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In this work, we propose an alternative method for solving a to radiative transfer equation in the four-stream approximation following the
ideas of Jirenez-Aquino and Varela (2005). We use the Li and Ramaswamy (1995) proposal to establish the set of four coupled first-
order differential equations associated with tadiancesor radiative intensities. The method consists in transforming those four coupled
differential equations into a set of four independent fourth-order differential equations associated with the qudritaies /¢, which

represent the sum and the difference respectively of two radiative intensities. As a consequence of this fact, the solutions for the radiative
intensities are then easily calculated, and no matrix method is required.

Keywords: Scattering; polarization; radiative transfer equation.

En este trabajo proponemos uretmdo de soludin alternativo a las ecuaciones de transferencia de radiaci la aproximaéin de cuatro

flujos, siguiendo las ideas propuestas poré&fiez-Aquino and Varela (2005). Usamos la propuesta de Li and Ramaswamy (1995), para
establecer un conjunto acoplado de cuatro ecuaciones diferenciales de primer orden asociados a las intensidadés d&Iraitnzio

consiste en transformar esas cuatro ecuaciones acopladas en un conjunto de cuatro ecuaciones diferenciales independientes, asociados a
cantidades//® y M?, las cuales representan la suma y la diferencia de dos intensidades déradispectivemente. Como cosecuencia de

este hecho, las soluciones para las intensidades de @ugum obtenidas faciimente sin el requerimiento daratlgétodo matricial.

Descriptores: Dispersén; polarizadbn; ecuadn de transferencia radiativa.
PACS: 42.68.Db; 42.68.M;j

1. Introduction incident at the top of the atmosphere and must include ab-
sorption and scattering of the light in the atmosphere and at
The problem of specifying the radiation field of an atmo-the ground’s surface. One way to calculate the actinic flux is
sphere which scatters light in accordance with well-definedhrough the solution to the radiative transfer equation applied
physical laws originated in Lord Rayleigh's research in 1871to plane-parallel atmospheres, as proposed by Chandrasekhar
into the illumination and polarization of the sunlit sky. But in 1960. It is an Integro-differential equation associated with
the fundamental equations governing Rayleigh’s problem hathe intensity of solar radiation whose exact analytical solu-
to wait seventy-five years for their formulation and solutions.tion has not yet been obtained. The solution has only been
However the subject was given in more tractable conditiongalculated by some numerical and analytical approximation
when Arthur Schuster in 1905 studied a problem in Radiativenethods. Such approximations are referred to as two-stream
Transfer in an attempt to explain the appearance of absorptideur-stream approaches.
and emission lines in stellar spectra, and Karl Schwarzschild Tywo-stream methods for radiative transfer have been

introduced in 1906 the concept of radiative equilibrium inwidely used in radiative flux calculations, as described in sev-
stellar atmospheres. Since that time the Radiative TranSf@'ra| review papers such as Meador and Weaver (1980)’ Shet-
has been investigated principally by astrophysicists, thoughe and Weinman (1970), Zdunkowsi al. (1980), and King
in recent years the subject has attracted the attention of physind Harshvardhan (1986), ReStarezet al. (1993), etc. The
cists also, since essentially the same problem arises in thespularity of two-stream approximation is due to the fact that
theory of the diffusion of neutrons. analytical solutions for upward and downward fluxes can be
With regard to the atmospheric problem, the radiativederived, and numerical computations for these fluxes can be
transfer also plays a very important role in the study ofefficiently performed in a plane-parallel medium. The ac-
air pollution, earth global heating, photochemistry of tropo-curacies of the various two-stream methods have been com-
spheric pollution, etc. For instance, in tropospheric photopared by King and Harshvardhan (1986). It wasfound that
chemistry, one of the most important quantities related tdhe relative error in the radiative quantities can be up to 20%
the dissociation of certain molecules into fragments whichor higher for any of the two-stream methods, over a range of
are highly reactive, and one that contributes to the unlimitedptical thicknesses and solar zenith angles. It follows that
generation of ozone in the troposphere, is knowmetic  improvements to the two-stream approaches are needed if
flux, see Finlayson-Pittst al., (1999). This is defined as the a higher accuracy in the calculations is desired. Generally,
amount of radiation coming from all directions that strikesthe technique for improvement is to extend the two-stream
a given volume containing molecules and/or particles. Themethod to a four-stream or, in general, multi-stream approx-
calculation of the actinic flux begins with the solar radiationimation.



AN ALTERNATIVE METHOD OF SOLUTION TO RADIATIVE TRANSFER 133

energy per area per time per wavelength and per steradian.

The intensity is commonly, said to be confined ipencil of

do radiation.

e The monochromatic flux densityr monochromatic irra-
dianceof radiant energy is defined by the normal component

K of I, integrated over the entire hemispheric solid angle, and
may be written as

F,\:/IA cos 0 dS2 . (2)
dA 0

In polar coordinates, we write

on ™/2
FIGURE 1. A pencil of radiation. P\ = / / I1,(0,¢) cos 8 sinfdf dy . 3

In 1995, an analytical method, based on the higher-order 00

spherical harmonic expansion in both the radiative intensity ~Scatteringis a physical process by which a particle in
and the phase function, was proposed by Li and Ramaswanie path of an electromagnetic wave continuously abstracts
to solve the radiative transfer equation. The proposed methognergy from the incident wave and reradiates that energy in
consists basically in reducing the radiative transfer equatiogll directions. Therefore, the particle may be thought of as
to a set of coupled first-order differential equations for thea point source of scattered energy. Scattering is often ac-
radiative intensities, which, according to the truncation or-companied byabsorption Grass looks green because it scat-
der in the approximations lead, to two-stream, four-stream ofers green light while it absorbs red and blue light. The ab-
multi-stream approximations. In this work, we follow the Li sorbed energy is converted to some other form, and it is no
and Ramaswamy theoretical scheme and use the four-stred@fnger present as red or blue light. Both scattering and ab-
approximation to establish the four coupled first-order dif-Sorption remove energy from a beam of light passing through
ferential equations for the radiances. Our main aim in thighe medium. The beam of light is attenuated, and this atten-
work is now to apply the strategy, based on tlifusion-  uation can be calleextinction Thus extinction is a result of
type equation for radiative transfeproposed by Jignez-  scattering plus absorption. In a nonabsorbing medium, scat-
Aquino and Varela (2005) to solve those four coupled differ-tering is the sole process of extinction.

ential eaquations. The strategy consists in transforming those On the other hand, in the field of light scattering and ra-
coupled differential equations into a set of four independengliative transfer, it is customary to use a term catiesss sec-
fourth-order differential equations associated with the quantion, analogous to the geometrical area of a particle, to denote
tities M * and M ?, where these quantities will be defined re- the amount of energy removed from the original beam by the
spectively as the sum and the difference of two radiative inparticle. When the cross section is associated with a parti-
tensities. The solutions for the radiances will be calculatectle dimension, its units are denoted in terms of area’Jcm
through these quantities in a direct manner, without any malhus theextinction cross section, in units of area, is the
trix method. As will be shown, these solutions can easily besum of the scattering and absorption cross sections, that is,
transformed into the same expressions as those calculated By:t = 0sca + Tabs- HOwever, when the cross section
Li and Ramaswamy, using some matrix methods. Finally, thdS in reference to unit mass, its units are given in area per
conclusions are given at the end of this work. mass (crig—!). In this case, thenassextinction cross sec-

In this work, we start with some concepts and definitionstion is the sum of the mass absorption and mass scattering
for the understanding of radiative transfer in planetary atmoCross sections, that igc,: = ksca + kaps. Furthermore,
spheres. So, the analysis of a radiation field often requires th&hen the extinction cross section is multiplied by the particle
consideration of the amount of radiant enedgss, in atime ~ humber density (cm®), i.e. noc.:, or when the mass ex-
interval d¢, and in a specified wavelength intervalto 4\,  tinction cross section is multiplied by the density (g
which crosses an element of are4, and directions confined 1-€. pkezt, in both cases the resulting parameter has units of
to a differential solid angle2, which is oriented at an angle (cm™') and is referred to as trextinction coefficienand de-

6 to the normal ofl4, as shown in Fig. 1. This energy is ex- noted by.;. The basic theories for an understanding of the
pressed in terms of the specific intensity (or simply intensityscattering of particles in the atmosphere are the Rayleigh and

or radiancs I given by Mie scattering theory.
In a scattering volume, which contains many particles,
dE\ = —1I, cos@dAdQd)dt, (1) each particle is exposedby, and also scatters, the light that

has already been scattered by other particles. For instance, a
wherecos# dA denotes the effective area at which the en-particle at some position, say A, removes the incident light
ergy in being intercepted. Thus the intensity is in units ofjust oncej.e. single scatteringn all directions. Meanwhile,
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a portion of this scattered light reaches another particle at and pressure). In this case, it is convenient to measure linear
position, say B, where it is scattered again in all directionsdistances normal to the plane of stratification.z Iflenotes
This is calledsecondary scatteringSimilarly, a subsequent this distance, then the general equation of radiative transfer
third-order scattering involving the particle at another posi-defined in Eq. (7) becomes

tion, say C, takes place. Scattering more than once is called

multiple scattering Multiple scattering is an important pro- cosd (2,0, ¢) =—1(z,0,9) + J(2,0,0), (8)

cess for the transfer of radiant energy in the atmosphere, es- kpdz

pecially when aerosols and clouds are involved. whered denotes the inclination with respect to the upward
normal, andp the azimuthal angle in reference to thaxis.

2. Introduction to radiative transfer For simplicity’s sake, we have omitted the subschmin the

radiative quantities. By defining the normal optical thickness
A pencil of radiation passing through a medium will be weak-(or depth)

ened by its interaction with matter. If the intensity of radia- oo
tion I, becomed, + dI, after passing through a thickness S /k ds' Q)
ds in the direction of its propagation, then paz
dIy = —pkxIxds, (4)  measured downward from the outer boundary, we find that
wherep is the density of the material, arig, denotes the dI(7, pi, )
N o ; — =] - 10
mass extinction cross section (in units of area per mass) for dr (. 1,0) = J (7, 11,0, (10)

radiation of wavelengthh. The mass extinction cross section wherey = cos . Eq. (10) is the basic equation for the prob-

is the sum of the mass absorption and scattering cross sectiq@y, of multiple scattering in plane-parallel atmospheres.
Thus, the reduction in intensity is due to both absorption and

scattering by the material. 2.2. Multiple scattering and absorption in planetary at-

On the other hand, the radiation intensity may be mospheres
strengthened by emission from the material plus multiple
scattering from other directions into the pencil under consid-The scattering process is often coupled with absorption. To
eration at the same wavelength. We define the source funéermulate the fundamental equation governing the transfer of
tion coefficientj, such that the increase in intensity due to diffuse solar radiation in plane-parallel atmospheres contain-

emission and multiple scattering is given by ing molecules and patrticles, the following must be consid-
ered. The terndiffuseis associated with multiple scatter-
dIx = jxpds, (5)  ing processes and is differentiated frdirectsolar radiation.

i L . The first term on the RHS of Eq. (8) describes the extinction
where the source function coefficiefit has the same physi-  rqcesses and the second one the emission and multiple scat-
cal meaning as the mass extinction cross section. Upon COMing of the diffuse radiation. For this purpose, we will con-
bining Egs. (4) and (5), we obtain that sider an atmospheric layer of thickneas delimited by two

_ , plane-parallels and containing molecules and/or particles, as
Iy ==kxpIyds+jxpds. ©)  shown in Fig. 2. The differential change of diffuse inten-

It is convenient to define the source functidh = j» /kx, sity emerging from below the layer is due to the following

which in this case has units of radiant intensity. So, Eq. (6'0C€SSes:
may be rearranged to yield (1) reduction from the extinction attenuation,

A =1+ Jy. (7 (2) increase from the single scattering of the unscattered
kxpds direct solar flux from the directiofv- 110, o) to (1, ),

This is the general radiative transfer equation without any co- (3) increase from multiple scattering of the diffuse inten-
ordinate system imposed, and it is fundamental to the discus- sity from directions(;/, ¢') to (i, ¢), and
sion of any radiative transfer process. ’ T

(4) increase from emission within the layer in the direction
2.1. The equation of radiative transfer for plane- (1, 0).

parallel atmospheres ) )
Point (1) corresponds to the first term on the RHS of Eq. (8),

For many atmospheric radiative transfer applications, it isvhereas points (2)-(4) are included in the source function
physically appropriate to consider that the atmosphere in loJ (7, u, ©).

calized portions is plane-parallel so that variations in the in-  To describe the scattering of a particle it will be nec-
tensity and atmospheric parameters (temperature and gas pessary to introduce thehase function which represents
files) are permitted only in the vertical directioe( height  the angular distribution of the scattered radiation coming
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from some other direction. For instance, phase function Cenit
p(u, ©; —po, wo) describes the angular distribution of the (19)

scattered radiation to the outgoing directign ¢) coming
from direction(—po, o). Phase functiog(u, ¢; 1/, ¢') de-
scribes the angular distribution of the scattered radiation to
the outgoing directior{y, ¢) coming from other directions
(W, ¢').

On the other hand, according to the definitions given at
the end of Sec. |, the quantity(z)o ds must be understood
as the number of molecules and/or patrticles inside the vol-
ume element of lengttis and unitary cross section (1 éjp
whereds = dz/ cos§ = dz/u. Obviouslyn(z)o dz is then ,
the number of molecules and/or particles inside the vertical -
column of heightdz and unitary cross section. We define
the extinction, scattering, and absorption coefficienfas,

Bscar aNdB4ps AS FIGURE 2. Transfer of diffuse solar intensity from below in plane-
1 parallel layers: (1) attenuation y extinction; (2) single scattering of
Bext,sca,abs = N /Uext,sca,abs(z)n(z) dz. (11)  the unscattered solar flux; (3) multiple scattering; and (4) emission
Az from the layer.

So, the differential change of the diffuse intensity can be

written as required by Eq. (8), that is: So, if we integrate Eqg. (12) in the regidxz, and use the

definition of Eq. (11), we get

dl(z,0,
H (T@) = —nUextdZI(2797<P) ( )
Al(z,0,¢
F - W = 7ﬂemt 1(2,97(,0)
+nagcad2’fe THO O (1, 5 —Hos Po) dz

F —T
27 1 +ﬂsca ﬁ € Mop(lu’v w5 —Ho, 900)

nabw z A 130
//ITu,w o, ;10" )do dp o 1

69(’&

0 -1 (1’0" o, s 1’ " )de'dp . (13)

+noapsdz B[T(2)]. (12)
Therefore, the first term on the RHS of Eq. (12) referslf we define themgle-scatterlng albedo as
to the reduction of intensity because of the extinction pro- Beea
cesses; in the second term, the only expressiga "0 is w= (14)

6emt ’

the attenuation of the direct radiation flux coming from the
sun, wherel?, is the direct radiation flux at the top of the and the optical depth as
atmosphere, as shown in Fig. 2. This attenuation represents

the Beer-Bouguer-Lambert law, which is obtained by solving - /@m dz' (15)
Eqg. (10) without the second term of the RHS. So, the second

term refers to the increase in intensity because of the single

scattering of the unscattered direct solar flux from directiont"€N: Py taking the limit whez\z goes to zero, Eq. (13) can
(10, o) t0 (1, ). The factordr is the normalization con- finally be written more concisely as

stant of the phase function because it must be integrated over dI(z,6, )

the4r solid angle. The third term contributes to the increase “T (1,0, 0)=J (7, 1, 9)=Jo(7, o, o), (16)
in the scattered radiation in the directigm ) coming from
all other directiong ./, ¢’). Finally, the last termB[T'(z)]

is concerned with the laws of blackbody radiation, which are
the basic to an understanding of the absorption and emission
processes. This is the case for the transfer of thermal infraredJ (7, i, ¢) 7// o, o5 1", VI (7, 1, ") dop' dp!, (17)
radiation emitted for the earth and the atmosphere. How-
ever, the flux emitted for the earth and the atmosphere with
an equilibrium temperature 255K is not sufficient for the
photodissociation process of some chemical species in co
parison to that emitted from the sun fdr< 3.5 um. There-
fore, for some solar radiative transfer problem, which is our
interest in this work, we may omit the last term of Eq. (12).

whereJ(, i, ) is referred to as thimternal source function
due to multiple scattering and is defined as

27 1

and Jy (7, po, o) is referred to as thexternal source func-
rTT1|on due to single scattering of the direct radiation, and is
given by

— o, 03 —po, o) Fo e” 7. (18)

JO(T7 1o, 900) = A7
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O is the angle between incident and scattered radiation, and

m=l

1 )
Peos®) = 3 o Y (V" (1 ¢) . (28)

m=—

The momentw; is determined by the orthogonality of the
Legendre function

1

20+ 1
wp = i/p(cos O)P,(cos®©)dcos©. (24)

r N 9
-1
It can be shown that, = 1, which represents the normaliza-
T v tion of the phase function. The quantity /3 = g, is defined
as theasymmetry factoand is given by

»
al
l\DM—

1
/ p(cos ©)cosO d cos O; (25)
21

Earth ground

it is an important parameter because it characterizes the scat-
FIGURE 3. lllustration of the incident solar fluk onthe top ofa  tering pattern of a particle.
plane-parallel atmosphere, at an angjge The parameter™ is the

total optical dept,h and represents any point inside the layer. 3.1. The four stream approximation

The fundamental parameters that drive the transfer of diffusehe four stream method proposed by Li and Ramaswamy
intensity are the optical depth, the single-scattering albedastarts with the following series expansion for radiative inten-

and the phase function. sity:
oo m=l

3. Liand Ramaswamy method I, ) = > NVA+TLT)Y (1 0), (26)
=0 m=—1

In the Li and Ramaswamy scheme, the phase function is e)%vherel’”( ) is the radiative intensity as a functionafSub-
panded in terms of the spherical harmonic function in the fol- “stituting Eq. (26) into Egs. (17) and (18), and using the or-
lowing way: thogonality property of the spherical harmonics, we obtain
expressions for the source functions

(TR Y ZZ ()Y (W)

=0 m—— J =& - Wi m Ym 27
19) w;; "D () . (27)

where Y™ (u, ) are the spherical harmonic function and and
Y™ * (1, ') its conjugate complex, such that

wi m Mk
> Y™ (1, ) Y™ (— 10, 0)

@+0)—m) . =0 m

WM 0) =\ B € (20)

xFye 07, (28)

Py™(u) being the associated Legendre function. The moNow, substituting Egs. (26), (27) and (28) into the radiative
mentsw; of the series can be calculated using the expansiotfansfer equation (17), we get the following:

of the phase function in terms of the scattering angke© L jadIpm
such that (1 =m+1)(I+m+1)] dl:l
_ - 1/QdIlnjl _ m m —ugT
p(cos®) = Zwl Pi(cos©), (21) +[(T+m)(l —m)] = a I" = b" e , (29)
1=0
where coefficients; andb)” areq; = [(2{ + 1) — &w;] and
where b = @w Y™ (— uo,cpo)F@/4\/21+ We consider a so-
, 2\1/2 201/2 , lution with a truncation of ordef., which means that the
cos© = pp' + (1 —p7) /5(1 — p%) /= cos(p — ¢'), spherical harmonic functioli,” (1, ¢) is restricted to order

22) = 0,1,2,..., L. For L = 1, if only calculations of flux and
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the azimuthally averaged intensity are considered, we havia terms of which we will construct a set of four independent

(form = 0) fourth-order differential equations, one for eakf;” 4 with
d1° i = 1,2. For this purpose, we first write the first derivative
dil = aol) — by e "7, with respect ta- for eachM;* ¢, obtaining the following:
-
s _ 19— 3 o (30) aMy
dr T S S ATM A ATMY £ B (34)
System (30) is the well-known two-stream approximation A
and is the same as that obtained in the Eddington approxi- 7 L— A" M5 + AP MY 4 B e (35)
mation (Shettle and Weinman, 1970). The case 2 corre- TS
spoEds to a degenerate case and will not be considered in this d;]l\/lz — AT M+ A;Mfl 4 Bye w07 (36)
work. T
For L = 3 we obtain the four-stream closure. Again, dM¢ P it rd e
if only the calculations of flux and the azimuthally averaged o = AT My + AT MY+ Byem™T,  (37)
intensity are considered, them = 0. In this case,
dl, PR where we have defined the coefficients
ar aolop — 0o €
A%:ﬂiaj, A’li:ﬂiaj7
2 6 2 2
dly  dl _ a a 5a a
2—= + — =ayl; — by e 07 +_ 20 %2 g _ 200 L B2
d7—+d7_ @i 1€ A2 6:l:67 A2 6i67
b
By= —b,  Bj=bs—b,
dl3 dly Cwor
3E+2E—a212_b28 BQZ_bﬁ_bj B/:bj_ibo (38)
3 3 73 37
qa o (31)  Next the second derivative with respecttof Eqgs. (34)-(37)
dr sl ' is calculated, combining these equations, so that
Since we are considering only the azimuthally independent
case, and for simplicity the superscript” in I? and b9 d2 M . J e
(¢ = 0,1,2,3) are omitted. Egs. given in (31) can be com- dr2 CuMy + CioMy + De ™7, (39)
bined to yield o rd
d Ml s d —uoT
dl 2a3 2bs dr2 Coar My + O My + Ee ) (40)
—_ = a1[1 — 7[3 — (b1 — 7) e—uor T
dr 3 3 A2 M
L = O M5 + ClpMf + D ™7, (41)
dl e d2M¢i
O =l b TN gt O + B e (@)
in this case, the coefficients are defined as
b0y b e
dr 3 3 o 4o o ood
Ci1=AT AT + ATA™, Cia=ATAS + AT AL,
dl, 24 a %y by Co1 = A|7 AT + AITAL Cop = A7 A + ATTALT,
—=——1I+ =1 — — =)e 7. (32
g =3 gkt o) G2 L ATAT L AS A O, — ATAT 4 A AL
. ; ! A= - I+ Al— o~ Al— A+ I+ Al +
4. An alternative method of solution Cor=Ay Ay + 47 A, Oy =Ay A7 + 4374,
— AT +p/
To solve the set oEgs. (??), we propose the following. Let D=ArBy+ A By —uoby,
us define the new variables E = A" By + A" By —uyBj,
M} =1+ 1y, M{=1Iy—1I, D' = A} By + Ay B} — uoBs,
Ms=IL+1, My=1I —1Is,, (33) E' = A, By + AL B — ugB). (43)
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The four fourth-order differential equations for eaMf’d by the sum of the homogeneous part plus a particular solu-

are easily calculated from Egs. (39)-(42), giving us tion. In this case, they can be written more concisely as
d*M; d2M1 d2Md 9 . , 4
= —uoT M7 F; —k;T —uoT

i - n tCe—5 tuDe (44) [M}f] — Z [ Gﬂj ] e T 4 E;] e ™, (54)
d* MY d2M1 d2Ml s =

g =Cy P + Cag dr2 + UOE e 10 (45) and

d* M3 dzM2 d? Mg 9 uor 4

drt =Ch + 0y a2 +ugD'e™™ (46) [ ] Z [Fl] e kiT 4 E}] oot (55)
d4Md d2M2 dQMd ) e Jj=1

d7'4 = 021 d + 022 d B} UOE/ € 0T, (47)

wherel, G;, I}, G%, &1, &2, §1 and{; are constant. If
As we can see, these equations are not clearly independetite substitute the homogeneous solutionf6f into the ho-
However, they can be transformed into four independent difmogeneous part of Eq. (48), we obtain the following:
ferential equations with the help odeqs. (39)-(42). This is 4
possible if the second derivativ& M{ /dr? in (44) can be 4 2 kv

written in terms of an algebraic sum @t} /dr2 and M, D (k) = BES =) F; 7 = 0. (56)
and also if the second derivativ® M; /dr? in (45) can be
written in terms of an algebraic sum @fM{ /dr* andM{.  We arrive at the same expression when the homogeneous so-
Similarly if the second derivative® Mg /d7? in (46) and  lutions for M, M3 and Mg are substituted into the homo-
d?Ms /dr? in (47) satisfy the same requirements @§?.  geneous part of Eq. (49), (50) and (51) respectively, except
After some algebra|c manipulations of Egs. (44)-(47), wethat F; must be replaced b, F’ andG’ Thus, to have a

j=1

obtain forM7 ¢ nontrivial solution for each/; ¢, we must have
d* M3 d>M;
=B My H e, (48) flk) =k* = Bk* =y =0, (57)

and therefore, the four roots for the solutions (54) and (55)

will be given b
d*Mi d*M{ J Y

_ + Md + —uoT , 49
dT4 ﬂ d’7—2 v 1 €e ( ) k]_:[ﬁ‘i' /62"‘!_4'7]1/2/\/57
and for M3 % we get ks = [B— VB 492 V2,
4 s 2 s
d J\i[? = 5’d J\g? + 7 M5 + 8 e 0T, (50) ks = —ki, andky = —ko.
dr dr On the other hand, if the particular solutions for each
d* Mg ,d> M — M; 4 are respectively substituted into Eqgs. (48), (49), (50)
PP s a2 T "M + ¢ B Gl ang (51), we obtain
which are clearly four independent fourth-order differential 5 € 5 ¢
i ici i 51: ) 52: ) é-/: ) Sl: . (58)
equations, and the coefficients are defined as F(uo) Fluo) o Fluwo) 2 fluo)
B = Ci1 + Cag, v = C12C21 — C11C22, So, accord(iing to thedresults given above, the explicit so-
§ = CioF — CoaD + 2D, lutions for M;”“ and M, “ will be given by
¢ =CyD— CyE+4d2E, (52) Mi=Fie "7+ Fyef 7+ Fye 27
and +Fyefempgemuom (59)

M{i:Gle_k”—l—Ggele—i—Gge_k”
+G ek oo 0T (60)
MéezFllefkl‘r_FF/ek‘lT_i_FQlesz‘r

B = C1y + Cay, v = C15,0y — C1,Chs,
§' = ClyE' — ClyD' + 2D,

¢ =ChyD' —CLE +ulE . (53)
F/ kot ! \—uoT 61
It can be shown that = 5’ = aga1+(4/9)apas+(1/9)azas * e 61
andy =+ = —(1/9)apaiazas. Mzd:G/le_’“T—i—G/ M T4 Ghe kT
The solutions to Eqgs. (48)-(51) are now very easy to cal- ) ket | ol —uor
culate. The solutions for eadi;” * and eachz;’ ¢ are given +Gae™ +6e : (62)
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According to the definitions given by Eq. (33), the solutionsCombining Eqgs. (68) and (69), we can show that
for the radiative intensitie§;(7) can be written as

Io(t) = Jie™"7 4 KyeF17 4 Joe 2T Ji= _EJl’ Ki= oy K,
kot —ugT
R N R Ky = 1o Ko,
L(r) = Jie M7 + KieMT + Jpe ka7 . .
o agal R
+Kéekgr + nle—ugr (64) R1 2( k’% 1) Jl, L1 B) ( k% 1> Kl,
— —k}lT le —k?QT 1 1
IQ(T) Rie + Lie + Rse Ry 5 (azgl B 1) o, Ly — 5 (azgl B 1) K,
+Loek2T 4 e o7 (65) 2 2
ki . Chr 3 [apm 3 [(apm
L(1) = Rie™™7 4 LieM™ 4 Rhe ™ Ri——ﬁ " —1> Ji, L/1_2a3( " —1)K1,
HLAT e (66) o3 (a0n g oo 3 (%% L)k, (70)
where now 27 243\ ko 2 27900\ ko 2
Si=(F+G)/2, K= (F+G)/2 Now, if we define the constants
Jo=(Foa+G2)/2, Ko=(Fy+ G4)/2,
S1 = —ag/ky,
K= ()2 K= (F+ G2 1= w/h
Sy = —ag/ko,
= (F4 a2, K= (Fi+ G/, 2l
Ty = k2) —1]/2,
Ri=(Fi— G2 Li=(F—Gy)/2, e
Ty = k2) —1]/2,
Ry = (Fy — G2)/2, Lo = (Fy—Gy)/2, 2 = [(aoa1/ky) — 1]/
/ (F/ el )/2 I = (F/ _a )/2 Uy = _3[(a0a1/k1) - kl]/2a3v
1 — 1 1 ) 1 — 3 3 ’
Uy =-3 ko) — ko) /2as,
= (- G2 L= (- G2, 2= ollaom he) )2
no= (& +&)/2, m=(&+E&)/2, then the set of solutions for the radiative intensities (63)-(66)
, , can be transformed as those given by Li and Ramaswamy,
N2 = (51 - 62)/25 N3 = (61 - 52)/2 (67) that is:

To write the radiances given by Eqgs. (63)-(66), in the same
form as those established by Li and Ramaswamy, we must
show that the coefficients of Eqgs. (64)-(66) are not indepen-

Io(7) = Jleikl‘r + Klek” + JQGikQT

koT —UuQT
dent. In fact, it can be shown with the help of Egs. (34)-(37) + Kpe™ T e (71)
that each one of them is related to its corresponding coef- L(1) = Si[Jre ™7 — K ekl
ficient given in Eq. (63). Thus, by substituting only the
homogeneous solution for eaMf’d into its corresponding + Sy[Jpe™F2T — Kyek2T) 4 e 0T (72)
homogeneous part in Egs. (34)-(37), we find the following kT ke
conditions for/: 4: L(r) = Ti[Jie™" 7 + Kpe™7]
—k Fi=A] F{+ AT G, —kiGi=A" F{+ A TGY, + To[Joe*2" 4 Kpek2T] + pae 0T (73)
ki Fs=A7 Fj+ATGY,  kiGs=A]"Fy 4+ A TGS, I(r) = Ui[ie ™7 — KyeM7]
—kaFo=A] Fy+ AT Gy, —kaGa=A1" Fy+ AT Gy, + U Jpe™T — Kaeh*T] + g™, (74)
A= + A= IEall
ko Ea=Ay Fy+ AT Gy, ReGa=Ay" Fi+ A7 Gy, (68) In the Li and Ramaswamy solutions, the constaits;, S;,
and forM;° ¢, the conditions T;, andU; with ¢ = 1,2 are named by other letters, and the
L B A . constants)g, 71, 7o andnz are the same as those used by the
—k Fi=A3 F1+Ay Gi, —k1G1=Ay i+ 457G, authors, namely:
leé:A;Fg—FA;Gg, leé:A§7F3+A/2+G3, 1
_ _ _ 2
—kyFy=AF Fa+A; Gy, —kaGh=Ay" Fo+ A5 G, o= 9f(uo) [a1bo = uoba (aza3 — 9up)
kQFi:A;_F4+A2_ G4, kQGa:AIQ_F4+AIQ+G4 (69) -+ 211% (agbg - 2a3b0 - 3b3U0)] 5 (75)
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At the bottom of the layer/(= 7*, see Fig. 3) there is no up-

1 ward diffuse intensity (surface albedo is assumed to be zero);

m= [(aob1 — ugbo)(azas — 9uf)

9f (uo) in this case,
— 2aguo(asby — 3bsug)] , (76) 1 2n
1 I(T*, ) YL dudyp
= —[(agby — 3bsug)(aga, — ud // ’ '
2 9f (uo) [( 302 3ug)(aoa1 0) )4
— 2azup(agby — boup)] , (77) ~ ) R0 4 L) =0, (83)
1
5 = ——[(agbs — 3byug)(apa; — ud
N3 9f (uo) [( 203 2u0) (aoay 0) and
+ u(6agby — dagbs — 6byug)] . (78) 1 2n
The above solutions determine the radiative intensity (radi- /](T*,M, ©)YP* dudyp

ant energy) for a single-layer homogeneous atmosphere. The
constants/;, K1, J; andK, can be determined using the ap- 1 5

propriate boundary conditions. Here we will use the Marshak ~ —=Ig(T*) + = L(t*) — I3(7*) = 0. (84)
boundary condition (Evans, 1993). For the layer considered, 8 8
at the upper boundary (optical depth= 7,),

—127

0 0

By substituting Eqs. (71)-(74) into their corresponding

expressions given by (81)-(84), we establish a set of four
// Tus 1y ) — I (Tu, 1y )] equations with four unknowng;, K, Jo and K5. These
quantities can be determined in a very similar way to those
m* calculated by Jiranez-Aquino and Varela, (2002), using the
X Y™ () dpudip = 0, (79) y d (2002), using

same boundary conditions.
withl =1,...,Lym = £1,...,£l; andl~ (7, 4, ©) is the
downward diffuse intensity at the upper boundary. At the
lower boundary (optical depth = 7,),

1 27

// 0t p) = T (7, 11, 0)] The alternative method of solution proposed by &lez-
Aquino and Varela (2005) for solving the radiative transfer
m . equation in the two-stream approximations, has been applied
XY (s ) dudip =0, (80) in solving the set of four coupled first-order differential equa-
wherel = 1,...,Lym = *1,...,%l; and I (7, u,0) is  tions (32), which arise in the Li and Ramaswamy theoretical
the upward diffuse intensity at the lower boundary. For aframework. The method of solution is developed in terms of
single-layer medium, at the top (= 0), there is no down-  the quantities\/*“, with i = 1,2; it is clearly simple, and

5. Concluding remarks

ward diffuse intensity; in this case, the radiances given by Egs. (63)-(66) are, consequently, cal-
—12x culated in a direct way. The transformation of those solutions
//1(07 1, )Y * dude into the same expressions as those es.tablished by Li and Ra-
maswamy (1995) has also been very simple to calculate. The
) . method can, of course, be easily extended to other cases.
~ 510(0) — 1 (0) + §I2(0) =0, (81)
d
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