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SUMMARY 
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(Recieved, december 1973) 

The idea of f-structure manifold on a differentiable manifold was initiated and 
developed by Y ano [2 • 4], Koto [3] defined and studied certain structures on almost 
Hermitian manifold. Later on Gray [5] reformulated certain formula (given by 
Koto [3]) in terms of co-derivatives and exterior derivatives. This paper is devoted 
to the study of sorne structures in terms of exterior, co-derivative and Lie-deriva
tives. 

In section 2, we define certain structures and obtain sorne theorems relating to 
these structures. In section 3, we have defined sorne operators and have established 
sorne results on these operators. 

l. INTRODUCTION 

An n-dimensional differentiable manifold M is said to possess an /-structure if 
a non-null ( 1.1) tensor field f of constant rank r is defined on it which satisfies [']: 

¡s + f = O. (1.l)a 

If the rank of / is such that n - r ~ 1, there exist two complementary distribu
tion L and M corresponding to the projection operators l and m respectively, de
fined by['] 

l = - f2, m = /2 + 1, (1.l)b 

where I denotes the identity operator these projection operators satisfy the follow
ing results [ 4] 

lf = fl = f, mf = fm = O, 
( 1.2) 

f2l = - l, f2m = º· 
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Thus from the above relations it is observed that f .acts on l as an almost com
plex structure and on m as a null operator. If the rank of f is r, then the dimension 
of L and M are r and ( n-r) respectively [4]. 

Let F(M) denote the ring of real valued differentiable functions on M and 
X(M) the module of derivations of F(M). X(M) is then a Lie algebra over real 
numbers and elements of X(M) are called vector fields. The (1.1) tensor field f js 
then a linear map over X(M), such that 

f: X(M) -- X(M) 

Yano [4 ] has defined a positive definite Riemannian metric in M, with respect to 
which the distribution L and M are orthogonal. Such a Riemannian metric satisfies 
the following relations [4] 

<X, Y>= <fX,fY> + <mX, Y>, for all X, Y E X (M) (1.3) 

since the distribution L and M are orthogonal, by virtue of ( 1.2), we have 

<fX, Y>= <f2X,fY> 

A 2-form F has been defined as [4], 

<X,fY> = <fX,f2X> 

F(X,Y) = - F(Y,X) = <fX,Y>. 

( 1.4) 

(1.5) 

By virtue of the definitions of the Riemannian connection and the Lie-derivative 
Lx, we have the following relations 

a) V x(f) (Y) = 'v x(fY) - f'v xY, 

b) (Lxf) Y = [X, fY] - f[X,Y] 

From ( 1.2) and ( 1.6) a, b we have 

m('v x/) (mY) = O and m(Lxfi) (mY) = O. 

Since f2 is also a ( 1.1 ) tensor, we have 

V x(f2) (Y) = 'v x(f2(Y)) - f2 V xY 

(1.6) 

( l. 7) 

The covariant derivative V x(F) and the exterior derivative dF o( F are given by 
the following relations: 

'v x(F) (Y,Z) = < 'v x(f) (Y), Z>, ( 1.8) 

and 

dF(X,Y,Z) = :l; V x(F) (Y,Z), where l; ( 1.9) 
X,Y,Z X,Y,Z 

denotes the cyclic sum over X,Y,Z. 
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For an f-structure manifold, we have 

V x(F) (fY,fZ) = V x(F) (fY,f2Z) (1.10) 

V x(F) (f2Y, f2Z) = - Vx(F) (fY, fZ) (1.11) 

2. In this section we shall give sorne definitions and obtain sorne results. 
A f-structure manifold is called 
a) f-Kahlerian ( fK) manifold iff V ¡xf = O, 
b) f-almost Kahlerian (fAK) manifold iff 

dF(fX, fY, fZ) = O. (2.1) 

where 

dF(fX,fY,fZ) = Vrx(F) (fY,fZ) + '\lry(F) (fZ,fX) + Vrz(F) (fX,fY) 

e) f-nearly Kahlerian (fNK) manifold iff 

V rxU) (fY) + V rd/) (fX) = O, 

d) /-Quasi Kahlerian (fQK) manifold iff 

V rxU) (fY) + V r2x(f) (fY) = O, 

e) /-Hermitian (fH) manifold iff N(fX, /Y, fZ) O, for all X,Y,Z E (M) 

THEOREM 2.1. The nasc for an /-structure manifold to be an f-nearly-Kahlerian 
maniofld is that 

/{V rx(f (fY)) + V fY(f(fX))} + l(V rxfY + V rY/X) = O (2.2) 

PRooF. We have 

Vrx(f(fY)) + Vrr(f(fX) = (V¡xf) (fY) + 

+ /V txfY + ( V (l·f) (fX) + /V tYfX 

From (2.l)c and (2.3) we get 

V,x(f(fY)) + V,y(f(fX)) = + f{VrxfY + V,yfX} 

(2.3) 

operating the above expression by f throughout and using ( 1.1) b we get (2.2). This 
proves the first part of the theorem. The converse is obvious. 

THEOREM 2.2. The nasc for an /-structure manifold to be an f-Quasi Kahlerian 
manifold is that 

t{V ,x(f(!Y)) + (V,,(!) (f2Y))} = - l{V rxfY + V r•xFY} (2.4) 
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PRooF. We have 

V,x(f(!Y)) + V,•x(/(f2Y)) = (V,xf) (!Y) + 

+ f V txfY + ( V t•xf) (f2Y) + f V pxf2Y 

From (2.l)d, (2.5) and (1.l)b, the proof follows atonce. 

(2.5) 

THEOREM 2.3. The necessary condition for an f-Quasi Kahlerian manifold to be 
f-Kahlerian manifold is that 

VrxfY + V,,xf2Y = O (2.6) 

PROOF. We have for an f-Quasi Kahlerian manifold 

VrxU) (!Y) + V,•x(/) (f2Y) = O 

from which we get 

(V,x(f(fY)) - f V,xfY + V,•x(/(f2Y)) - f V,•xFY = O. (2.7) 

If we suppose that f-Quasi Kahlerian manifold is f-Kahlerian. Thus using ( 2.1) a 
in (2.7) we get (2.6) 

THEOREM 2.4. If an /-structure manifold has any two of the following properties, 
it has third also. 

a) it is f-nearly Kahlerian manifold, 
b) it is f-Quasi Kahlerian manifold 
e) it is /-structure manifold for which 

V tY/(/X) = V r-xf (/2Y) 

PROOF. Let us assume that 

from the above we get 

A (X,Y) = V txf(!Y) + V ,yf(fX), 

B(X,Y) = V,xf(!Y) + V,,xf(/2Y) 

A (X,Y) - B(X,Y) = V rxf (!X) - V r2xf (f2Y) 

(2.8) 

(2.9) 

From (2.9) we see that if any two properties hold the third one also holds. 

THEOREM 2.5. The condition for an f-structure manifold to be /-almost Kahlerian 
is that 

V ,,x(F) (f2Y, fZ) + V ,,y(F) (/2Z, /X) + V r-z(F) (f2X, /Y) = O. 
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PROOF. Since for an f-almost Kiihierian manifold, we have 

'V1x(F) (fY,fZ) + \l1y(F) (fZ,fX) + 'V1z(F) (fX,fY) = O 

which gives us 

Therefore 

\J1x(F)(fY,fZ) = - \J1x(F)(fZ,fX) - 'Vtz(F)(fX,fY) 

\J t'x(F) (f2Y, fZ) = - \J r-}·(F) (IZ,f2X) - \J 1z(F) (f2X, f2Y) 

= - V py(F) (fiZ,F X) + \J fZ (F) (f X,fY) 

Similarly we have 

(2.10) 

\lr-y(F) (fZfX) = - \J,,z(F) (fX,f2Y) + 'V1x(F) (fY,fZ) (2.11) 

and 

\J t•z(F) (f2X, fY) = - \J 12x(F) (fX,f2Z) + \J 1z(F) (fX,fY), (2.12) 

Adding (2.10), (2.11) (and 2.12) we get 

2{\Jr-x(F) (f2Y,fZ) + \J1•y(F) (FZ,fX) + 'Vt'z(F) (f2X,fY)} 

= dF(f X, fY, fZ) 
( 2.13) 

But for f-almost Kiihlerian manifold dF(f X, fY, fZ) = O. Thus using this in (2.13) 
we get 

\J 12x(F) (f2X, fZ) + \J t2Y(F) (f2Z,f X) + V t•z(F) (f2X, fY) = O 

THEOREM 2.6. A f-Quasi Kiihlerian manifold is f-Kiihlerian whenever f is connec
tion preserving. 

PROOF. Since f is connection presen,ing, we have 

'V¡xfY = \JxY 

Let the manifold be f-Quasi Kiihlerian, then 

V,xf(fY) = - V,•xf(fY) 

by virtue of (2.14) 

= - { V t•xf (f Y) - f \J t•xflY} 

= - {'V 1xf2Y - f V txfY} 

= - V 1x(f) (fY) or 2 V txf (IY) = O 

(2.14) 

Hence the f-Quasi Kiihlerian manifold in which f is connection preserving, is f-Kiih-
lerian. · 
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THEOREM 2.7. In a f-Kahlerian manifold the nasc that f preserves connection is 
that 

PRooF. Since the manifold is f-Kiihlerian, so that 

V 1x(f2Y) - f V rxfY = O 

Let f is connection preserving, then 

'vtxfY = VxY 

Thus from (2.15)a and (2.15)b we get 

'vtxfY = f VxY 

Conversely, let 

(2.15) a 

(2.15) b 

(2.15) 

from (2.15) a and (2.15) we get V txfY = V xY, that is f. is connection preserving. 

3. In this section we obtain sorne results for f-structure manifold with the help 
of operators G(X, Y, Z) and ](X, Y, Z) defined as follows: 

a) G(X,Y,Z) ~~~ V x(F) (Y,Z) + \ly(F) (X,Z) 
( 3.1) 

b) J(X,Y,Z) ~;! 'vx(F) (Y,Z) + \Jy(F) (Z,X) + 'vz(F) (X,Y) 

THEOREM 3.1 For an f-almost Kahlerian manifold, we have 

G(fX,f2Y, f2Z) + G(fY,fZ, f2X) + G(fZ,f2X, f2Y) = O (3.2) 

PROOF. From (3.1), we get 

Hence 

G(IX,fY,fZ) + G(IY,fZ,f2X) + G(IZ,fX,f2Y) 

= - {V tx(F) (!Y, fZ) + V tY(F) (IZ,fX) + V tz(F) (IX, fY)} -

- {V px(F) (fY, fZ) + V t•Y(F) (fZ, fX) + V t•z(F) (fX, fY)} 

which by virtue f ( 2.1) b and theorem 2.5, gives 3.2. 
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THEOREM 3.2. lf an f-structure manifold has the following two properties: 

a) it is an f-almost Kiihlerian manifold, 
b) it is an f-nearly Kiihlerian manifold, 

then 

'Vt•z(F) (fX,f2Y) = 2 'V1x(F) (fY,fZ). 

PROOF. In view of definition ( 2.1) b, let us put 

e) J(X,Y,Z) = ~ dF(X,Y,Z), 
X,Y,Z 

where J(X,Y,Z) is given by (3.1). 

Therefore 

J(fX,fY,fZ) + G(fX, fY, fZ) = 2 V tx(F) (fY,fZ) + V tz(F) (fX,fY) 

which for fAK an /NK-manifold gives 

or 

2 V,x(F) (fY,fZ) + V,z(F) (fX,fY) = O 

2 'V1x(F) (f2Y,fZ) = - V,•z(F) (fX,f2Y) 

which by virtue of ( 1.11 ) yields 

2 'V1x(F) (fY,fZ) = 'Vt•z(F) (fX,fY). 

THEOREM 3.2. For an f-nearly Kiihlerian manifold be have 

V px(F) (f2Y, fZ) + V t•y(F) (f2X, fZ) = O 

PRooF. Tlie proof of the above theorem is obvious. 

(3.3) 

(3.3) 

(3.4) 

Remark. The equation (3.4) gives an alternative definition of f-nearly Kiihlerian 
manifold. 

THEOREM 3.3. For an f-nearly Kiihlerian manifold 

J(fX, f 2Y, f 2Z) + J(fY, f2X, f 2Z) = V 12x(F) (f2Y, fZ) + V t•Y(F) (f2Z, fX) 

PROOF. From (3.l)b we get 

J(fX, f2Y, f2Z) + J(fY, f2X, fZ) = 
= - {V,x(F) (fY,fZ) + '\l¡y(F) (fX,fZ} + 
+ V r-v(F) (f2Z, fX) + V t•x(F) (fY, fZ) + 
+ V,,z(F) (fY,fX) + 'V12z(F) (fX,f2Y) 

using ( 1.1 O) and ( 2.1) e, we get the required relation. 

(3.5) 
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THEOREM 3.4. For an f-nearly Kahlerian manifold 

G(f2X,fY,fZ) + G(!X,f2Y,f2Z) + G(f2X,fY,f2Z) = O 

PaooF. The proof of the above theorem follows immediately from the equations 
(3.1), (1.11), (1.10) and (3.4). 

Corollary. For an f-structure manifold the following identities hold. 

a) ](f2X,f2Y,fZ) - J(fY,fX,fZ) = O, 

b) ](IX, f2Y, fZ) + ](!Y, f2X, fZ) = O, 

e) J(f2X,f2Y,f2Z) - J(fY,fX,f2Z) = O 

PaooF. The proof is obvious. 
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