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ABSTRACT

In this article we present the Method of Kirby, Paris
(1976) for proving the existence of arithmetical sentences,
which are neither provable nor refutable in Peano Arithmetic
of natural numbers. '

INDICADORES E INCOMPLETITUD
DE LA ARITMETICA DE PEANO

RESUMEN

En este articulo presentamos el método de Kirby y Paris
976) para demostrar la existencia de sentencias aritméticas
o probables ni refutables en la aritmética de Peano de los ni-
eros naturales.

Sec. O. Basic notions. We use standard logical and set theo-
tical notation. Peano Arithmetic (short-PA) is a first order
eory of natural numbers formulated in a formal language
4 which contains: two binary operation symbols +, * for
dition and product and constants 0, 1 denoting the numbers
and 1, respectively. For each n € w (where w is the set of
tural numbers) one defines inductively the constant term
denoting the number #n. The axioms of P4 are the finite
mber of formulas expressing the basic properties of +, -,
d constants :

x(y+ 1) =xy +x

3sed on a series of lectures given at LV.1.C. during May-JTune 1980,

ido 2.9.3¢
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and the infinite induction scheme
(Ind)  ¢(0) & ¥x[¢ (x)~> o (x + 1)] = ¥ x¢(x),
for an arbitrary formula ¢ of P4,

The usual ordering < is defined by the formula x <y
dz[x +z=y] and x <y isequivalent then to

2D 297 .

The minimum principle is the scheme

Min)  dx¢(x) > Ix[p(x) & ¥y <x T ¢ ()]

(Each nonempty, definable set has a smallest element).

The maximum principle is the scheme

Max) dx¢(x)& Iz V¥x[p(x)>x<z]~

-z {qﬁ(z)&*v.‘x[(b(x)%xéz]}

(Each nonempty, definable and bounded set has a greatest
element). Both (Min) and (Max) schemes are equivalent to
(Ind) this is proved using only the remaining axioms 1.-6,

The standard model of P4, denoted w, is the structure
<w,+, +,0,1>, where + and - are the ordinary operations
of addition and product. Since we do not distinguish between
isomorphic structures, a nonstandard model is any, which is
not isomorphic to the standard one. Existence of nonstandard
models of PA follows immediately from the Lé’)wenhleim-
Skolem theorem: PA  as a consistent first order theory has
models in every uncountable cardinality. Using the Compac-
tness theorem one proves easily, that there are countable non-
standard models of PA.

Each model M of PA contains (up to isomorphism) the
standard one w. This follows from the fact, that all sentences
of the form n+m =ntm and n«m=n+m are provable in
PA. Since the sentences x <p - x =0vx=1V..Y¥x=n are
also provable, we see, that « is in fact an initial part of M
(with respect to the ordering < of M). It follows also, that
M is nonstandard if and only if it vontains elements ¢ with
the property that M I=p <c¢ holds for all n € w. All such
clements are called nonstandard or infinite.

If M is nonstandard and countable, it is easy to determine
the order type of <<of M. Since the standard members form
an initial part of M we look only at the infinite elements of
M. We claim, that they have the order type that of Z X @ (Z

are the integers and @ the rationals) ordered antilexicograph-
ically.

To see this, let ¢> w (ie. ¢ is infinite) and put [c]=
={c+n:n€wlU{c- n: nE€ w}(note, that since ¢>nin M
for all 1€ w, the element ¢ - n is well defined). Thus, each
class [c] is order isomorphic to Z. Now, the induced or-



488

dering of [c]'s is that of Q. Indeed, [¢]<[¢+¢] hence,
there is no greatest element (if 4, B are subsets, we write
A<B if x<y forall x€4 and y€EB). Since Tel=

=[c+ 1] and one of ¢, ¢+ 1 'is'even, the classﬂ %c' is well
defined and we see that [% c]< [¢] thus, there is no smallest
class. Finally, if [c]<[d], then we have [c] <|}( ¢+ a’)]<

< [d], thus the ordering of [c]'s is dense. By the wellknown
Cantors’s theorem it is isomorphic to @ and our claim is
proved.

We are particulary interested in countable nonstandard
models M and their initial segments.

We say, that / CM is an initial segment of M and write
ICM if x<y€[ implies x €/ (i.e. [ is an initial segment
e
in usual sense) and, in addition, / is closed under succesor:

x €1 implies x + 1 €1. For example we have w =M, for arbi-
e

trary model M. If cEM and ¢>w then

I={gaeM:Incwla<c+n]lcM.
e

This segment is not a model, not even a substructure of M:
indeed, c €7 but c€1 but c+c &L

We shall apply the usual coding technique. The formula
Seq (n) describes the sequence numbers
Xyt 1

x;+1 xm+1’

n=po " P - Pm

where p, is the increasing enumeration of prime numbers.

The sequence number # is a code of the finite sequence
<x0,x1,. 34 ,xm>.

We have also the arithmetical functions 2h(n) =m + 1 (the

length of the sequence) and (n);=x; (the i-th term of the

sequence).

3 it
The pairing function j(x, ¥) 55 [(x+py+Dx+y)]+x
enumerates all the ordered pairs. We put j, =j and inductively
T oy = e Yo ) | and j,4, enume-
rates then all ordered n-tuples. The functions k;..k, are
converses to j, i.e. ju(ki(x), ..., kn(x)) =x, forall x.

If f is a function with finite domain then the code of f

M pf®*1 Note, that if M is amodel, f is de-
xEDom (f)

finable in M and Dom(f) is bounded then ¢y is defined
and is in M.

1S¥CE =

A formula ¢ is bounded if it has no quantifiers or if all the
quantifiers in ¢ are bounded i.e. are of the form

dx[x<y&.]or ¥x[x<y-.].

T, -formulas have the form Jx;..x, with ¢ bounded II;-

—————which—are~both—=t—and-1{;. For example all rec

formulas have the form ¥x,..x, ¢, ¢-bounded. Al
mula which is equivalent (in P4) toa Z;-ora Il
said to be X, or Ily, respectively. Q;-formulzis

tions are A;-definable. If ¢ is A; then ¢ is absol
M, C M, are models, then :

M; i:(ﬁ [ﬂg... an] iff M; F(ﬁ[al...ﬂ'n']

for all a,... a, from M;.

If ¢(xy...xp, ¥) is a formula with the free
dicated and such that PA FVx;..x, 3y ¢
for any model M the set s

M= {<ay.a,b>ME[ar..a,,

is a function: MX_. XM~ M. If, in addition, ¢ |
n- times = :
it is also I1; and hence absolute, thus we have

GbM;(a'lm ar) =¢M2(al--- an); -
for models M, C M, and arbitrary a;...a, EM;.

We shall use the following theorem called
ciple: If f:A —~ M is definable over M and there i
subset X C M such that X is unbounded and fi
x € X, then there is a definable, unbounded su
and an element b <& such that f(x)=>b, for x €

Sec. 1. Indicators. In this section we introduc
of indicator and prove the main theorem on incom
PA. The existence of indicators will be shown in

Definition. A PA-formula Y(x, y, z) is an in
models of PA) if ¥ is Z; and:

iYPA ¥ x, y 31z Y(x, y, z) holds.

i) For each countable, nonstandard model M
all ¢, b €M we have

YM(g B)> wiff 31 M[I I=PA &a €1
e

Remark. By (i), the set

YM ={<a b c> MEY[ab,cl

is a function from M XM to M and hence W
convenient notation Y(x, y) =z instead of Y (%,
As remarked in Sec. 0. a total Z,-defined functior
Ay and hence absolute.

The term “indicator” is justified by ii): given
then Y indicates (by taking an infinite vahue) i
initial segment [ C M, which is itself a model of

e

that a €1 <bh.
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. tors exist.

Theorem 1.1. If Y is an indicator, then the sentence ©y
¥ x, z3y[Y(xy)>z] isindependent (i.e. neither provable
nor refutable) in PA.

Proof. We shall prove, that both ®y and | ®y are con-
sistent with P4. We make use of the classical MacDowell,
Specker theorem (1959): “Each model M of PA has a proper,
elementary extension M, of the same cardinality such that
M%MI .”(In Sec. 5. we prove a stronger form of this theorem

nonstandard. Suposse, that from some # € w and some
¢ €M we have M =¥ y [Y(a, y) < n]. Let M, be such
as in McDowell, Specker theorem. Then we have (since

M, =¥y [Y(a, y)<n]

On the other hand, if & €M;'\M, then a EM < b and since
M:—M; we infer from (i), that Y1 (g, b) > wie.
(=

: M; = Y(a, b) > m, for all m € w, which contradicts our
assumption. Thus, we have proved, that
MI=¥x3y[¥(x p)>n]

holds for all » € w. Among all M’s there are such, which are
elementarily equivalent to w. Thus, we have in particular
w =V x dy [Y(x, y) >n], forall n €cw, which implies
immediately c [=@®y. To see, that 7] ®y is consistent, we
prove first the following.

- Lemma 1.2, (Friedman). Each countable, nonstandard
model M contains a proper, nonstandard initial segment
M; |=PA. Proof of the Lemma 1.2.: Choose a, b €M, such
that a € w <<b. Then YM(a b)>w. Consider the set

CX={xEM: YM@ x)< YM(x, b) & a<x <b}.
see that

1. X # ¢. Indeed, Y(z, 2) < w and Y(g, b) > w hence
aEX.

2. X is parametrically definable in M. Indeed, Y is in fact
a PA- formula.

3. X isbounded: by definition X < b EM.

us, by the Maximum Principle in M, X has the greatest
ment:

d=max X

claim: ¥YM(g, d) > w. Indeed, from YM(q, d) Ew, fol-
$ dSw, thus d +1 Ew and consequently

Y¥ @ d% 1Y€ w

Throughout the rest of this section we assume that indica-
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Since d +1 € w <b, wehave Y@+ 1,5) > wi.e.
YM@ d+1) < Y™ + 1, b). Further, a <d +1, for
a<d and obviously d + 1 <5, since YM(@+ 1, 5) > w.

- We showed, that from Y™ (g, d) < w follows d +1 € X,

a contradiction. From the claim follows:
w< Y@ d)<Y¥(d, b)
Thus, d > w and hence the segment M; s.t. dEM; <b

is proper and nonstandard, which finishes the proof of the
Lemma.

Remark. The only requirement on & was w <b EM
and the segment M, satisfies M; <h. Thus, we see that
each nonstandard countable M |= PA contains arbitrarily
“short” nonstandard segments M, |=PA.

Now, let us introduce the notion of index.

Definition. The index of an initial segment [ of a counta-
ble nonstandard model M (with respect to a given indicator
Y) is the set

indyy (1) = {zEM : ¥ a EFABEI[YY (g, b) > 2]}
Consider the case when [/ is itself a model of PA. Then
Y7 :I'X I I and moreover Y=Y N2, by absoluteness.
It follows, that indy (/) &7 (and also z' < z €indy(l) im-
plies z' € indy(I)). On the other hand, since Y™ can be
replaced by Y7, we see immediately that in this case

indy(7) = IiffI Oy
We shall prove

Lemma 1.3. Each countable, nonstandard model M con-
tains an initial segment M, [=PA with indy(M;) <M,.

Thus, M, |= 1@y, which, by the above given remark
gives the desired independency of @y from PA.

Proof of Lemma 1.3.: by Friedmann’s Lemma, there exist.
a, b €M such that

w<a<bE€EM and Y (g, b) > w.
We find and element ¢ with the property
w<max {YM(g, y): y<c}<a

If Y™, y) is always <Ca, then take ¢=»b. Otherwise, let
d=inf {y: Y™ (g, y)=a}. We have

max {YM(a,y) ysd-~1}<a

On the other hand, since Y™ (g, d) 2 a > w, there is a seg-
ment ¢ €7 <d. Obviously, then ¢ ©7/<d~ 1, thus

Yyla d-1)>w.
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Hence ¢ =d - 1 has the required property. Now, let e < ¢
be such that

Y*(a, ¢) =max (YM(g, y) 1y <e}
Thus, we have
w< Y@ e)<a
Let M; be an initial segment of M such that
M, [FPA anda €M, <e
Then, we have z Cindy(3,) implies
YuEM, IveM, [YM(u, v)>z].

Substituting « =« we obtain 3 € M; [YM (a2 v) > 2]
which implies 3v<c[YM(a, v) > 2], since

’

M] <e<xc¢

Hence z < YM(q, ¢)<a

Thus, indy (M) < e ©M,, which finishes the proof of the
Lemma 1.3. and of the Theorem 1.1.

Sec. 2. Finite Games. In this section we recall some notions
of Game Theory, which will be used in the construction of
- indicators. Let ¢ €& be a fixed number and let S be a set
of finite sequences of the length < 2¢. ‘We say, that S isa
set of positions if the following two conditions are satisfied

e si=n oo
T e G

., Xp>> isin S, so is each restriction

,.xj:_1> C}f 8

Deif- o S and 9]1(5‘)‘< 2¢, then there is an s €S such
that 5" extends s properly (i.e. %(s) > (s))

It follows, that if 5; = {s €S : %(s) =/}, then

S Lh{SE: 0<1 2¢}

and each S; is nonempty. An arbitrary subset A4 < S,,
determines a game G,, which is played by two players
(denoted I and II) as follows: player I begins by choosing
an s; from §), then player II chooses an extension s,
of sy from §,, then again player I chooses an 55 from
53 extending s, and so on. Each player makes ¢ steps,
thus, at the end of G4, a sequence s,, € S,. is fixed.
(The terms of s,. with even indices have been choosen
by player [ and those with odd indices by player II, respec-
tively). If s, €A, then player I wins G4, otherwise II
wins.

A strategy (for player [) is an arbitrary function

(0304 U 521, —)S
e

30"V s[gs(s) > s <

"¢ limited.

such that o(s) extends s by one term (i. e. 'U(S)
+1 if s €5y;). A position s is consistent

has the form <o), x;, o(xy), . . ., x,, o(x; .
i-e-if s[*2.;). A given strategy ¢ is a winni
(for player I) if each position s € 8,,, consistent
belongs to A. Intuitively, the player I always
only uses the strategy o in the course of the ga
Analogously, the notion of a winning strategy is
for player II. A given game G4 is said to be determ
one of the players, I or II, has a winning strategy
(using finite induction, only) that each gam
form described above (that is: of finite lenght) i

We are particularly interested in such gar_h_e
be defined in PA. The sets S and A are rep
defining PA-formulas ¢; and ¢4, respectively

Let E(¢s, ¢4) denote the conjunction of
formulas

L 35 4s(s)

2. Vs [@s(s) = Segls) & Lh(s) < 2c]

3. ¥s[ps(s) >V i<(s)Is' i< Qh(s'.).[(fs
=(s); & ¢s(s)1]

4. ¥ s [hs(s) & RA(s) < 20— 3¢ [s(s') & L

& ¥ j<Rh(s) [(s); =11

5. ¥ s [dals) > ds(s) & Ch(s) =2c]

Thus, the formula E(¢s, ¢4) says that ¢
set of positions of length < 2¢ and ¢4 define
positions of length =2¢. If, in addition ¢g
'], then the strategies,
finite domain, can be encoded by single memt
the determinacy of G4 can be formalised and
We easily construct formulas Wy(o) and Wi
o is (a code of a) winning strategy for the play
respectively.

Then we have

A (G 60) & 38 ¥ [34(5) s <

= doWi(o) v 30 Wy(o)

Note that the formulas W) and Wy contain
riable & running through strategies) a parame

mining the number of steps of each playerin G
possibly other parameters for instance to make

Sec. 3. Strong Segments. Let M be a coun
dard model of PA. We say, that an initial se
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- is strong (in M) if the following holds: for each function
- M M, definable over M, there is an element eli<eceM

uch that

(1) forall x €1, either fix) €T orelse flx)>e.

We shall give two simple lemmas which will be useful later.
Let < = {x €M : x < b}and let Fnc (f b) be an arith-
metical formula, which stands for £ is (a code of) a function
rom b< into 5% i.e.

Yx y<flt e pit i fox<bay<bl &
&EVx<bIy<b [+l |f]
(Clearly, Fncis A; and henee absalute.

Lemma 3.1. If I is strongin M, then for all b, I<beEM,
nd all fEMs.t. M |[=Fnc [f, b] thereisan e, [ <e EM
uch that (1) holds.

Proof. Let b and f be as stated above. Put

ooy = {f(x), if, e DmiE)

0, otherwise

early, g- M~ M is definable over M and since 7 is strong
M we find an e, /<e €M such that (1) holds for g

I us, (1) holds also for f since f is a restriction of g

Lemma 3,2, Let I be an initial segment of M." If for some
[<b&M, andall fEM, with M |=Fnc [f, b], there is
e,/ <e€M, such that (1) holds, then 7 is strong in M.
Froof. Letg: M—>Mbe definable over M. Define f> b< —

b< as follows

ted
‘1o b Pe(x)ifig(x) <5
1d /(x) {b =1, otherwise

W, €M, for g is definable and also M |= Fnc [/ b].
assumption, there is an e, / <e' €M, c.f. (1) holds for i
L e =min {¢', b - 1}. Then, for x €7 (in particular x <bh)
8(x) &7, then ecither g(x) =/(x) and hence g(x)>e or
g(x)>bh- 1 and hence g(x)>e. Thus, (1) holds for
id ¢ and the Lemma is proved.

Corollary 3.3, (Absoluteness of strong segments). Let M,
be two nonstandard models and My € M, be an initial
; e
ent of M;. An initial segment / C M, of My is strong
{cf
1 if and only if it is strong in M,

=

100f. Assume [ is strong in M,. Choose a b, I <b eM,
et fEM, be such that = Fnc[f, b]. By absoluteness
NI we have M, =Fnc [f, b] and by Lemma 3.1., there is
2 I 61<e CM, (in fact ech <M) such that (1) holds.
by Lemma 3.2., 1 is strong in M, .

491

Conversely, assume now, that 7 is strong in M;. Take a
b,I<b&M,, and let f €M, be such that M; = Fnc [ B]

~Since f<b ph €My, fis already in M, and by absoluteness

of Fnc we have M; = Fnc[f, b]- Now, since 7 is strong in
My, oy Lemma 3.1. there is an ¢, I <e <M; C M, with the
e

property (1). From Lemma 3.2., we infer that [ is strong in
M,

Now, we generalize slightly the notion of indicator. For each
countable, nonstandard model M, let 0 be a family of so-
me initial segments of M. Let Q be the union of all such
OMs, We say, that a X,-formula Y is a O-indicator if the
condition i) of the Definition of Sec. 1. holds and a modified
version of ii):

i) for each countable, nonstandard model M and abcM
we have

YM(a, by> wiff 31 [T€QM & acI<b].
Thus, if we put 0¥ = {I:1CM&I=PA}, then a Q,-in-
e

dicator is an indicator for models of PA in the sense of the
definition of Sec. 1.

We put O = {I:J CM&IJ is strong in M}, We shall
¢

prove now the existence of Qs-indicators (i.e. indicators for
strong segmentes),

Theorem 3.4. There exists a Q,-indicator.

Proof. First, we describe a certain arithmetical game. The
corresponding formulas Wy, W;; (see Sec. 2.) contain a free
variable o (denotingastrategy)and parameters a, b, . Hence,
the game under consideration will be denoted by G.(aq, b).

The positions of G.(a, b) are sequences s S e o
with 7 <2c- 1, and such that. :
The terms x,; (i.e. the steps of player I) are either arbitrary
numbers x <b or else numbers /> 5 satisfying Fne(f, b).

The terms x,;4 (ic. the steps of player II) are numbers
Oor 1if x;; was <b, and an arbitrary ¢ <b if Xp; wasan
f>b

The intuitive idea lying behind the game Gz, b) can be
described thus: assume ¢ <b and imagine, there is a strong
segment [ satisfying 2 €7 <b. The moves of player T can be
interpreted as some questions concerning I and that of player
II as answers,

Namely, the move x <& of player I is understood as the
question “is x in /?” and a move 0 or 1, which follow, as the
answer “yes” or "no”, respectively. A move e of player 1I
following a move f of player I is interpreted as an example of
a number ¢ satisfying the condition (1) (see Lemma 3.1.).
Player I wins G, (s, &) if player 11, in the course of the game, -
answers inconsistently with the fact, that 7 is a strong initial
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segment, with @ €1<b. Hence, the set A of winning posi-
tions (for player I) is described thus: A consists of all the posi-
tions s =<Xg , ..., X2¢c-1 >, which satisfy one of Ij— 6,
below: ; &

14, forsome j, xp; isaand xpj4; is1 (ie. “no”

Xy; is b and xg;4, is0.

34. Xz; is an x<b and Xpj41 I8 0, xg; is an y<b
and x5;49 island y=x+1

< b and X2i+1

dq. X is <b and xg54y is 0,xq9; 18
is 1 and x9;41 S X4

54. Xpj is an f>b and answer e follows, and some Xx3;
is e and answer O (i.e. “yes”) follows.

64. Xzj isan f w1th answer e, some X,; isan <b

with answer “yes”, some x,x is f(x) with answer

“no” and still f(x) <

The meaning of 14- 64 is clear: 14 means that a¢l
and 2, that b€ 3, and 4, mean, that [ is not an
initial segment and finally 54 and 6,4 contradict the con-
clusion of the Lemma 3.1. and hence means that [ is not
strong.

The above described conditions yield P4-formulas ¢g and
¢4, with free variables precisely s, &, b, ¢, which are easily
seen to be A; and such that PA FE(¢ ¢4) holds. More-
over, since all moves are bounded from above, the set of posi-
tions is provably finite and hence the determinacy of G.(a, b)
is formalizable and provable in PA. Let W;(b, a, b, c) and
Wy(b, a, b, ¢) have the same meaning as in Sec. 2. We observe
the foilowing: if ¢ is small, then player Il has a winning
strategy e.g. if ¢=1 (1 question and 1 answer,), then player
II answers “yes” fora and “no” for b and arbitrary otherwise.
None of 14~ 64 is fulfilled and hence player 1l wins. it is
obvious, that if player II has a winning strategy b in G.(a, ),
he has also one in any G.(g, b), with ¢'<c (he plays the
same b in fewer number of steps only).

On the other hand if e.g. ¢>b, then player I can win
G,(a, b): he asks all numbers x <b. Indeed, if all the answers
are then “yes”, so is for the question x=0 and 24 is ful-
filled. Otherwise the set of x's with answer “no” is definable
and nonempty and hence has a smallest element Xo. If xg =0,
‘then either 1, holds or else 44 since 0<a. If xo >0,
then xo — 1 is followed with “yes” and 34 holds. It is also
obvious, that if player I has a winning strategy o m a given

G(a, b), he has also one in any G.(g, b), with ¢ >c (he
plays the same o during the first ¢ steps, other he plays
arbitrarily).

The above observations can be easily formalized and proved
in PA and hence we obtain, that the following relations are
true '

(S;) P4 l"ﬂ<b"’30W{[(O’, a, b, 1)

(Sy) PA - 3oWy(o,ab,0)&c'<c—>3oW
(S3) PAFa<b-3doWio,a b b+1)
(S4) PAV JdoWi(o,a b, c)&c'>c~>aaw,_(q

Now, we put Z, = {c: aWp(0o,a, b, ¢)}'T
Z, p is definable, by (S;) nonempty and by (S
bounded. We define our indicator Y by

0,if azzb
5 - )
(@ b) {maxza,b, if a<<b

Obviously, we have PA =¥ a4, b 3! c[Y (g
(S3) and (S4) follows, that Y(a, b)=c is

[a=b&c=0]v[a<b&IaWy(oab, c)& El'é
c+1)]

Since, as observed earlier, both ¢g and ¢4
are Wy and W;; and the above shows, th

remains to prove, that the condition (i) holds t

Let M be a countable and nonstandard

a, b €M, Assume YM(g, b)=c > w. This means.
Il has a winning strategy 0 €M in G.(g, b) ir '
in M, for an infinite ¢. Since M is count

number of all possible questions of player 1 .
enumeration of all the moves of player I and let

Sn=<Q'0,A--aQn>*U:<QO; U(QO);- « s lp

Thus, s, is a position in G.(a b) consisten
hence it can be extended to a winning position
It follows, that each s,, satisfies the negation of
Moreover, each possible question of player [ occ
some §,,, forlarge enough n. To simplify the not
the following convention if x < b or f> b and
then both x and f are possible moves of pl
x=q, and f=gq,,, for some n and . The_
player II for these questions, according to the
b are the values o(s,) and 0(s,,), respectiv
write more directly o(x) and o(f), respective‘i

Define /= {x EM: o(x)="yes”}. We sh
strong initial segment of M and a €I <D
=“yes” and -o{b)=“no” according to 14 af
tively. Thus, €[ and b EIf,x EM, and b
from 3,4 follows b(x + 1)=yes, thus x T
if x€I and y <x, then 4, implies 0(»)=
We have shown, that / is an initial segment 0 M
To see that / is strong we apply the Lemm:
be such, that M I=Fnc [£, b]. Then f isan adm
in G,(a b). Let e=0(f). From 5, follo
hence I <e. Let x €1 and suppose f(x) &
=vyes, o(f(x))=no and from 64 follows tha
the condition (1) holds. By the Lemma 3.2
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NE)\W\, we prove the implication from right to left of the
equivale}lce in (ii"). Let J C M be strong and a €1<h. We

wC Z, p. Indeed, if ¢ € w, then player I uses the following
strategy:  for x <5, o(x)=yesiff xE€7 and for f with
M =Fnc [f, b], 0(f) =an e with the property (1). Such an
¢ exists by the Lemma 3.1. Since the positions have the length
<2¢ €w, thus finite (in real sense not that of M) this stra-
tegy 0 is explicitly definable in M by a PA-formula and
hence 0 €EM. Thus ¢ € Zq,p. Now, a definable set containing
all the standard numbers must contain also some nonstandard
ones. Indeed, if not, then the complement consists precisely
of nonstandard numbers and is definable and hence has the
smallest element xo. But, then xo - 1 € w follows, a con-
tradiction.

Thus, there are c €M, ¢ > w and ¢cCZ;p and conse-

quently Y™ (g, b)=max Z, , > w- This finishes the proof of
the Theorem 3.4.

Sec. 4. So far we have proved the existence of Os-indicators
e. indicators for strong segments). The Theorem 1.1. on in-
completeness of PA requires {J,, -indicators (i.e. indicators for
dels of PA). Thus, we have to show yet the following.

Theorem 4.1. Each Qs-indicator is also a O, -indicator.

¢ proof splits in several lemmas, which are of independent
erest. First we prove,

tforsome u, v €1 we have u + v & I. Define f(x)=u +x,
XEM. Thus, [ is definable over M and since [ is by
bmption strong in M, there is an e >/ with the proper-
(1). Since f(»)=u 4+ &1, we obtain that u +v>e, and
ice there is an x <y such that u + x =e. But x€7, for
Yl u+x=f(x) =e, a contradiction. Similarly, assume
&1, for some u, vE L Puting' g(x) =u-x, we find a co-
ponding e, and infer, that g(v)=u-v>e. Thereisan x <y
h that »-x <e and u(x + 1)>e. From g(x) =u-x <e fol-
8 u-x &/ and hence u-x + u =u(x + 1)E I, because [ is
4y proved to be closed under addition. But u(x +1)Er
adicts u(x + 1) >e,

—_

The above implies now, that I is closed under the pairing
on j and more generally under all function j,, enumer-
8 the n-tuples. This, in turn, implies that the property (I)
Balso for definable functions of several variables. Indeed,
a function of n variables definable over M, we put

KL (x), .. K(x)) (where k7's are the converses _
n). Now, g is definable and we find a corresponding e
that (1) holds. This e is good for f as well. Indeed, if

c »
have to ,ShO,Ws,,that,,YM (@ b)> w. It is easy to see, that
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X1,. .., Xy €1, then j,(x,,..., x,) €I and hence

g,(i",(xl #13 xn))

is either in I or else > ¢. But

g(jn(xl’ S ’xn)) =f-(x1!

5 Xy)

and our claim is proved.

The next property of 7 is the following. For each formula
$(x1...x,) there is a formula @(x;. . Xp, V1 «..Vm) and

elements e,...e, €M such that for all ay...a, €1 we
have '
IE¢lay, ... a,]iffM Eolar, ... ,an,e1,.. ., em] (eq)

We prove this by induction on the length of ¢: we putg=¢,
for atomic ¢ and “I¢ =71¢ and ¢vg = v®. The verification
of (eq) is immediate. Now, we treat the quantifier case. Assume
inductively, that for a given ¢(x, x,, .. .. X,) we have ¢(x,
¥1roo . Xp, Y1o.. ¥m) and e;... e, so that (eq) holds and
consider the formula dx¢. Let f(x;...x,) be the Skolem

function for ¢ i.e. the function defined thus

the smalles @ such that MI=¢ [q, a,. . . a,
Cpet |

B

F@s

‘!aﬁ)z

0, if such an a does not exist.

The function f is -definable over M and by the previous
claim we find an e >/ such that (1) holds. Let y,, ., bea
variable not occuring in ¢ and put Ix¢=3Ix<y,,,, $and
emy1 =€

To prove (eq), assume 7 I= Jx ¢[ay, . . .
some @ €1, we have [ =¢[a, a,, ..
assumption, M =¢[a, a;y, . . ., a,, e,

. @, ). Hence, for
-» a;] and, by inductive
...em]. Since

a€I<e=¢y .

we obtain
ME=3x<em+15[a1,..'.,czn.el,...,em]
ie.
Ml—mal ..... Ops €15+ o+, €, €y g |-

Conversely, if Ix¢ is satisfied'in M, then

a=flay, ... .a,)<epiq=e
and hence ¢ € /. By inductive assumption, J |=¢ la,ay,....a,]
follows.

Now, since [/ is a substructure of M all the axioms 1-6
hold true in 7. As remarked in Sec. 0., the schema (Ind) is
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equivalent to (Min), given axioms 1-6 alone. Hence, it suffices

to show, that I |=Min holds. Suposse, that &(x, ay, . .. L)

~ defines in / a nonempty set. Since M is a model, then
M [=Min and we find the smallest ug €M such that

MI=¢lug, ¢y .. an, €1 .- - €m]-

Then, by (eq) we have I |= ¢{ug, ay, - - - .a,]. If there was an
u<u, with I =¢[u a;...a,)], then again by (eq) we had
MI=@[u, ay ... a, e; . ..en) acontradiction. Thus, ug is
the smallest element satisfying ¢ in I and the Lemma is
proved.

To prove the Theorem 4.1. we have to show that, for a
Q,-indicator Y, the equivalence in (i) of the Definition of
Sec. 1. holds. We can already show the “*” implication:
assume Y (g, b) > w. Since, Y is Qg-indicator, (i) holds
and hence there isan [ ZM, strongin M and a €1 <D

e
By the Lemma 4.2. [ |=PA and hence the right hand side
of equivalence of (ii) is true.

The“<#nplication will be proved in next section.

Sec. 5. Before completing the proof of 4.1., we wish to
formulate an arithmetical counterpart of Ramsey’s theorem.
For aset X = w we denote :

xr ={<xy .. "Xy > Xy, Xn €X and x; < ...<x,}.

Given a partition [X]' =4, UA,, with 45 NA; =¢,into
two parts, a set Z _X is said to be homogenous (for this
partition) if either [Z]® CAy or [Z]" £A4,. Ramsey’s
theorem states, that if X is infinite, then for all »n and
arbitrary partition of [X]" in two parts, there exists an infinite
homogenous set Z. The proof (see e.g. Kleinberg, 1973) uses
induction and one sees, that if both X and A, are PA-de-
finable, so is a homogenous set. Hence, replacing sets by defin-
ing formulas, one can formalize and prove this definable version
of Ramsey’s theorem in Peano arithmetic. To do this, let us
denote for a given formula ¢ :

VEC) 1, S, AN & | A K] 6) <K ()

Thus, V¢ describes the increasing n-triples with terms in ¢.
An arbitrary formula (x) determines then a partition of
V? (namely, VE(x) & Y(x) and VE(x) & T (x)).

For a formula () we denote Hom(x, ¢, ¥, n):
¥ ox [x(x) = ¢()] & {V x [VE(x) >

Y)YV ¥ x [VEG) = W)l _
Finally, 31®x ¢(x) stands for ¥y Ix[x >y & ¢ (¥)].

Now, Ramsey’s theorem can be stated as follows: for arbitrary
formulas ¢ and ¢ andall n € there is a formula x such
that the following holds

PA |- 37x ¢(x) > A7 x x(x) & Hom(x, ¢, ¥. n)

‘exists a proper countable elementary extension K o

We shall use this fact in the proof of the following th
Theorem 5.1. Let M be a countable model of PA

that M C K and M isstrongin K.
e

Proof. We define K = Def(M™)/F, the definabl
power, where Def(M™) denotes the family of defi
M functions f:M—>M and F is an ultrafilter in th,
algebra of definable subsects of M. It is easy to see
theorem reamins valid and hence the embedding o
K by constant functions is elementary. Thus, K
able elementary extension of M and, if F isnot

the extension is proper. To satisfy M “K an
e
strongin K we know to choose F' more carefully

Namely, we shall construct F in such a way
lowing conditions will be satisfied ;

1. If fEDef(MM) and f(x)<a, for x €]
constant on a set X EF. :

2. If fE Def(M™) is such that forall b €
M = Fne[f(b), b], then thereis an X €
forall a<b<c<d from X we have :

@ Vi<a [0 O <bvfd) 6 <B1>Fe)

To do this, enumerate all functions f &€ Def(M
bounded and all those f from Def(M™)
MIi=Fnc [f®, b], for all bEM. Starting
define inductively a decreasing sequence X,
definable sets as follows: suppose X, is al
Take the n-th bounded function f (in the fix
tion). By Dirichlet’s Principle f is constant on son
unbounded subset X = X,,. Put Xp,41 7=
the n-th function f satisfying the premise of s
and a partition |X,,41]* into Ay, A;, whe
those a <\bh <{¢ <{d for which (¢) holds true
remaining ones. Since both S,,4; and A4
and X,,4; is unbounded we apply Ram
to find a definable, unbounded set X, which i ]
for the partition. We have to show, that XTI
for contradiction, that [X]* ©A4,. Fix a<b
for any ¢ <d from X, with ¢ > b there
i <a such that

[f(e) () < b v f(d) (i) < b] & [f(c) () 7
By Dirichlet’s Principle we find an i, < &
arbitrarily high ¢ <d from X to which I

Enumerating them, we find a definable
that f(c(x))<b, forall x, and yet x #y

fe(x)) (i) # f((c(»)) Go):

which is impossible. Thus [X]* 24, and we p
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Now, let F={X : dn[X, CX]}, F is a filter and in fact,

an ultrafilter. Indeed, if X is a definable subset of M, then -

its characteristic function. ‘
- (s e X
x ponc
1) 1, x€EX

is bounded and by 1.either X =71(0) or M\X=7"1(1) isin
- F Since all setsin F are unbounded, F' is nonprinciple. Also
1. implies, that M ZK : if f/F <a/F, where a/FEM ie. a
 is a constant, then f(x) < a, for x EX €F. There is an
" such that f/F=f/F and f'(x) <a, everywhere. By
1. f'(x)=c<a, for x €EX'EF and hence f/FEM.

Finally, we prove, that M is strong in K. We shall use
 Lemma 3.2. We have id/F > M (id is the identity id(x)=x
~ for all x), since F is nonprinciple. Let f be such that

K [=Fnc [f/F, id/F]

We have to find a function e such that for i €M, either
 fI[FG) €M orelseis >e/F. By Los’ theorem we have

M |=Fnc[f(b), b],

for 5 from a set from F and we may assume that this
olds that for all & €M. By 2. we find and X €F such
hat for @ < b < ¢ < d from X the formula (¢) holds.
let i €EM. Fix w, v €X such that i <u <v. There are

~a) Thereisa ¢ > v and there are 1 <a <b<c¢ (all from
X) such that f{c) (i) <b. Then from all d>¢ from
X we have

J@@O <bvfd)()<b

and hence f(d)(i) = f(c)(@), for all d > ¢ from X,
which implies f/F(@)=f(c)@) €M in K.

- b)Forall ¢>v and all 4 b such that g, b, cEX and
I <<a<b<c¢ wehave f(c)(/)>b.

Kirby, L.A.S., Thesis, Manchester 1977.

Kitby, L.A.S., Paris, J.B., Initial segments of models of Peano
Axioms in: Set Theory and Hierarchy Theory V. Bievutovice,
Poland. Lecture notes in Mathematics 619. Springer-Verlag, 1976.
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We put then e(c) =max {b:b €EX & b < ¢}, for all such ¢
as above.

We have e(c) < f(c)(), forall ¢ €EX and ¢>v, and

hence f/F(i) = ¢/F inK. Note, that the function e does not
depend on i. It remains to show, that ¢/F > M. If ¢/F €M,
then e is almost constant i.e. e(x) =w, for x from a set
ZEF Then ZNXEF let x,€ZNX and x, >w then
forall x €2 MNX and x>x, we have e(x) >w, acontra-
diction. Thus, e/F > M and the proof is finished.

Corollary 5.2. 1et M be a countable, nonstandard model.
For arbitrary a € M, there is an J CM, strongin M and
e

such that ¢ €1.

Proof. Let K be an elementary extension of M asin
Theorem 5.1 and let Y be a Q-indicator. Since M is strong
in K we have YX(q, b) > w, for arbitrary b EK\M. Let
¢ €M be such that YX (g, b)> ¢ > w. Then we have

K |:l§|y[Y(a, y)>cl

and by elementarity we obtain M [= dy [Y(g, ) > ¢], which
gives YM(a, b) > w, for some b EM. Hence, there is a seg-
ment / of M containing a.

Now, we finish the proof of Theorem 4.1. It remains to
show the implication <7’ of (ii). Assume, then, there is
a segment M; C©M, such that M, =P4 and a €EM; <b.

e

By Corollary 5.2 there is an T M, strongin M, and such
e
that ¢ €7 C M, < b. By Corollary 3.3. I isstrongin M, as
e

well. Since Y isa Q,-indicator, we obtain YM(q, b) > w,
which finishes the proof.

Let us note that it is possible to construct a 0y, -indicator
directly. More generally if T' is a theory extending PA and
w |=I and T is Z,-definable, then one can construct
directly an indicator for models of T". The method is similar
as in the proof of Theorem 3.4. but the game is more com-
plicated.
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