Computational prediction and characterisation of miRNAs and their pathway genes in human schistosomiasis caused by Schistosoma haematobium



Document title: Computational prediction and characterisation of miRNAs and their pathway genes in human schistosomiasis caused by Schistosoma haematobium
Journal: Memorias do Instituto Oswaldo Cruz
Database: PERIÓDICA
System number: 000437129
ISSN: 0074-0276
Authors: 1
1
1
1
1
1
2
1
1
1
1
Institutions: 1Universidade Federal de Uberlandia, Laboratorio de Bioinformatica e Analises Moleculares, Patos de Minas, Minas Gerais. Brasil
2Universidade Federal de Lavras, Departamento de Biologia, Lavras, Minas Gerais. Brasil
Year:
Volumen: 115
Country: Brasil
Language: Inglés
Document type: Artículo
Approach: Experimental, analítico
English abstract Key genes control the infectivity of the Schistosoma haematobium causing schistosomiasis. A method for understanding the regulation of these genes might help in developing new disease strategies to control schistosomiasis, such as the silencing mediated by microRNAs (miRNAs). The miRNAs have been studied in schistosome species and they play important roles in the post-transcriptional regulation of genes, and in parasite-host interactions. However, genome-wide identification and characterisation of novel miRNAs and their pathway genes and their gene expression have not been explored deeply in the genome and transcriptome of S. haematobium. Identify and characterise mature and precursor miRNAs and their pathway genes in the S. haematobium genome. Computational prediction and characterisation of miRNAs and genes involved in miRNA pathway from S. haematobium genome on SchistoDB. Conserved domain analysis was performed using PFAM and CDD databases. A robust algorithm was applied to identify mature miRNAs and their precursors. The characterisation of the precursor miRNAs was performed using RNAfold, RNAalifold and Perl scripts. FINDINGS We identified and characterised 14 putative proteins involved in miRNA pathway including ARGONAUTE and DICER in S. haematobium. Besides that, 149 mature miRNAs and 131 precursor miRNAs were identified in the genome including novel miRNAs, miRNA pathway occurs in the S. haematobium, including endogenous miRNAs and miRNA pathway components, suggesting a role of this type of non-coding RNAs in gene regulation in the parasite. The results found in this work will open up a new avenue for studying miRNAs in the S. haematobium biology in helping to understand the mechanism of gene silencing in the human parasite Schistosome
Disciplines: Medicina
Keyword: Parasitología,
Genética,
Bioinformática,
MicroARNs,
Expresión génica,
Esquistosomiasis,
Schistosoma haematobium
Keyword: Parasitology,
Genetics,
Bioinformatics,
MicroRNAs,
Gene expression,
Schistosomiasis,
Schistosoma haematobium
Full text: Texto completo (Ver HTML) Texto completo (Ver PDF)