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It is shown that for a central potential that is an injective function of the radial coordinate, a second central potential can be found that leads
to trajectories in the configuration space and the momentum space coinciding, respectively, with the trajectories in the momentum space and
the configuration space produced by the original potential.
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Se muestra que, para un potencial central que sea una función inyectiva de la coordenada radial, se puede hallar un segundo potencial central
que lleva a trayectorias en el espacio de configuración y en el de momentos que coinciden, respectivamente, con las trayectorias en el espacio
de momentos y de configuración producidas por el potencial original.
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1. Introduction

In most examples of classical mechanics, the potential energy
is a function of the coordinates only; however, this a potential
determines the orbit of the mechanical system in the config-
uration space and also the evolution of the momenta of the
particles of the system. For example, the central potential
V (r) = −k/r (which corresponds to the so-called Kepler
problem) leads to orbits in configuration space that are con-
ics, and the trajectory in momentum space (thehodograph) is
(part of) a circle (see, for example, Refs. 1 to 3). So, one may
ask if there exists a potential that leads to orbits in the config-
uration space that are (part of) circles and the hodograph is a
conic.

The aim of this paper is to show that, in some cases, for
a given potential, one can find a second potential (which will
be referred to as themirror potential), depending on the coor-
dinates only, such that the trajectories in configuration space
and in momentum space produced by the mirror potential co-
incide with the trajectories in momentum space and config-
uration space, respectively, corresponding to the original po-
tential. Our discussion will be restricted to central potentials
and we shall show that the mirror potential can be constructed
whenever the original potential is an injective function of the
radial distance.

The existence of the mirror potential is not a trivial mat-
ter. In fact, not every system of ordinary differential equa-
tions can be expressed in the form of the Lagrange equations
(see, for example, Ref. 4 and the references cited therein).
As we shall show below, with the replacement of the original
potential by the mirror potential, it is necessary to change the
time parametrization [see Eq. (8)]. The use of the Hamilto-
nian formulation simplifies the derivation enormously.

2. Mirror potentials

We shall consider a particle subjected to a central potential
V (r); its Hamiltonian function, expressed in terms of Carte-
sian coordinates, can be taken as

H =
1

2m
(p2

x + p2
y + p2

z) + V
(√

x2 + y2 + z2
)

. (1)

(This expression for the Hamiltonian is the standard one, but
there exist many other choices, see, for example, Ref. 5.)

The equations of motion are given by the Hamilton equa-
tions

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
,

and, if we interchange the coordinates and momenta in
Eq. (1), by reversing the sign of the resulting expression we
obtain a new HamiltoniañH, which, by means of the Hamil-
ton equations, will lead to the trajectories in configuration
and momentum spaces defined byH, interchanged. In other
words, the substitution of the Hamiltonian

H̃ = − 1
2m

(x2 + y2 + z2)− V
(√

p2
x + p2

y + p2
z

)
(2)

into the Hamilton equations yields the same equations of
motion asH but with the coordinates and momenta inter-
changed.

Since we are assuming thatV does not depend on time,
the evolution of the state of the system in the phase space is
a curve lying on a hypersurfacẽH = −E, whereE is some
real constant (the minus sign is introduced for convenience).
From the conditionH̃ = −E, making use of Eq. (2) we then
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obtain,

p2
x + p2

y + p2
z =

[
F

(
E − x2 + y2 + z2

2m

)]2

,

whereF denotes the inverse function ofV , whose existence
requires thatV (r) be an injective function. The last equation
can also be written as

1
2m

(p2
x+p2

y + p2
z)−

1
2m

[
F

(
E−x2+y2+z2

2m

)]2

=0, (3)

which is a relation of the formh = const., with

h ≡ 1
2m

(p2
x+p2

y+p2
z)−

1
2m

[
F

(
E−x2+y2+z2

2m

)]2

(4)

andh is now a Hamiltonian function corresponding to a cen-
tral potential

v(r) ≡ − 1
2m

[
F

(
E − r2

2m

)]2

(5)

that depends parametrically onE.
For instance, ifV (r) = −k/r, wherek is a constant,

thenF (r) = −k/r and, owing to Eq. (5), the corresponding
mirror potential is given by

v(r) = − 1
2m

(
2mk

2mE − r2

)2

. (6)

According to the discussion above, this potential leads to or-
bits in configuration space that are (arcs of) circles and the
orbits in momentum space are conics. In fact, if we consider
the Hamiltonian with the mirror potential (6) (expressed in
polar coordinates, making use of the fact that, for a central
potential, the orbit lies on a plane),

h =
1

2m

(
p2

r +
p2

θ

r2

)
− 1

2m

(
2mk

2mE − r2

)2

,

takingh = 0 as above and using the conservation ofpθ we
have

p2
r +

L2

r2
−

(
2mk

2mE − r2

)2

= 0

whereL is a constant. Then, the chain rule gives

dθ

dr
=

dθ/dt

dr/dt
=

L

r2pr

and therefore

dθ

dr
= ± 2mE − r2

r
√

(2mk/L)2r2 − (2mE − r2)2
.

The solution of this last equation corresponds to a cir-
cle of radius |mk/L| whose center is at a distance√

(mk/L)2 + 2mE from the origin.
The proof that in all casesh yields the same trajectories

as H̃ can be given as follows. From Eqs. (2) and (4) one
readily verifies that

h =
1

2m

[
F

(
−H̃ − r2

2m

)]2

− 1
2m

[
F

(
E − r2

2m

)]2

so thatH̃ = −E is equivalent toh = 0; hence, on the hyper-
surfaceH̃ = −E,

dh = − 1
m

F

(
E − r2

2m

)
F ′

(
E − r2

2m

)
dH̃.

(The terms proportional todr cancel as a consequence of the
conditionH̃ = −E.) Thus, for instance,

∂h

∂qi
= − 1

m
FF ′

∂H̃

∂qi
=

1
m

FF ′
dpi

dt
= −dpi

dτ
, (7)

with F andF ′ evaluated atE− r2/2m, and we have defined

dτ ≡ − m

FF ′
dt. (8)

In a similar way, one obtains∂h/∂pi = dqi/dτ . That is,
the trajectories generated byh coincide with those generated
by H̃, but have a different parametrization (see also Refs. 6
and 7).

It may be remarked that the Cartesian coordinates are
not essential in the construction of the mirror potential given
above; in fact, in the derivation of Eqs. (7), only the central
character of the potential was required.

Another simple example is given byV (r) = (1/2)kr2

(corresponding to an isotropic harmonic oscillator); in this
caseF (r) = (2r/k)1/2, and therefore the mirror potential is

v(r) =
r2

2m2k
− E

mk
, (9)

which is essentially the original potential, and this corre-
sponds to the fact that, for an isotropic harmonic oscillator,
the trajectories in configuration space and in the momentum
space are both ellipses. By contrast with the potential (6),
the potential (9) only contains the parameterE in an addi-
tive constant that has no effect in the equations of motion.
Furthermore, in this case,τ = −mkt + const.

3. Final remarks

Apart from the possibility of extending the main result of this
paper to noncentral potentials, another natural question con-
cerns finding an analog of this result in quantum mechanics.
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