The Odorant Signaling Pathway

Bettina Malnic¹*, Adriana F Mercadante²

¹Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, BRAZIL
²Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, BRAZIL

Received: 03 June 2009; accepted 22 December 2009
Online on 21 February 2010

Abstract
Malnic B, Mercadante AF. The Odorant Signaling Pathway. Annu Rev Biomed Sci 2009;11:T86-T94. Through the sense of smell mammals can obtain information about food, danger, sexual partners and predators. Two main different types of signals can be recognized by the olfactory system: volatile odorants, which are detected by the olfactory sensory neurons of the nose; and pheromones, which are detected by the vomeronasal neurons of the accessory olfactory system, or vomeronasal organ. These sensory neurons express respectively hundreds of odorant and pheromone receptors, which belong to the superfamily of G protein-coupled receptors. We review the general organization of the main and accessory olfactory systems, the structures of the receptor families in each of these organs and their signaling pathways.

Keywords: olfaction, odorant receptors, GPCRs, pheromone receptors, vomeronasal organ, Ric-8B, Gγ13.

Table of Contents
1. Introduction: the Olfactory System
2. Odorant and Pheromone Receptors are GPCRs
3. The Odorant Receptor Signaling Pathway
4. The Vomeronasal Receptor Signaling Pathways
5. Concluding Remarks
6. References

1. Introduction: the Olfactory System
Using the sense of smell mammals can detect and discriminate between large numbers of volatile environmental chemicals. These chemosignals provide important information that is critical for survival, reproduction and social interactions. Odorants are typically small organic molecules of less than 400 Da, with various sizes, shapes, functional groups and charges. They are first detected in the upper

* Correspondence
Dr. Bettina Malnic, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05050-000, São Paulo, Brazil. Tel: +55-11-30913810; fax: +55-11-38155579. Email address: bmalnic@iq.usp.br
region of the nose, by the main olfactory epithelium (MOE) (Fig. 1). In this region, millions of olfactory sensory neurons (OSN) interact with odor molecules (Buck, 1996) through the odorant receptors (OR). The ORs are proteins that belong to the superfamily of G protein-coupled receptors (GPCRs) (Buck & Axel, 1991), which are localized in the cilia, specialized hairlike structures of the OSN dendrite. The binding of odors to the ORs initiates an electrical signal that travels along the axons to the main olfactory bulb (MOB) (Fig. 1). The information is then passed on to other regions of the brain, leading to odorant perception and emotional and behavioral responses (Buck, 1996).

In addition to the main olfactory system, most mammals have an accessory olfactory system, which is responsible for pheromone detection and signaling (Dulac & Torello, 2003). Sensory neurons in the accessory system are found within the vomeronasal organ (VNO), a blind-ended tube, which lies above the hard palate and at the base of the nasal septum (Fig. 1) (Doving & Trotier, 1998). The vomeronasal sensory neurons (VSNs) send their axons to synapse with second order neurons, in the accessory olfactory bulb (AOB) (Fig. 1) (Brennan & Keverne, 2004). Two distinct families of GPCRs, unrelated to ORs, were found to be expressed in the VNO and are named V1Rs and V2Rs, for class 1 and class 2 vomeronasal receptors, respectively. The apical VNO neuroepithelium contains V1R-expressing neurons and the basal VNO contains V2R-expressing VSNs (Fig. 1) (Dulac & Torello, 2003). Anatomical and genetic evidences indicate that a functional accessory olfactory system is not maintained in higher primates, including humans (Brennan & Zufall, 2006).

Several data suggested that the VNO acts as a conveyer of pheromone responses. Mice with VNO ablation show some behavior and physiological deficits in their response to chemosensory cues (Brennan & Keverne, 2004). Recent studies using genetically modified animals have elucidated the role of the accessory olfactory system in animal communication and behavior. For instance, targeted deletion of a large cluster of V1Rs produced mice with deficits in maternal and sexual behavior (Del Punta et al., 2002). Moreover, mice deficient for the expression of the TRP2 (transient receptor potential
channel 2) cation channel, which is essential for signal transduction in VSNs, showed altered sexual and social behaviors (Leybold et al., 2002; Stowers et al., 2002).

It has been long believed that the MOE is specialized for detecting volatile, airborne structures, while the VNO would detect non-volatile chemosignals, such as those found in urine, skin, scent glands and reproductive secretions. However, a large number of observations indicate that this functional division is not absolute (revised in Brennan & Zufall, 2006). Some results using functional magnetic resonance imaging suggest that the mouse AOB responds to volatile urine odors (Xu et al., 2005). Other studies demonstrated that the MOE also responds to non-volatile stimuli and to pheromones. The niple-search pheromone, for example, is still effective in suckling rabbit pups even after VNO lesions (Hudson & Distel, 1986). Mice lacking the functional cyclic nucleotide-gated channel alpha 2 (CNGA2), which is required for odor-evoked MOE signaling, demonstrated behavioral deficits related to mating and aggressive responses. These data suggest an essential role for the MOE in regulating behaviors traditionally related to the VNO (Mandiyan et al., 2005). More recent evidence has demonstrated that non volatile MHC peptide ligands are able to gain access to the MOE during behavioral situations involving direct physical contact (Spehr et al., 2006). Using mice with targeted deletions in the CNG channel subunits, Spehr et al. (2006) have verified that the MOE cAMP-dependent signal transduction is crucial for the detection of MHC peptides ligands and that this signal is related to social recognition in vivo. Therefore, MOE and VNO have complementary roles in chemosignal detection and signaling.

2. Odorant and Pheromone Receptors are GPCRs

The ORs belong to the super-family of G-protein coupled receptors, and have seven putative transmembrane domains, a short extracellular N-terminal domain and a short intracellular C-terminal domain. Members of the OR family are extremely diverse in their amino acid sequences. The nucleotide sequence identity among the coding regions ranges from 34-99% (Godfrey et al., 2004; Malnic et al., 2004), consistent with the ability to recognize a large variety of odorants.

The odorant receptor genes constitute the largest gene families in mammalian genomes, with around 1,000 functional receptors in rodents (Young et al., 2002; Godfrey et al., 2004; Zhang et al., 2004; Niimura & Nei, 2005) and 400 functional receptors in humans (Glusman et al., 2001; Niimura & Nei, 2003; Malnic et al., 2004). There are also large numbers of OR genes that are pseudogenes, which do not express functional ORs. The number of pseudogenes varies among species: while humans have around 460-480 pseudogenes (Glusman et al., 2001; Zozulya et al., 2001; Niimura & Nei, 2003; Malnic et al., 2004), mice have around 250-330 pseudogenes (Young et al., 2002; Godfrey et al., 2004; Zhang et al., 2004; Niimura & Nei, 2005).

In situ hybridization experiments have initially indicated that each olfactory sensory neuron expresses only one out of the 1,000 odorant receptor genes (Ressler et al., 1993; Vassar et al., 1993). This was later verified by examining gene expression in single neurons by single cell reverse transcription-polymerase chain reaction (RT-PCR) (Malnic et al., 1999). Neurons expressing one same given OR converge onto two or few glomeruli at two specific sites in the olfactory bulb (Ressler et al., 1994; Vassar et al., 1994). Interestingly, specifically glomeruli show approximately the same locations in different individuals. These results indicate that the information provided by different ORs in the nose is organized into a stereotyped sensory map in the olfactory bulb.

Both V1R and V2R families also have the characteristic GPCR serpentine architecture. Differently from the ORs or V1Rs, the V2Rs have a large extracellular N-terminal domain (Fig. 1). The VRs are expressed by vomeronasal neurons that are located in two different layers of cells in the vomeronasal epithelium. Neurons located in the apical region of the epithelium coexpress the G protein subunit Goα2 together with members of the V1R family. Neurons located in the basal layer of the epithelium coexpress the G protein subunit Goα together with members of the V2R family (Fig. 1). The mouse V1R family consists of about 187 intact genes (Rodriguez et al., 2002; Zhang et al., 2004; Young et al., 2005; Shi & Zhang, 2007). In humans, the vast majority of the V1R genes are pseudogenes, while only five are intact V1R genes (Rodriguez et al., 2000; Rodriguez & Mombaerts, 2002). In mice, the V2R family is constituted of 121 intact genes (Shi & Zhang, 2007; Young & Trask, 2007). In humans, however, no intact V2R gene has been identified.
Interestingly, the one neuron-one receptor rule observed for ORs also applies for the vomeronasal receptors: each vomeronasal neuron expresses only one single member of the V1R or V2R families. The precise mechanisms involved in the regulation of OR or VR gene expression remain, however, unknown. The ligands for the V1Rs and V2Rs are not well known. Experiments so far indicate that while V1Rs respond to volatile pheromones (Leinders-Zufall et al., 2000; Del Punta et al., 2002) or odorants (Sam et al., 2001), the V2Rs respond to nonvolatile pheromones such as peptides or proteins (Touhara, 2007).

Recently two small additional families of GPCRs expressed in olfactory or vomeronasal sensory neurons were identified. The trace amine-associated receptors (TAARs) are expressed in olfactory sensory neurons that do not express ORs (Liberles & Buck, 2006). Only one member of the TAAR family is expressed per neuron, in a similar monogenic expression pattern shown by ORs and VRs. These receptors respond to biogenic amines, some of which are found in the male mouse urine, a known source of pheromonal cues (Liberles & Buck, 2006). These results suggest that TAARs may work as pheromone receptors. However, it remains to be demonstrated whether TAARs are really required for specific mouse behaviors. Interestingly the TAAR genes are found in many vertebrate genomes, including humans (Liberles & Buck, 2006).

Formyl peptide receptor (FPR) gene family are GPCRs normally found in immune cells, where they mediate responses to cell damage and inflammation (Migeotte et al., 2006). Five members of this GPCR family were shown to be expressed in vomeronasal neurons that do not express V1Rs or V2Rs (Riviere et al., 2009). These receptors also show a monogenic and punctate pattern of expression in the sensory neuroepithelium, reminiscent of that displayed by ORs and V1Rs. The identification of FPR expression in vomeronasal neurons raises the interesting possibility that the VNO may also be involved in the detection of pathogens, spoiled food or sick animals. This possibility, however, remains to be proved.

Altogether, the results above show that different GPCR families are involved in olfaction. Possibly additional GPCRs expressed in the different olfactory organs, including the septal organ of Masera and the Grueneberg ganglion, which are located in distinct regions of the nose (Munger et al., 2009), are yet to be discovered.

3. The Odorant Receptor Signaling Pathway

The transduction of chemical signals by ORs represents the initial step in a cascade of events that ultimately leads to the discrimination and perception of odorants. In the OSNs, different ORs transduce signals through a common pathway. Odorant binding to ORs leads to the activation of the associated specific heterotrimeric G-protein, Golf. The alpha subunit of olfactory G-protein Golf (Golf) exchanges GDP for GTP. The GTP-bound Golf dissociates from the Gβγ complex and activates adenylyl cyclase III to produce cAMP. Increased cAMP levels activate cyclic nucleotide-gated (CNG) channels, and the resulting influx of Na+ and Ca2+ ions leads to the generation of an action potential in the olfactory neuron axon (Firestein, 2001; Ronnett & Moon, 2002; Mombaerts, 2004) (Fig. 2). The downstream components of the OR signaling, Golf, adenylyl cyclase III and cyclic nucleotide-gated channel are highly enriched in the cilia of OSNs (Ronnett & Moon, 2002; Mombaerts, 2004) (Fig. 2). The downstream components of the OR signaling, Golf, adenylyl cyclase III and cyclic nucleotide-gated channel are highly enriched in the cilia of OSNs (Ronnett & Moon, 2002) and the knockout mice for these three proteins are anosmic (Brunet et al., 1996; Belluscio et al., 1998; Wong et al., 2000; Zheng et al., 2000).

The olfactory system has evolved to detect rapid chemical signal changes in the environment. The odorant-induced production of cAMP is typically rapid and transient (Boekhoff et al., 1990; Breer et al., 1990). Desensitization mechanisms are important for different sensory systems and allow the olfactory system to detect over a broader range of stimuli and also to rapidly recover the ability to sense an odorant. Several molecular mechanisms for odor signal termination have been described, such as inhibition of adenylyl cyclase III (Wei et al., 1998; Sinnarajah et al., 2001), stimulation of cAMP hydrolysis by activation of phosphodiesterase (Borisy et al., 1992; Yan et al., 1995), CNG channel regulation (Chen & Yau, 1994; Kurahashi & Menini, 1997; Munger et al., 2001) and odorant receptor phosphorilation and internalization (Boekhoff & Breer, 1992; Peppel et al., 1997; Mashukova et al., 2006).
We have described a possible regulation of the odorant signaling pathway through the olfactory G-protein Golf. A putative Guanine nucleotide Exchange Factor (GEF) named Ric-8B, that is specifically expressed in OSNs, interacts with G\(\alpha\)olf (Von Dannecker et al., 2005) and amplifies OR signaling (Von Dannecker et al., 2006). It was demonstrated that Ric-8B also interacts with G\(\gamma\)13 (Kerr et al., 2008), a divergent member of the G\(\gamma\) subunit family which has been implicated in taste signal transduction (Huang et al., 1999; Blake et al., 2001). It was also shown that G\(\beta\)1 is the predominant G\(\beta\) subunit expressed in the OSNs (Kerr et al., 2008). Ric-8B, G\(\alpha\)olf, G\(\gamma\)13 and G\(\beta\)1 are co-localized in the cilia of OSNs and in vitro binding assays indicated that these four components are able to form a protein complex (Kerr et al., 2008). Altogether, these results suggest two possible roles for Ric-8B in the odorant signal transduction in vivo. First, Ric-8B could act as an assembly factor that assists in the formation of Golf protein complex in the cilia of olfactory sensory neurons. Another possible physiological function for Ric-8B is that it would act as a GEF on the G\(\alpha\)olf and enhance the odorant signal transduction (Fig. 2). However, the exact role of Ric-8B should be determined and mice deficient for Ric-8B will be an important tool to address this question.

Figure 2. A possible role for Ric-8B, a putative Guanine nucleotide Exchange Factor (GEF), in odorant signal transduction. Once an OR is bound by its specific ligand, G\(\alpha\)olf is activated and released from the heterotrimeric G protein complex (I). The GTP bound G\(\alpha\)olf is now able to activate adenylly cyclase III to produce cAMP, until the GTP is hydrolyzed to GDP. Before the GDP bound G\(\alpha\)olf is reassociated in a heterotrimeric complex, Ric-8B interacts with G\(\alpha\)olf (II) and catalyzes the exchange of GDP for GTP to regenerate the activated form of G\(\alpha\)olf (III), which is then able to further activate adenylly cyclase III, producing increased amounts of cAMP. OR, odorant receptor; ACIII, adenylly cyclase III; CNGc, cyclic nucleotide gated channel.
4. The Vomeronasal Receptor Signaling Pathways

The VR signaling pathway is not as well characterized as the one for ORs. Basically, ligand binding to V1Rs leads to activation of a G protein (likely subunit Gαi2) and release of Gβγ which in turn activates phospholipase C (PLC) to produce diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3). DAG activates TRP2 cation channel, leading to Ca\(^{2+}\) influx and depolarization of the neurons (Munger et al., 2009). The involvement of the TRP2 cation channel in VR signal transduction is supported by studies that analyzed TRP2 knockout mice. These mice show impaired pheromone mediated behaviors, such as aggression and sexual behaviors (Leypold et al., 2002; Stowers et al., 2002; Kimchi et al., 2007).

The signaling properties of the V2R expressing neurons are even less understood (Munger et al., 2009). V2Rs are likely to couple to the Gαo protein, which ultimately results in increases in the intracellular Ca\(^{2+}\) concentration. The TRP2 channel is also expressed in the basal layer of the vomeronasal epithelium (Liman et al., 1999), and is required for the activation of V2R expressing neurons by some ligands, such as the major urinary proteins (MUPs), highly polymorphic proteins present in urine which are involved in the regulation of aggressive behaviors (Chamero et al., 2007). However, the recognition of the major histocompatibility complex (MHC) peptides, another known class of ligands for V2Rs, does not require a functional TRP2 channel (Kelliher et al., 2006).

The complete set of proteins involved in V1R and V2R signaling still need to be determined. We have shown that Gy13, a G protein subunit that is expressed in olfactory neurons and taste cells, is expressed in the apical, V1R expressing layer of the vomeronasal epithelium, but not in the basal layer (Kerr et al., 2008). Whether Gy13, is involved in V1R signal transduction remains to be determined.

5. Concluding Remarks

GPCRs constitute the largest family of surface molecules involved in signal transduction and are involved in an enormous number of biological functions. They are activated by a variety of ligands, which include hormones, growth factors, light, peptides, neurotransmitters, nucleotides, and aminoacids. In 1991, Buck and Axel (Buck & Axel, 1991) discovered that odorant receptors are GPCRs, and since then many other new GPCR families involved in olfaction as well as in other chemosensorial functions have been identified. These new families recognize different types of ligands such as pheromones, tastants, biogenic amines and formyl peptides. The characterization of the members of these chemosensorial GPCR families and their respective ligands should contribute to the understanding of different aspects of chemical communication in mammals.

6. References

Munger SD, Lane AP, Zhong H, Leinders-Zufall T, Yau KW, Zufall F, Reed RR. Central role of the CNG4 channel subunit in Ca\(^{2+}\)-calmodulin-dependent odor adaptation. Science 2001;294:2172-5.


