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ABSTRACT 

An integral equation involving the G- function[1] (p. 207) as kernel has been 
transformed, by using the technique of Gamma functions, into another integral 
equation with symmetrical Fourier kernel[3] and the solution is then immediate. 
Later sorne special cases are discussed. 

l. INTRODUCTION 

In the present note we have employed the r operator in introducing new Gam
ma function factors into the integrand for transforming the given integral equa
tion into another integral equation involving a symmetrical Fourier kernel and the 
required solution is then immediate consequence. The present Fourier kernel is a 
generalisation of a large variety of functions occurring in various branches of 
sc1ence. 

We shall find the solution of the following type of integral equation: 

.. 
) ~q (xu 1 ~::~:P) /(u) du=cl)(x),(x>O), (1.1) 

o 

where et, is given and / is the function to be found. The given function cl)(x) is 
supossed to be an L¡, - function. In ( 1.1), the Meijer's G - function 1 (p. 207) 
expressed as : 

o,p 
G ( 1.2) 
2p,q 

where 

p V p 
Mq,~p(s) = Ilr(ai - es) {Ilr(bi + e - cs)IT r(a; - e+ cs)}-1 . (1.3) 
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We now use the asymptotic expansion of the Gamma function: 6 

(i) e> O, h = c(q - 2p) > O; 

( ii) all the poles of the integrand of ( 1.2) are simple; 
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( iii) the con tour T is a straight line parallel to the imaginary axis in the complex 
s - plane (s =a+ i,:, where cr and ,: are real) and the poles of r(a.¡ - es) 
lie to the right of it. 

We now use the asymptotic expansion of the Gamma function[6 ]: 

log r(s +a)= (s + a - ½) log s - s +½ log(2;r.) + O(s-1 ), (1.4) 

where larg si < ;r. and O is the order symbol, in finding the asymptotic expansion 
of M q,211 ( s), s = a + ii:, a and ,: real, when 1,: 1 is large. The result is expressed as: 

,Mq,211 (s) = !i:!11 <a-½> exp{i,:(h logli:I - B} {Q + O(li:1)-1}, (1.5) 

where B is a constant and Q is a constant which may have one value when ,: is 
large and negative. From ( 1.5), it follows that if cr < ½ then the integral of ( 1.2) 
is uniformly convergent with respect to x. It can be extended to the case cr = ½, 

2. PRELIMINARY RESULTS 

The Gamma function denoted by I'(z) is defined as: 

00 

r(z) = J e·" xz-i dx, Re(z) > O. (2.1) 

o 

If M[h(u)] = H(s) and M[/(u)] = F(s), the Parseval Theorem states that 

j h(u) f(u) du = (2;r.i)·1 t H(s) F(l-s) ds, (2.2) 

o 

where C is a suitable contour in the s - plane and M denotes the Mellin trans
fonn. 

3. THE SOLUTION OF (1.1) ASAN INTEGRAL EQUATION 

THEORE:M. If, 

(i) e> O, Re(b,) > -c/2, i = 1, ... , q; 

(ii) f(x) E ~(O, oo); 

(iii) sli<•-t> F(l-s) EL(½ - i oo, ½ + i oo), h = c(q - 2p) > O; 
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( iv) F ( 1-s) E L ( ½ - i oo, ½ + i oo ) ; 

(v) y-t f(y) E L(O, oo), where f(y_) is of bounded variation near the point y= x, 
then the solution of ( 1.1), as an integral equation for /(u) is: 

f(x) = f q,p 

G (xu). 
2p,2q 

o 

(3.1) 

PROOF. Firstly we apply (2.2) to the left side of ( 1.1). For large positive u and 
x > O, the asymptotic expansion of G~;~q(xu) discussed in Fox,[3] and conditions (i) 
and ( iii), allow us to use Theorem 72, p. 95 [5] with k = ½- Thus, we can apply 
( 2.2) to the left- hand side of ( 1.1) . By using ( 1.3) , we obtain 

½+i"' 

cf>(x) - (2rci)-1 J Mq,'211 (s) x-•F(l - s) ds, x > O, (3.2) 

½--'"' 

where Mq,211 (s) x-• and F(s) are Mellin transforms of G~iq(xu) and /(u) respec
tively, and the contour in the s-plane is the straight Iine s = ½ i,;, 't varies from 
- 00 to OO. 

In this section of the proof, we shall try to introduce new Gamma function 
factors into the integrand of (3.2) by means of operator r. In the first instance we 
introduce q-th new Gamma function factor r ( bq + es) into the integrand by us
ing the technique of operator r. Then in similar fashion we can introduc·e another 
(q - 1) factors, namely, r(bq.1 + es), r(bq-2 + es), ... , r(b1 + es), and we 
can arrive at the result with symmetrical Fourier kernel and the formal solution 
then would be immediate. 

Now we use operator rv to introduce the new Gamma function factor 
r(bq + es), e> O, R:e(bq) > - e/2, into the integrand of (3.2). 

Considering cf>(x-c), we are led to the following result: 

cf>( x-C) = (2 Jt i)-1 r;oo Mq,211( s) xc• F( 1 - s) ds. 

½-;oo 

Using the operator, we find 

oo ½+ioo 

(3.3) 

rv[x"•-1 cf>(x-c)] = I e-tte x 11•-1 { (2Jti)-1 1 Mq,2p(s) xc• F(l - s) ds} dx. 

O ½--ioo 

Now using ( 1.5), one can obtain easily for large J"tl, s = ½ + fr, 

Mq,211 (s) F(l - s) = s1'<H> F(l - s) {Q1 + O(s"1 ) }, 

(3.4) 

(3.5) 
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where Q1 is a constant which may have one value when -r is large and positive and 
another value when -r is large and negative. 

Since s = ½ 1+ fr, the real power of x in (3.4) is Re(bq) + ~ - 1, which 
by condition (i), exceeds - l. Also, by (3.5) and condition (iii), the terms in s in 
(3.4) belong to L(½ - ioo, ½ + ioo). Hence, the integral in (3.4) is an absolutely 
convergent double integral and consequently we integrate with respect to x. The 
result, thus, found is: 

½+ioo 

rv[x11401 <1>(xºe)] = (2Jti)·1 J Mq,211(s) r(bq + es) f 11q·CS F(l - s) ds. 

½--ioo 

(3.6) 

In order to apply again operator rv.1, we have to write t = l/-r1, in (3.6), 
thus we find 

j---i,. 

(3.7) 

Again we can apply operator rq., in (3.7) in order to introduce r(bq.1 + es) 
as in the previous case, after justifying the inversion in the order of integration. 
Thus, by ( q - 1) successions of r operator, we can arrive at the result: 

(3.8) 

½+i,. 

= (2Jti)·1 ) M 2q, 211 (s) x·c1 F(l - s) ds. 

½-i., 

If we write the left- hand side of ( 3.8) equal to 'l' ( x) and replace x by xtfc, 
then (3.8) takes the fonn 

½+ioo 

'ljl(x) = (2 Jt i) ·1 J M2 q,211 (s) x·• F( 1 - s) ds (3.9) 

½-• .. 

or 

½+ioo 

'ljl(x) = (21Ci)·1 J M [ Gg¡f.2q (u) J x·1 F(l - s) ds, (3.10) 

½--ioo 

in the light of ( 1.3) . 
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On using,(4] p. 391, eqn. ( 12), to the right- hand side of (3.10), it can be 
written as an integral involving the product of c::,2q (xu) and f (u). The result, 
thus obtained is expressed as: 

"' 
) c~:.2q(xu) f(u) du = ,¡,(x). (3.11) 

o 

Since G~¡,~2q(xu) 1s a symmetrical Fourier kernel, we can write formally the 
solution as 

"' 

f(x) = J c~:.2/xu) ,¡,(u) du. (3.12) 

o 

4. APPLICA TIONS 

As a great many of special functions occurring in problems of applied math
ematics can be reduced from the G-function, one can derive the solutions of 
severa! integral equations, by specialising the G-function, from (3.1). 

When e = I, p = 2, q = 2, our theorem leads to the: 
Corollary. Under the conditions of the theorem, the following integral equation 

"' J G~:;(xu) f(u) du = ~(x), x > O, (4.1) 

o 

has the solution 

f (x) 
(4.2) 

o 
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