an almost product structure operator and on M^{*} as an identity operator.

Theorem (2.5): Let

$$
\begin{equation*}
\bar{p}=\frac{\xi^{k-1}+\xi^{\mathrm{k}-2}}{\sqrt{2}}, \bar{q}=\frac{\xi^{k-1}-\xi^{\mathrm{k}-2}}{\sqrt{2}} \tag{2.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\bar{p} \bar{q}=\bar{q} \bar{p}=0, \bar{p}^{2}-\sqrt{2} \bar{p}=0, \overline{q^{2}}+\sqrt{2} \bar{p}=0 . \tag{2.7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\bar{p}^{2}+\bar{q}^{2}=\sqrt{2}(\bar{p}-\bar{q}), \bar{p}^{2}-\bar{q}^{2}=\sqrt{2}(\bar{p}+\bar{q}) . \tag{2.8}
\end{equation*}
$$

ACKNOWLEDGEMENTS

For his kind help and tender guidance I am very much indebted to Dr. M. D. Upadhyay.

72 V. C. GUPTA

REFERENCES

1. Mishra, R. S.: A course in Tensors with applications to Riemannian Geometry. Pothishala, Pvt. Ltd. Allahabad (1965).
2. Yano, K.: Differential Geometry on Complex and almost Complex spaces. Pergamon Press New York (1965).
3. Mishra, R. S.: On almost product and almost decomposable manifold Tensor N. S. Vol. 21, p. 255-60 (1970).

[^0]: \dagger In section 2, we have taken k even.

