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The goal of this paper is to review the theoretical basis for achieving a faithful quantum information transmission and processing in the
presence of noise. Initially, encoding and decoding, implementing gates and quantum error correction will be considered error-free. Finally,
we shall relax this non-realistic assumption, introducing the quantumfault-tolerantconcept. The existence of an error threshold permits
us to conclude thatthere is no physical law preventing a quantum computer from being built.An error model based on the depolarising
channel will be able to provide a simple estimate of the storage or memory computation error threshold:ηth < 5.2 10−5. The encoding is
made by means of the [[7,1,3]] Calderbank-Shor-Steane quantum code, and Shor’s fault-tolerant method is used to measure the stabiliser’s
generators.

Keywords:Quantum error correcting codes; decoherence; quantum computation.

El objetivo de este artı́culo es la revisíon de los fundamentos teóricos que permiten una correcta transmisión y procesado de la información
cuántica en presencia de ruido. Inicialmente, los procesos de codificación, decodificacíon, aplicacíon de puertas y corrección de errores
se considerarán sin error. Finalmente relajaremos esta consideración no realista, lo que conducirá al concepto detolerancia a fallos. La
existencia de un umbral de error permite concluir queno hay ninguna ley fı́sica que impida construir un ordenador cuántico. Mediante un
modelo de error basado en un canal despolarizante, se hará una estimación simple para el umbral de los errores de memoria:ηth < 5.2 10−5.
La codificacíon se realiza mediante un código cúantico [[7,1,3]] de Calderbank-Shor-Steane, y se usa el método de Shor tolerante a fallos
para medir los generadores del estabilizador.

Descriptores:Códigos correctores de errores cuánticos; decoherencia; computación cúantica.

PACS: 0367-a; 0367Lx

1. Introduction

Quantum Mechanics (QM) has traditionally been used to
study microscopic systems, achieving unquestionable suc-
cesses in such varied fields as atomic structure, elementary
particles, solids, liquids, molecules, nuclei, radiation, etc. It
is currently expanding into a field traditionally dominated by
a classic description: Computation and Information Theory.
Although the devices making up a classic computer work ac-
cording quantum laws, they do not make use of the quantum
representation of the information, but they still use the classic
version: bits. The recognition that the information is closely
related to its physical representation, and the non-local char-
acter of the QM, is opening up an unsuspected perspective
from a classic point of view for data processing [1]. In this
context, the concept of the quantum computer appears to be
a device that takes advantage of the quantum evolution to ob-
tain new forms of information processing. Its minimum unit
of information is thequantum bitor qubit, that consists of a
state (coherent superposition of two others representing the
classic possibilities|0〉 and|1〉) of the type|q〉 = a|0〉+ b|1〉,
where a and b are complex numbers.

Like classic computers, quantum computers experience
the presence of noise that induces errors in them. Unlike clas-
sic computers,quantum ones must handle coherent superpo-
sition and entangled states, allowing interference phenomena
analogous to those produced when light crosses a system of

two slits of a size compareble to its wavelength. Unfortu-
nately, the superposition of states is extremely sensitive to
noise and they are easily destroyed due to an uncontrollable
interaction with the environment. This process is known as
decoherence[2]. It would be possible to think about eliminat-
ing it by improving the isolation of the device. Nevertheless,
the extraction of the information at the end of any computa-
tion process always implies some type of measurement; this
is why simple isolation is not a solution. In addition, it is im-
possible to completely eliminate all the interactions that come
from the environment. Until 1995, it was believed that the
unavoidable decoherence would prevent the quantum infor-
mation processing from showing its advantages with respect
to the classic case. Luckily, things were going to change [3].

The objective of the present paper will be to show how
noise is not an unsolvable problem in building a quantum
computer. After a brief introduction to classic error correc-
tion, the characteristics of quantum errors are introduced, and
the noise effect will be exemplified by means of the Grover
algorithm including five qubits. Several strategies introduced
to control the decoherence will be reviewed, focusing the ex-
planation on the quantum error correcting codes. A simple
numerical method, encoding a qubit by means of the [[7,1,3]]
fault-tolerant quantum code, permit us to infer the existence
of an error threshold below which a sufficiently long quantum
computation would be possible. Finally, concatenated codes
will promise to improve error correction capabilities.
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2. Classic errors and their correction

In order to understand the main ideas in quantum error cor-
rection, we start with some classic background.

Classic information is represented by means of an alpha-
bet of p symbols. The binary alphabet (p = 2) is made up of
two symbols{0, 1}, and the information contained in each
symbol is called a binary digit or a bit. The information pro-
cessing involves representing it as bit strings, sending them
through a channel or carrying out a computation and, finally,
arriving at a result. Unfortunately, noise can always corrupt
the information. A possible strategy for preserving the clas-
sic information against the noise effect is by means of an en-
coding method. The information contained in a single bit is
spread out along a bit string of length n, called the classic
register orcodeword. From a mathematical point of view, the
set of all words of length n (V n

2 ), with modulo 2 arithmetic,
could have a structure. Of particular importance are the sets
of codewords C⊆ V n

2 , which have a vector space structure,
calledlinear codes. This structure makes the correction pro-
cess easier. It is also possible to define a product operation
which, together with addition, defines a finitefieldalso called
aGalois field. The binary alphabet{0, 1} is an example, and
will be referred to as the GF(??) field or as vector space V2.

TheHamming distanced(u,v) between two codewords u,
v ∈ C⊆ V n

2 is the number of coordinates where the vectors
u and v differ:

d(u, v)= |{i : 1 ≤ i ≤ n, ui 6= vi}| . (1)

The bars signify the number of elements of this set. The
distance d satisfies the axioms for a metric onV n

2 . Themin-
imum distanceof a code is the smallest distance between
two different codewords. The number of non-zero compo-
nents of a binary string ofV n

2 is called theweight(or Ham-
ming weight, WH), and the distance between u and v is
d(u,v)=WH (u-v).

The code capability to correct errors is represented by
the code distance. Suppose the emitter sends the code-
word u ∈ C through a classic channel affected by some
error probability, and the receiver detects a slightly differ-
ent codeword u’ = u+e6= u, affected by the error e∈ V n

2 .
By means of the minimum distance decoder, the word
u’ = u+e will be decoded as the closest codeword, accord-
ing to the Hamming distance. Having a code C with
distance d≥ 2t + 1 (or d> 2t), the receiver will recognize
the correct codeword u from u’ if and only if it fulfils
d(u,u’) = WH (e)≤ t, because in this case d(u,u’)< d(v,u’),
∀v ∈ C. As a result, code C with distance d will correct any
word u’ = u+e, satisfying WH (e)≤ t, and it will be at-error-
correcting code. Thus, good error correction means large
minimum distance. On the other hand, fast transmission rate
means many codewords, with a small distance between them.
This tension is the basis of coding theory.

To visualise the code distance and correcting capabili-
ties, each codeword uj ∈ C is represented as the “centre”
of a “sphere” with radius t =b(d − 1)/2c. The sphere

contains all binary sequences v = uj + e ∈ V n
2 such as

d(uj ,v)≤ t. Since code C is t-error-correcting, the spheres
are disjoint. The vectors inside the t-sphere come from uj

affected by an error e of weight WH (e)≤ t. Fig. 1 shows the
case d= 5 (t = 2). Any erroneous codeword u’ = u1 + e1 with
WH (e1) = 2 is successfully corrected with a d = 5 code, but
not if u’ = u1 +e2 with WH (e2) = 3. In this case, u’ would be
wrongly corrected as u2.

If C is a vector subspace ofV n
2 , d is the smallest weight

of a non-zero codeword. Thus, a binary classic code of di-
mension k (including 2k codewords) of length n and min-
imum distance d is noted asC=[n, k, d] ⊆ V n

2 . A linear
code [n,k,d] (i.e. a linear subspace) can be specified in ei-
ther of two ways:

1) The k basis vectors of C are arranged in the k×n gen-
erator matrix G. Thus

C={xG, x ∈ V k
2 }. (2)

This is useful for encoding. If the messages to be trans-
mitted are all k-tuples x over V2, then we can encode
them as the codewords xG.

2) It is possible to define a scalar (or inner) product inV n
2

as the standard rule of multiplying the components and
making the addition modulo 2. Two vectors are orthog-
onal if their scalar product is zero. The code can also
be determined as the subspace orthogonal to some pre-
determined set of vectors. Each orthogonality condi-
tion divides the space in two, and then we can specify
a code having 2k vectors (and dimension k), through
its orthogonality to (n-k) vectors. These vectors can
be arranged as an (n-k)×n matrix, calledparity-check
matrix HC , and the code can be specified as

C = {v ∈ V n
2 , HCvT = 0}. (3)

This is useful for error correction. The set of correctable
errors S must satisfy:∀ei, ek ∈ S⊆ V n

2 , ∀ u, v∈ C, if u 6= v

FIGURE 1. Geometrical representation of a classic code with dis-
tance 5. Each codeword uj (black squares) is at the “centre” of
a “sphere” with radius t = 2. An erroneous codeword (unfilled
square) u’ = u1 + e1 with WH (e1) = 2 is successfully corrected as
u1. If WH (e2) = 3 the codeword u’ = u1 + e2 is wrongly corrected
as u2.
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then u + ei 6= v + ek. If vector u + ei is detected, the receiver
can correctly infer the codeword u. This process is very easy
for linear codes using the parity-check matrix. Suppose the
receiver detects vector u + e, with u∈ C and e∈ S. Applying
the parity-check matrix HC ,

HC(u + e)T = HCuT + HCeT = HCeT .

The vector HC eT = s 6= 0, having (n-k) components, charac-
terizes the error; it is called theerror syndromeand does not
depend on u. Because the total number of syndromes is 2n−k,
the code can correct the same number of different errors. If
we can deduce the error e from its syndrome, the correction
is immediate.

Even though a classic code is not necessarily a vector
space, in this paper we shall be concerned only with linear
codes. A simple classic code is the repetition code in which
the 0 bit is encoded by copying the bit three times as a code-
word (000), and the bit 1 is encoded as the string (111). The
set of all codewords of length three span a vector space, and
the set{(000), (111)} is a basis of a two-dimensional sub-
space C⊆ V 3

2 . This subspace C is our classic repetition code
of length three. The code{(000), (111)} can be specified
as the subspace orthogonal to (110) and to (101), and both
vectors written as a 2×3 matrix form theparity-check matrix
HC , and the code satisfies the condition∀u∈ C, HCuT = 0.
The 1×3 generation matrix Gis (111). Clearly the code has
distance three, so is written as [3,1,3].

If we want to send a bit 0 through a noisy channel, using
the repetition code, we send (000). Classic noise appears as
bit-flip errors, and can be represented as error codewords of
V 3

2 . If the channel introduces a bit-flip error (with a probabil-
ity ε) into the third bit, e = (001), it will be enough for the re-
ceiver to watch the three bits, and finding the syndrome (01),
it will suppose that an error in the third copy has occurred,
recovering the bit to replace the (000) (majority voting de-
coding). For this method to be advantageous, it is necessary
for the probability of correct transmission (1-ε) of each bit
to be higher than 50%, otherwise the majority voting method
would provide an erroneous answer. A wrong decoding will
occur if the received word has two 1’s.

Given a parity-check matrix, each of its columns repre-
sents the syndrome for an error. If all the columns are dif-
ferent, the code can correct one bit-flip and is calledHam-
ming codewhose general parameters are [2r-1, 2r-1-r, d]
with r ≥ 2. An example that will be used in the quantum con-
struction is [7,4,3]. This code has a subcode C⊥ ⊂ C whose
codewords of even weight are orthogonal (with respect to
the scalar product) to those of C. In general, given a code
C=[n,k,d], its orthogonal ordual code is C⊥=[n, n-k, d⊥];
and if C⊂ C⊥, it is said that C isweakly self-dual, and if
C=C⊥, C isself-dual. The property of weak self-duality will
be used in the quantum error correcting code construction.
Besides the Hamming codes, Reed-Muller codes are an inter-
esting family ofweakly self-dualandself-dualcodes. Their

parameters are:

RM(r,m) =
[
n = 2m, k =

(
m
0

)
+

(
m
1

)

+ · · ·+
(

m
r

)
, 2m−r

]
, (4)

with 0≤ r ≤ m.
Other classic codes can be created be means of different

scalar products and higher alphabet dimensions.
There are several bounds related to classic codes. One of

them is the Hamming bound reflecting that a code C = [n,k,d]
with block length n can correct errors of weight t if there is
enough room in the total vector space (of dimension n) to
accommodate the errors:

Number of different errors

=
t∑

i=1

(
n
i

)
≤ 2n−k

= total number of different syndromes (5)

Let the codewords be{ui, i=1,. . . ,2k}. For each code-
word we can draw a “sphere” with “centre” at uj and “ra-
dius” t. The sphere contains all binary sequences v such
as d(uj ,v)≤ t. Since the code C is t-error-correcting, the
spheres are disjoint. The summation in Eq. (??) is the num-
ber of v = uj + e vectors inside the t-sphere coming from
uj , affected by an error e of weight WH (e)≤ t. In order to
differentiate errors, this value must be smaller than the num-
ber of different syndromes. A code isperfectif it attains the
equality in (??), and the union of all the spheres isV n

2 .

3. Origin of quantum errors

All of the systems are subject to noise of diverse origins (in-
teraction with the environment, incorrect application of gates,
etc.), giving rise to errors. In order to carry out a quantum
computation, it is necessary to eliminate or control these er-
rors.

Focusing on the quantum computation, and from the
point of view of their origin, these errors can beinternal and
external(Fig. 2). The internal ones appear even if there is no
interaction with the environment and originate in the faulty
operation of some parts of the hardware. Several types of
them include:

FIGURE 2. Framework of the different error sources in a quantum
computer.
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1) Errors in the preparation of the initial states

Classically the errors appearing in the preparation of
the initial state propagate exponentially with respect
to the number of steps; nevertheless, from a quantum
point of view, they are constant. Let us suppose that
we prepare an initial state|ψi〉 evolving by means of a
process characterised by a HamiltonianĤ (or an evo-
lution operatorÛ = e−iĤt, h/2π=1) until reaching the
final state|ψf 〉. In the case of a perfect preparation,

|ψi〉 → |ψf 〉 = Û(t) |ψi〉 = e−iĤt |ψi〉 (6)

If the initial state corresponds to a set of single qubits,
all of them in the state|0〉 except the k qubit having an
errorε,

|ψi〉= |0〉⊗ |0〉⊗...⊗
(√

1−ε2 |0k〉+ε |1k〉
)
⊗...⊗ |0〉

=
√

1− ε2 |ψi〉+ ε |waste〉 (7)

and its time evolution will be:

|ψf 〉 =
√

1− ε2Û |ψi〉+ εÛ |waste〉
=

√
1− ε2 |ψf 〉+ ε |dirty waste〉 , (8)

which implies that the initial error (given by|ε|2 in
|ψi〉) does not increase in the evolution. This behaviour
arises from the linearity of the QM. In some cases, the
quantum algorithms are even sensitive to these errors
in the amplitude, and their accumulation becomes dan-
gerous. It is necessary to pay special attention when
the initial errors affect, not the amplitude, but the rela-
tive phases [?], whose effect depends on the quantum
algorithm considered.

2) Hardware errors

Their origin is in the noisy gate application, especially
when they are analogical (working with continuous
parameters) and can be described asunitary errors
due to an error term̂η in the noiseless Hamiltonian
Ĥ0:Ĥη=η̂+Ĥ0. The noiseless evolution is
e−iĤ0t|ψi〉=|ψf 〉. If the error operator̂η is small
enough, [̂H0, η̂] ∼= 0 and the η̂ effect on |ψi〉 is
e−i(η̂+Ĥ0)t |ψi〉 = e−iη̂t |ψf 〉. The exponential can
be expanded and only retain the linear term, and|ψi〉
evolves to(1 − iη̂t) |ψf 〉. So the error probability
becones quadratic in time.

3 Read-out errors of the results at the end of the process

Related to the amplification of the results from the
quantum domain to the classic macroworld.

In addition to the internal errors, external ones may ap-
pear because the system is not completely isolated from its
environment, leading to a decoherence, and giving rise to a
non-unitaryevolution of the states in the quantum computer.
This loss of coherence is the most serious problem which fu-
ture quantum computers face.

4. Problems in the correction of quantum er-
rors

At the time of designing methods to control quantum errors,
the following question arises; can we apply classic strategies
to the quantum systems? For example, could classic error
correcting codes be used? The answer to this question has
been negative because of the following problems:

1. Continuous errors

Classically, the only permissible errors are those of
bit-flip (transformation of a bit 0 to 1 or the reverse)
and arediscrete, but for the quantum case the situa-
tion is more complicated. The errors can affect the
modules of the coefficients a and b in the qubit super-
position (amplitude decoherence), as well as its rela-
tive phases (phase decoherence), both beingcontinu-
ousones. For instance, if the physical representation
of qubits implies that|0〉 is the fundamental state of
an atom, whereas|1〉 corresponds to an excited state, a
spontaneous decaying process produces an amplitude
decoherence. Its time evolution will be

|q(t)〉= 1√
|a|2 + |b|2 e−2γt

{
a |0〉+be−γt |1〉} . (9)

In the case where it only affects its relative phase, the
qubit is transformed into (a|0〉+beiφ|1〉). If φ=π, we
have a discrete phase-flip error, analogous to the classic
bit-flip. The phase-flip is only a quantum error.

2. Impossibility of introducing redundant information
copying it

One of the ideas on which the correct transmission of
classic information is based, is the possibility of copy-
ing it (introducing redundancy), which allows informa-
tion recovery in the presence of noise as indicated in
Sec. 2.

Unfortunately, quantum mechanically it is not possi-
ble to copy unknown qubits perfectly, due to theim-
possibility of cloning unknown qubits[5]. In order
to copy a qubit, we need to know about it. Given a
qubit |q〉=a|0〉+b|1〉 (with unknown coefficients a and
b), we would have to measure it to obtain the a and b
values, but in doing so we would produce its collapse,
destroying it irreversibly.

3. Measurement problemIn order to correct the errors,
we must measure the state of the system (for exam-
ple some qubits) to find out what type of error has oc-
curred. When doing so, the state collapses with the
consequent irreversible loss of information.

In the following sections we shall review the way in
which all these problems were solved.

Rev. Mex. F́ıs. E52 (2) (2006) 218–243
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5. Discretization of quantum errors

In 1995, the way was discovered to transform typically con-
tinuous quantum errors, in discrete solving the first afore-
mentioned problem. The strategy consists of embedding the
{environment + qubit} continuous evolution only in the first,
making a discrete description of the qubit state evolution.
Formally the interaction process of a qubit with its envi-
ronment can be described by means of the following evolu-
tion [?]:

|0〉 |e〉 Û(t)−→ c00 |e0〉 |0〉+ c01 |e1〉 |1〉

|1〉 |e〉 Û(t)−→ c10 |e0〉 |0〉+ c11 |e1〉 |1〉 (10)

{|0〉, |1〉} being the qubit states and|e〉 the initial state of the
environment. The total initial state is the tensor product of the
qubit and the environment states, and evolve (unitarily) by
means of the coefficients cij that depend on the noise. This
is the most general form of the noise effect, assuming that
qubits do not leave the two-dimensional{|0〉, |1〉} subspace
of the total Hilbert space H2.

The qubit evolution whose initial (t = 0) state is
|q(0)〉 = a|0〉+ b|1〉 can be expressed as:

|q(0)〉 |e〉=(a |0〉+ b |1〉) |e〉 Û(t)−→ |ψ(t)〉

=
{
|eI〉 Î+ |eX〉 X̂+ |eY 〉 Ŷ + |eZ〉 Ẑ

}
|q(0)〉 . (11)

States|ei〉 describe the environment, and̂I, X̂, Ŷ , Ẑ are
the operators whose representation in terms of the Pauli ma-
trices{I, σX,σY , σZ} is:

Î ≡
(

1 0
0 1

)
, X̂ ≡

(
0 1
1 0

)
= σX

Ŷ≡
(

0 −1
1 0

)
=−iσY , Ẑ≡

(
1 0
0 −1

)
=σZ (12)

sometimes called thecanonical set of errors, whereas the
states of the environment are:

|eI〉 =
1
2

(c00 |e0〉+ c11 |e1〉)

|eX〉 =
1
2

(c10 |e0〉+ c01 |e1〉)

|eY 〉 =
1
2

(c01 |e1〉 − c10 |e0〉)

|eZ〉 =
1
2

(c00 |e0〉 − c11 |e1〉) (13)

The state|ψ(t)〉 reflects a correlation between the states
of the environment and those of the qubit, describing a mixed
state that has lost some coherence. If we could make a mea-
surement on the joint state vector|ψ(t)〉 of the{environment
+ qubit} conserving the qubit coherence, we would collapse
the state into one of the following terms:

|ψ(t)〉 Measure−→





|eI〉 Î |q(0)〉 = |eI〉 { a |0〉+ b |1〉} → State without error
|eX〉 X̂ |q(0)〉 = |eX〉 { a |1〉+ b |0〉} → Bit - flip error
|eZ〉 Ẑ |q(0)〉 = |eZ〉 { a |0〉 − b |1〉} → Phase - flip error
|eY 〉 Ŷ |q(0)〉 = |eY 〉 { a |1〉 − b |0〉} → Phase and bit - flip error

(14)

with a collapse probability given by

|εi|2 =
∣∣∣〈q(0), ei|

(
Â+

i ⊗ Î
)

Û(t)
∣∣∣ q(0), e〉

∣∣∣
2

and Âi ∈ {Î , X̂, Ŷ , Ẑ}. Note that|εi|2 imply the overlap
between the environment states (generally neither orthogo-
nal nor normalised), and their value can depend on time by
means ofÛ(t). Process (??) has a fundamental importance
for several reasons:

The complete qubit evolution can be expressed by means
of four basic operators, providing adiscretetranslation of the
noise effect. It could be said that the qubit evolution is repre-
sented via three errors: bit-flip (̂X), phase-flip (̂Z) and both
jointly (Ŷ ). This fact shows that the matrices are a basis for
the 2×2 matrices. For the same reason, the errors coming
from unitary evolutions can be interpreted in this form, be-
ing able to work without the environment states explicitly. In
fact, for the error identification to be complete, the environ-
ment states must be orthogonal.

The noise isindependentof the qubit state considered,
which allows its initial coherence to be maintained after the
measurement step.

This state is the front door to the error correction process.
If we have some way of recognising which state we have ob-
tained by measuring|ψ(t)〉, the error correction is immediate,
by simply applying the inverse transformation of the detected
error, since they are unitary.

6. Independent Error model

The classic error model (or channel) par excellence considers
the errors in different bits as independent. Even if this model
does not exactly fit reality, it can provide some valuable con-
sequences.

In QM it is possible to introduce an analogous noisy
channel, called adepolarising error model, in which the
environment states{|ei〉, i=I,X,Y,Z} are orthogonal and its
scalar product is|〈ei|ej〉|2=δijε/3(i, j 6= I), whereε/3 is
the probability (constant) of one of the three possible er-
rors taking place, whereas the probability of no error is
|〈eI |eI〉|2 = (1− ε). The qubit evolution can be represented
by means of the operator̂UD:

Rev. Mex. F́ıs. E52 (2) (2006) 218–243
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ÛD (|q(0)〉 ⊗ |e〉)

=
{√

(1− ε) |eI〉 Î +
√

ε

3

[
|eX〉 X̂ + |eY 〉 Ŷ + |eZ〉 Ẑ

]}

× |q(0)〉 . (15)

The error model is not completely unrealistic if one as-
sumes that single qubits are located at well-separated spatial
positions, as in an ion-trap realization of a quantum computer.

As much as we are interested in handling and transmit-
ting quantum information just as if we consider the possibil-
ity of some type of encoding, we will handle sets of n qubits
calledquantum registers|q1 q2. . . qn〉. To see how the deco-
herence affects the registers, we can make some hypotheses
about the error model to simplify the problem and constitute
an approach to reality [7]:

1. Locally independenterrors If the environments to
which the qubits are connected (at the same time step)
are different and not correlated, the errors in different
qubits will be independent.

2. Sequentially independent errorsThe errors in same
qubit during different time steps are not correlated.

3. We assume asmall qubit-environment interaction

4. Error-scalability independenceThe qubit error proba-
bility is independent of the number of qubits used in
the computation.

Under these hypotheses, errors that affect an increasing
number of qubits are less probable, and the error operators
for an n-qubit register are the tensor product of those one-
qubit operators:

Â{i1,i2,...,in} = Â1
i1 ⊗ Â2

i2 ⊗ . . .⊗ Ân
in

, (16)

where the superscript refers to the qubit, and the subscript
varies from 1 to 4: Âm

im
(for the m qubit)∈ {I(im=1),

σX (im=2), -iσY (im=3), σZ(im=4)}. In the depolarising er-
ror model, the evolution of an n-qubit quantum register is:

ÛD (|q1q2 · · · qn〉 |e〉) = |Ψ(t)〉 =
{

(1− ε)n/2
(
Î1 ⊗ · · · ⊗ În

)
|e0〉+ (1− ε)(n−1)/2

√
ε

3

×
∑

i=2,3,4

{
Âi ⊗ Î2 ⊗ · · · ⊗ În

∣∣e1
i

〉
+ · · ·+ Î1 ⊗ · · · ⊗ În−1 ⊗ Âi |en

i 〉
}

+ · · ·+
(ε

3

)n/2

×
∑

i1,i2,...,in=2,3,4

(Â1
i1 ⊗ · · · ⊗ Ân

in
)
∣∣∣e1,...,n

i1···in

〉


 |q1q2 · · · qn〉 . (17)

As the interaction with the environment is small (hypoth-
esis 3), the successive terms decrease quickly. A measure-
ment of the register|Ψ(t)〉 will produce a collapse in one of
its terms according to its probability. In Eq. (17), each error
Âi corresponds to three terms{X̂, Ŷ , Ẑ} (the Î term is ex-
plicitly shown) and the probability of an error appearing in
a given qubit isε, that of m errors appearing in the register
is P(n,m) = (nm) (1-ε)n−m εm, describing a Bernouilli dis-
tribution of (1-ε) probability. If ε is small enough, the term
with greater collapse probability is a register without error.

In order to observe the destructive effect that the errors
cause in the quantum algorithms (decoherence), a numerical
simulation of the Grover algorithm is made. The errors are
introduced by means of the depolarising error model. The
free evolution (or memory) errors have anε/3 probability per
single qubit and time step, whereas the gates affecting single
qubits have aγ error. The CNOT gates have aγ/15 error,
describing an isotropic probability for the 15 errors in the set
{Î , X̂, Ŷ , Ẑ} ⊗ {Î , X̂, Ŷ , Ẑ}. Toffoli gates are affected by
an error probability ofγ/N, where N = 63 is the total number

of error possibilities (except one) of the set
{

Î , X̂, Ŷ , Ẑ
}⊗3

.
The simulation is done by means of a Montecarlo method
with a statistic greater than or equal to 100×max{1/ε, 1/γ}.

The Grover algorithm [?] implements the op-
erator Ĝ=−Ĥ⊗nÎ|0〉Ĥ⊗nÎ|X0〉, where Ĥ⊗n is a
Hadamard rotation of all the n qubits and the operators
Î|φ〉 = Î − 2 |φ〉 〈φ| represent inversions with respect
to the state|φ〉. The searched state is symbolized by
|X0〉, whereasÎ|X0〉 represents an oracle making an inver-
sion with respect to the searched state, acting as a black
box. The simulation is made within a modest data base
with 25=32 elements. Its implementation requires at least
five qubits. In the simulation, the element looked for is
|X0〉 = |11111〉 and the oracle is implemented by the quan-
tum gate CNOT(1,. . . ,5;6), whose control qubits are the first
five qubits of Grover state and whose target is the sixth qubit
in the state (|0〉 − |1〉). The gate CNOT(1,. . . ,5;6) is car-
ried out [9] by means of four Toffoli gates with four addi-
tional qubits. The operator̂I|0〉 is applied by means of a
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gate (X̂11111 CZ(1,. . . ,4;5)X̂11111), between qubits of the
Grover state, for which two additional qubits are needed.
The simplectic notation (̂X11111 = X̂ ⊗ X̂ ⊗ X̂ ⊗ X̂ ⊗ X̂)
will be used to express the tensor product of Pauli operators
(see Ref. 3, Preskill), and CU(i;k) means a control-U gate
acting on the k-qubit depending on the i-qubit value. The
total circuit [?] for the Grover algorithm appears in Fig. 3.

Two calculations have been made withε = γ = 0.001,
0.01 whose results are compared with the case in which there
is no decoherence (ε = γ = 0). As can be appreciated in
Fig. 4, even for a small search such as the present one (32 el-
ements), the error effect quickly destroys the advantages of

FIGURE 3. Quantum Circuit implementing the Grover search al-
gorithm for a data base with 25 terms. The oracle detecting the
searched state (|X0〉 =|11111〉) is simulated by means of four Tof-
foli gates. Open circles represent|0〉 states.

FIGURE 4. Evolution of the coefficient squared (probability) for
the searched state (|11111〉) versus time. Time means the number
of Grover gates (̂G) applied. Solid line represents the evolution
without error; dashed lines include error:• ε = γ = 0.001 and
o ε = γ = 0.01.

the algorithm. Whereas forε = γ = 0.001 the first maximum
of the probability for the searched state reaches a value of 0.8,
for ε = γ = 0.01 its value is only 0.2. Decoherence causes an
attenuation of the Grover oscillations until the limit value of
1/32 is reached, in the long-time region.

7. Quantum strategies for error control

Two great strategies for the error control can be implemented:
passive methods, useful when we need a transmission of in-
formation over short distances. The most elementary are
based on a complete isolation between the computer and its
environment to minimise the noise. A second general method
implies anactive stabilisation (necessary in more complex
processes) by means of some type of error detection and cor-
rection.

Classic deteriorated information is still recoverable if
someredundancyhas been introduced. Unfortunately, it is
not possible to use this redundancy in the quantum case, due
to the impossibility of cloning unknown qubits. However,
methods have been developed that allow us to control the
qubit decoherence, thus solving the second problem settled in
Sec. 4. Next we review some of the main strategies (Fig. 5).

1. Quantum error preventing codes (QEPC)These codes
could be described asactivemethods in the sense that
they prevent the occurrence of errors, although if these
do take place they are incapable of correcting them.
They are based on the quantum Zeno effect.

2. Quantum error avoiding codes (QEAC)These encode
the information in states of certain subspaces that do
not undergo decoherence, and are calleddecoherence
free-subspaces (DFS). Error detection is not needed
and they are useful with specific types of noise.

3. Quantum error correcting codes (QECC)This is an
activestrategy defined as the pairQ(Ê, R̂), made up
of an encoding operation̂E and a recovery method̂R.
They are methods capable of detecting and correcting
quantum errors.

FIGURE 5. Scheme of different strategies for error control.
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Notice that the corrected final system could still contain
some errors, shown in Fig. 5 as a heavy line around the sys-
tem (and a somewhat deformedψ ) that differentiates it from
the initial state. The QEPC are appliedbeforethe errors ac-
cumulate dangerously. On the other hand, the QEAC circum-
vent the problem of errors appearing. Even in this case, the fi-
nal state can contain errors since the symmetries upon which
these methods are based can only be approximate. Finally,
the QECC are even applied after the appearance of errors.

Actually, the above distinction among the different quan-
tum codes or strategies is not as radical as it could seem. For
instance a QECC applied very quickly could have the effect
of a QEPC. Otherwise, some errors could not affect the en-
coded states of a QECC, so for these errors the code is func-
tioning as a QEAC. In spite of that, the previous classification
helps us to arrange the methods used to control the decoher-
ence.

Next we review each of the strategies, placing special em-
phasis on the well-developed QECC, although because the
quantum circuits implementing them are expensive, they are
giving way to other strategies which avoid errors.

8. Quantum error preventing codes (QEPC)

These are codes preventing the appearance of errors, although
if they do take place, these codes are incapable of correcting
them. They are based on the quantum Zeno effect: measuring
repeatedly on a system, this continuously collapses freezing
its evolution and avoiding the errors [?]. The use of this effect
to prevent errors was suggested initially by Zurek [?].

Let us consider a system described by the initial state
vector |φ(0)〉, representing a quantum register of length n.
Suppose the system evolves unitarily under the Hamiltonian
Ĥ = Ĥ0 + Ĥe (since there is no danger of confusion, we use
the same notation as for a Hadamard rotation), whereĤ0 de-
scribes a perfect evolution and̂He represents an error. Under
these conditions, the state vector after a certain timeδt can be
expressed (with h/2π = 1) as:

|φ(δt)〉=e−iĤδt |φ(0)〉=a(δt) |φ(0)〉+b(δt) |ψ(0)〉 , (18)

where|ψ(0)〉 is an state orthogonal to|φ(0)〉. After a timeδ
t, the probability of obtaining the state|φ(0)〉 when measur-
ing on |φ(δt)〉 is |a(δt)|2, and its value can be expressed as
〈φ(0)|exp(−iĤδt)|φ(0)〉. The probability for short timesδt
is

|a(δt)|2 ≈ 1−
〈
(Ĥ−

〈
Ĥ

〉
)2

〉
δt2=1−(∆E)2δt2 (19)

The probability that we project the state|φ(δt)〉 on the
subspace generated by{|ψ(0)〉} (outside the subspace of in-
terest generated by|φ(0)〉) behaves like O(δt2). Sufficiently
frequent measurements make the error probability as small as
one wishes. This strategy is used in the stabilisation by the
symmetrisation method that could be considered as an exten-
sion of the majority voted method to the quantum scale. Next
we consider the formalism introduced in Ref. 13.

Let us suppose that each computation time step has
the probability of producing a correct result (1-η) (with
η constant); after N steps, the probability of success is
(1-η)N ∼ exp(-ηN), decreasing exponentially with N. If we
have a stabilisation method that diminishes the error by a fac-
tor 1/R per step, after N time steps, the probability of suc-
cess will be exp(-ηN/R) which can be within a (1-δ) value,
choosing R =ηN/-log(1-δ), having a polynomial dependence
on N. Therefore, an exponential error growth (such as ap-
pears in the decoherence) can become stabilised by means
of a method that reduces the error 1/R in each step. In this
formalism, R is the redundancy introduced.

The application of this stabilisation method is as follows.
If we carry out the same computation in R copies of our quan-
tum computer, they work independently and without errors,
the total state of the R computers will be the tensor product:

|Ψ(t)〉 = |φ(t)〉(??) ⊗ . . .⊗ |φ(t)〉(R) , (20)

where all |φ(t)〉(i) represents the same state, introducing a
certain type of quantum redundancy. This state, in which
there is no error, belongs to asymmetricalsubspace of whole
Hilbert space H⊗R. An error in a computation (or in all of
them), would imply different vectors, so:

|Ψ(t)e〉 = |φ(t)1〉 ⊗ . . .⊗ |φ(t)R〉 (21)

Defining asymmetrical subspaceHSIM ⊂ H⊗R as the
smallest subspace of H⊗R containing the vectors of the form:

R⊗
i=1

|χ〉(i) , (22)

projecting the noisy|Ψ(t)e〉 state into HSIM would eliminate
some of its errors.

In summary, the stabilisation method eliminates the pos-
sible errors projecting a state of R copies of our computer on
the HSIM subspace. The advantage of this process is that the
dimension of H⊗R is 2R, whereas the one of HSIM is R+1,
if the dimension of H is 2. The HSIM subspace has a dimen-
sion exponentially smaller than H⊗R. Nevertheless, not all
the errors are eliminated, since in HSIM there are more vec-
tors than those of the form|φ〉⊗. . .⊗|φ〉. In spite of that, it
can be demonstrated that the error decreases by a factor R in
each symmetrisation.

9. Quantum error avoiding codes (QEAC)

These are strategies that encode the information in states of
certain subspaces that do not undergo decoherence, therefore
they do not need to detect errors. These methods are useful
with certain types of noise having some symmetry.

The idea arose in a work of Palma [14] where they were
calledavoiding codes, later on to be calleddecoherence-free
subspaces (DFS) [15]. A simple model will clarify the main
idea.
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Let us suppose that single qubits undergo a decoherence,
introducing a random phase angleφ independent of the sys-
tem space coordinates:

|0〉 → |0〉 and |1〉 → eiφ |1〉 (23)

A qubit |q〉 = a|0〉 + b|1〉 put under this noise suffers a
rapid loss of coherence. The decoherence effect on a sub-
space of dimension 4, made up of two qubits, is:

|00〉 → |00〉 |01〉 → eiφ |01〉
|10〉 → eiφ |10〉 |11〉 → ei2φ |11〉 (24)

Since the states|01〉 and|10〉 acquire the same phase, if
we use the encoding|0E〉 = |01〉 and|1E〉 = |10〉, a general
qubit encoded as|qE〉 = a|0E〉 + b|1E〉 evolves under the
noise until the state eiφ {a|0E〉+ b|1E〉}. The phase appear-
ing has no importance and the subspace generated by{|01〉,
|10〉} is a decoherence-free subspace.

The fact that the phaseφ does not depend on space co-
ordinates causes the decoherence to be invariant under qubit
permutations. The recognition of such types of symmetries is
what allows the introduction the decoherence free subspaces
in which the system evolution is purely unitary.

10. Quantum error correcting codes (QECC)

A QECC can be defined as a pairQ(Ê, R̂) made up of an
encoding operation̂E and a recovery method̂R. These are
methods capable of detecting and correcting errors. Despite
the impossibility of introducing redundancy as in the classic
codes, it is feasible to disperse the quantum information em-
bodied in the qubit, allowing its recovery after undergoing
certain types of errors. Given a qubit|q〉 = a|0〉 + b|1〉, its
encoding is an application̂E: H⊗k → H⊗n from the Hilbert
subspace of dimension k to a Hilbert space of a greater di-
mension n. The simplest case is to encode a single qubit
(k = 1), where n is the number of qubits in the code states
(registers). Formally, to maintain the number of qubits in the
application, (n-1) initial qubits|0〉 are introduced, and the
qubit |q〉 can be encoded as:

Ê
{

(a |0〉+b |1〉)⊗
∣∣∣0⊗(n−1)

〉}

= |qE〉=a |0E〉+b |1E〉 , (25)

whereÊ is the encoding operation and the qubits|0E〉 and
|1E〉 are calledencoded. The application only chooses an
encoding subspace orquantum codeQ⊂ H⊗n of dimension
two. So, for the encoding to be useful, it must fulfil two con-
ditions:

a) The error subspaces must bedistinguishableTo iden-
tify the errors they must transform the encoded states
of Q to states ofmutually orthogonal subspaces
in H⊗n.

b) Maintaining the coherenceThe correction process
must conserve the qubit coherence. Inside each orthog-
onal subspace, the total state must be the tensor product
of the qubit and the environment state. This behaviour
allows the erroneous qubit to be recovered by means of
a measurement that projects the total state into one of
those subspaces (see Eq. 14). After measurement, the
qubit is uncoupled from the environment, and once the
subspace on which we have projected is detected, we
will be able to correct the error.

10.1. Quasi-classic error correcting codes

The simplest case in error correction consists of considering
only bit-flip errors as in the classic case. Bit-flips attack the
qubit |q〉 = a|0〉+ b|1〉, transforming it into a|1〉+ b|0〉. We
must be able to detect the errorwithout destructively mea-
suring the qubit, otherwise we would destroy its coherence.
Next we review the fundamental steps of the whole process.

10.1.1. Error model

In addition to the aforementioned noise characteristics, we
assume a symmetrical binary channel with anε (<0.5) error
probability per qubit and time step. The purpose is to improve
this level of error by means of an encoding and correction.

10.1.2. Encoding

Our starting point could be a classic binary repetition
code [3,1,3], identifying each bit as a qubit. The encoding
Ê will be:

|0〉 → |0E〉 = |000〉 and |1〉 → |1E〉 = |111〉 (26)

A general qubit|q〉 is encoded as

Ê(|q〉|00〉)=|qE〉
=a|0E〉+b|1E〉=a|000〉+b|111〉.

The information contained in the single qubit has been dis-
persed between three qubits, embedding the qubit into a
two-dimensional subspace (generated by{|000〉, |111〉}) of
the 23 = 8 dimensional Hilbert space, H⊗3. The set of cor-
rectable errors (CQ) is made up of tensor products involving
three factors, including the identity (which is not an error it-
self) and a bit-flip error, represented by theX̂ Pauli operator:

CQ =
{

Î ⊗ Î ⊗ Î ≡ X̂000, Î ⊗ Î ⊗ X̂ ≡ X̂001,

Î ⊗ X̂ ⊗ Î ≡ X̂010, X̂ ⊗ Î ⊗ Î ≡ X̂100

}
(27)

The operator subscript indicates the affected qubit. The
code cannot correct other errors, as we shall see later. Notice
that we could have chosen another basis for the subspace or
quantum code, for example{|000〉 ± |111〉}, but its correc-
tion capability is the same as the previous one, and both are
equivalent codes.
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10.1.3. Decoherence process

Sending a qubit|qE(0)〉=(a|0E〉+b|1E〉) through a depolarising noisy channel produces an entanglement between the qubit
and its environment:

|Ψ(t)〉 =





(1− ε)3/2 |eI〉 Î+
+(1− ε)

√
ε

[ ∣∣∣e(??)
X

〉
X̂100 +

∣∣∣e(??)
X

〉
X̂010 +

∣∣∣e(??)
X

〉
X̂001

]
+

+ε
√

1− ε
[ ∣∣∣e(12)

X

〉
X̂110 +

∣∣∣e(13)
X

〉
X̂101 +

∣∣∣e(23)
X

〉
X̂011

]
+

+ε3/2
∣∣∣e(123)

X

〉
X̂111





|qE(0)〉 . (28)

A particular case of the process would imply a single term
describing a unitary error. If we can correct decoherence, we
will be able to do it with the unitary errors.

10.1.4. Error detection

The emitter sends the qubit|qE(0)〉 through the noisy chan-
nel. The qubit-environment entanglement causes the receiver
to detect the|Ψ(t)〉 state involving a linear combination of all
possible bit-flip errors, each one with a certain coefficient re-
lated to its probability. To detect the error, the receiver would
have to measure some of the qubits, but in doing so, it would
collapse the state, losing the information about the qubit co-
efficients (destructive measurement). We need another form
to measure the qubits indirectly tomaintain the coherence.

Instead of destructively measuring the|Ψ(t)〉 state, we
can make acollective measurementthat will allow the error
syndrome to be obtained without acquiring knowledge about
the qubit coefficients. A set of two CNOT gates (CNOT(1;2),
CNOT(1;3)) could be used to translate the error syndrome
to the last two qubits. After measuring them, the syndrome
would permit us to recover the correct encoded qubit by ap-
plying the appropriatêX gates. Unfortunately, this method
has some drawbacks: it eliminates the encoding (i.e. the qubit
protection) after the measure and, what is worse, it will not be
appropriate for fault-tolerant error correction (see Sec. 10.6).

In spite of the previous syndrome extraction, the receiver in-
troduces two additional qubits orancilla in the initial state
|00a〉, preparing the state|Ψ(t)〉|00a〉. In this code, the col-
lective measurements, consist of comparing the logical val-
ues of two pairs of qubits: the first and second and the first
and third. The results are introduced in the ancilla qubits.
In the collective measurement we are not interested in find-
ing out the definite values of the qubits, only whether they
are equal or different. The process is analogous to the clas-
sic case of the error syndrome measurement according to the
parity check matrix:

HC =
(

1 1 0
1 0 1

)
(29)

Altogether the process of syndrome extraction consists of
an interactionŜ that permits the following operation to be
carried out:

Ŝ
{

Âi |qE(0)〉 ⊗ |ei〉 ⊗ |00a〉
}

=Âi |qE(0)〉 ⊗ |ei〉 ⊗ |Si〉 , (30)

where the ancilla state|Si〉 contains the syndrome informa-
tion of the error and does not depend on the qubit state, but
only on the error. When̂S is applied to the entangled state of
the{qubit + environment} system (Eq. 28), we obtain:

|Ψ(t)〉 |00a〉 Collective Measurement−→




(1− ε)3/2 |eI〉 Î |00a〉+
+(1− ε)

√
ε

[ ∣∣∣e(??)
X

〉
X̂100 |11a〉+

∣∣∣e(??)
X

〉
X̂010 |10a〉+

∣∣∣e(??)
X

〉
X̂001 |01a〉

]
+

+ε
√

1− ε
[ ∣∣∣e(12)

X

〉
X̂110 |01a〉+

∣∣∣e(13)
X

〉
X̂101 |10a〉+

∣∣∣e(23)
X

〉
X̂011 |11a〉

]
+

+ε3/2
∣∣∣e(123)

X

〉
X̂111 |00a〉





|qE(0)〉 (31)

10.1.5. Syndrome extraction

The receiver measures the ancilla destructively on the compu-
tation basis{|0〉, |1〉}, collapsing the total state and obtaining
two classic bits corresponding to the error syndrome. Since
the codewords have anequal syndrome for the same error,

the measurement maintains coherence. Note that the four an-
cilla states identifying the error are orthogonal. This way
of measuring solves the aforementioned third problem in the
quantum error correction (Sec. 4).
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10.1.6. Error correction

Once the syndrome is measured, we correct the qubit state by
applying the inverse unitary transformation: the identityÎ or
a transformationσX (i) ≡X̂(i) is applied to the i-qubit. For
the previous repetition code, the collective measurement pro-
vides one syndrome for two different errors (implying that the
code does not correct all the errors); nevertheless, its proba-
bility (given by the square of the coefficient) is different, with
the applied correction corresponding to the error with high-
est probability. The code only corrects one bit-flip error, since
the orthogonal states of the code are transformed by the ac-
tion of these errors into states orthogonal to each other and to
the code itself. If this condition is fulfilled, the code is called
non-degenerate.

With this code, the correctable errors CQ transform the
codewords|0E〉, |1E〉 ∈ Q⊂ H⊗3 (initially orthogonal) into
codewords orthogonal to each other, as well as having the
same syndrome if they come from the same error. Fig. 6
shows how the three errors that can be corrected produce
three orthogonal subspaces, each one with a different syn-
drome.

The general error correction conditions are:

∀Âi ∈ CQ and ∀ |u〉 , |v〉 ∈ Q ⊂ H⊗n

⇒ 〈u| Â+
i Âj |v〉 = δijδuv (32)

FIGURE 6. Action of the bit-flip error operators on the Q sub-
space. The three error operators transform Q into mutually orthog-
onal subspaces.

FIGURE 7. Quantum circuit that implements the [[3,1,3]] encod-
ing, syndrome extraction and qubit correction. Time flows from the
left to the right.

and for the present code are〈1E | X̂+
i X̂j |1E〉 = δij and

〈0E | X̂+
i X̂j |1E〉 = 0. The code cannot correct any two er-

rors affecting the encoded qubits.
Finally, we must bring back the ancilla (whose state con-

tains the error syndrome) to its initial state|00a〉 so as to be
able to use it again. A cheaper possibility is to reject it and
synthesise a new one. For the quantum codes, a distance anal-
ogous to the classic case [?] (see Sec. 2) can be defined. If
the distance is d≥ 2t+1, the code is able to correct t errors in
any one of the positions within the quantum register. Defin-
ing the weight of an error operator as the number of operators
different from the identity in their tensor product, the value
of t agrees with the weight of the error operators that the code
can correct. In the present case, the quantum code has a dis-
tance 3 (with respect to the bit-flip errors), since it can correct
one error, so Q is a code [[3,1,3]]. If we increase the number
of qubits in this code, the distance increases. For example,
a repetition code generated by{|00000〉, |11111〉} has a dis-
tance 5 and corrects bit-flip errors of weight two.

10.1.7. Quantum circuit

The syndrome is extracted by means of a set of CNOT
gates between the qubit q (control) and the ancilla a (tar-
get). We can represent the syndrome extraction as the op-
eratorŜ = CNOT (q; a), constructed by means of the parity
check matrix of the code HC (Eq. 29). The 1’s in each row
indicate the position of the control q-qubits, whereas target
qubits are those of the a-ancilla. The circuit implementing
the total process appears in Fig. 7.

The recovery operator could be written as
R̂=X̂(correction, a)M̂(a)Ŝ whereX̂(correction, a) rep-
resents the application of NOT gates depending on the syn-
drome contained in ancilla a and̂M(a) is an operator that
describes the ancilla measurement. The former circuit is not
unitary since it involves measurements. Although it is possi-
ble to construct a unitary circuit for the correction, the use of
measurements has certain advantages when the tolerance to
failures is taken into account.

Note that the loss of information comes from the entan-
glement between the encoded qubit (quantum register) and its
environment. Paradoxically, it is the entanglement between
the ancilla and the register that allows us to recover the state
if errors have taken place.

10.2. Fidelity

In the process of detection and error correction, there is a
probability that two or more different errors in qubits will ap-
pear simultaneously. In order to measure the code capability
to correct errors,fidelity can be used. This is defined as the
minimum probability of obtaining the desired state of the sys-
tem after a certain process has been carried out. In the present
case, the desired state is|qE(0)〉, whereas the final state is a
mixed one arising after measuring|Ψ(t)〉. The probability
that measuring|Ψ(t)〉 will collapse in the same initial state
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is < qE(0)|tre{|Ψ(t)〉 < Ψ(t)|}qE(0)〉. The ‘tre’ means the
partial trace over the environment states. As this value de-
pends on the qubit coefficients a and b, we will choose the
magnitude which characterises how good the process is, as
the minimum value with respect to all the possible states:

Fidelity

= Min
∀|qE

(0)〉
{〈qE(0)| tre [|Ψ(t)〉 〈Ψ(t) |] |qE(0)〉} . (33)

Fidelity does not depend on the initial state considered,
but only on the particular process, through|Ψ(t)〉. The main
objective of error correction is to maximise the fidelity.

Considering only bit-flip errors, if we sent a qubit|q(0)〉
without encoding (or using error correction) the fidelity
would be:

FWE= Min
∀|q(0)〉

{
(1−ε)+ε

∣∣∣〈q(0)| X̂ |q(0)〉
∣∣∣
2
}

=1−ε (34)

Since the second term is positive and its minimum value
corresponds to the case|q(0)〉 = |0〉 with zero value, the fi-
delity behaves as FWE∼ 1-O(ε).

Let us assume now that we encode the qubit|q(0)〉 with a
quantum code Q = [[3,1,3]], that corrects one bit-flip error in
any one of the three qubits in the register|qE(0)〉. Supposing
that the correction process is error free, all the errors affect-
ing one qubit can be eliminated, which is reflected in the term
3ε(1-ε)2 of the (encoded) fidelity:

FE= Min
∀|qE(0)〉

{
(1− ε)3+3ε(1−ε)2+positive terms

}
(35)

The positive terms are zero in the least favourable
situation, so the fidelity in the encoded case is
FE = (1-ε)3 + 3ε(1-ε)2 ∼ 1 - O(ε2), eliminating the linear
term inε. In order for FE > FWE to be fulfilled,ε < 0.5 is
required (as in the classic case).

10.3. Error correcting codes for phase-flip errors

Phase-flip errors are typically quantum, although their cor-
rection is related to the bit-flip errors. They arise when the
entanglement of the system with its environment gives rise to
a phase decoherence. The general noise characteristics con-
sidered are the same as those of the previous case.

In order to look for the appropriate encoding, we see
that there is a close relationship between the bit-flip er-
rors and those of phase-flip, through the form of the op-
erators that produce them. The phase-flip errors can be
represented bŷZ operators, butẐ=ĤX̂Ĥ, whereĤ is a
Hadamard rotation. We use as codewords of the new Qf

codeĤ⊗n {|0E〉 , |1E〉}, where|0E〉 and|1E〉 are codewords
of a code Qb correcting single bit-flip errors (and therefore
with minimum distance 3). Encoding the qubit|q〉 provides
|qE〉 = aĤ⊗n |0E〉 + bĤ⊗n |1E〉. If the channel introduces
a phase-flip error̂Ze in the qubit|qE〉, we will have

Ẑe |qE〉 = Ẑe

{
aĤ⊗n |0E〉+ bĤ⊗n |1E〉

}

and, applying the recovery operator

R̂ =
{

Ĥ⊗n X̂(correction, a) M̂(a) Ŝ Ĥ⊗n
}

=
{

Ĥ⊗nX̂(correction, a)M̂(a)CNOT (q; a)Ĥ⊗n
}

, (36)

we obtain:

R̂
{

Ẑe |qE〉
}

=
{

Ĥ⊗nX̂(correction, a)M̂(a)CNOT(q; a)Ĥ⊗n
}{

Ẑe

(
aĤ⊗n |0E〉+ bĤ⊗n |1E〉

)}
|00a〉

= Ĥ⊗nX̂(correction, a)M̂(a)CNOT (q; a)
{

aX̂e |0E〉+ bX̂e |1E〉
}
|00a〉

= Ĥ⊗nX̂(correction, a = Se)
{

aX̂e |0E〉+ bX̂e |1E〉
}
|Se〉 =

{
aĤ⊗n |0E〉+ bĤ⊗n |1E〉

}
|Se〉 (37)

The CNOT (q; a) operation on the codewords|0E〉 and |1E〉 of Qb copy the bit-flip error information of the qubit q
(control) onto the ancilla a (target), in accordance with the parity check matrix. The operatorM̂(a) represents the ancilla
measurement (whose result is the error syndrome|Se〉) and theX̂(correction, a = Se) represent the correction depending on
the ancilla measurement result. Finally, the encoded qubit is restored to the original encoded basisĤ⊗n {|0E〉 , |1E〉}.

If we take Qb = {|000〉 = |0E〉, |111〉 = |1E〉}, the new codewords of Qf are:

Ĥ⊗3 |000〉 =
∣∣∣0f

E

〉
=

1√
2

( |0〉+ |1〉) 1√
2

( |0〉+ |1〉) 1√
2

( |0〉+ |1〉)

=
1√
8
{ |000〉+ |001〉+ |010〉+ |100〉+ |011〉+ |101〉+ |110〉+ |111〉} (38)

Ĥ⊗3 |111〉 =
∣∣∣1f

E

〉
=

1√
2

(|0〉 − |1〉) 1√
2

(|0〉 − |1〉) 1√
2

(|0〉 − |1〉)

=
1√
8
{|000〉 − |001〉 − |010〉 − |100〉+ |011〉+ |101〉+ |110〉 − |111〉} (39)
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With this code Qf =
{

Ĥ⊗3 |000〉 , Ĥ⊗3 |111〉
}

, the

qubit |q〉 = a|0〉+ b|1〉 is encoded as|qf
E〉 = a|0f

E〉+ b|1f
E〉.

The two codewords of Qf are also orthonormal.

Sending the qubit|qf
E〉 through a noisy channel that intro-

duces phase-flip errors, an entanglement with its environment
occurs, similarly to that established in the previous code. The
difference is replacing the operatorŝXijk for Ẑijk and their
correlated environment states in Eq.(??).

The set of correctable errors of Qf is:

CQf
=

{
Î ⊗ Î ⊗ Î ≡ Ẑ000, Î ⊗ Î ⊗ Ẑ ≡ Ẑ001,

Î ⊗ Ẑ ⊗ Î ≡ Ẑ010, Ẑ ⊗ Î ⊗ Î ≡ Ẑ100

}
(40)

and the code for the phase-flip errors is Qf = [[3,1,3]]. Just
like the Qb = Q code, there are errors that cannot be corrected,
but their weight is greater than those that can be corrected and
the encoded fidelity behaves like 1-O(ε2).

The syndrome measurement circuit and qubit correction
implementingŜ is analogous to the one in the previous case
(Fig. 7), with the difference that the encoding is carried out in
the base{|0f

E〉, |1f
E〉}, and three Hadamard gates must appear

just before and after the error correction.

10.4. Phase and bit-flip error correcting codes

The correction power of the previous codes is limited. The
code Qb = [[3,1,3]] uses qubit redundancy to correct a single
bit-flip error; the Qf = [[3,1,3]] uses sign redundancy to cor-
rect a single phase-flip error. Nevertheless, we must find a
singlequantum code capable of correctingboth types of er-
rors. Historically it was Shor [17] who in 1995 introduced
the first code that did what for some time was thought impos-

sible: correcting quantum errors. The encoding was:

Ê
{|0〉 ⊗

∣∣0⊗8
〉}

= |0E〉 =
1

2
√

2
(|000〉+ |111〉)

× (|000〉+ |111〉) (|000〉+ |111〉) (41)

Ê
{|1〉 ⊗

∣∣0⊗8
〉}

= |1E〉 =
1

2
√

2
(|000〉 − |111〉)

× (|000〉 − |111〉) (|000〉 − |111〉) . (42)

So a qubit |q〉=a|0〉+b|1〉 is encoded into
|qE〉=a|0E〉+b|1E〉. If there appears a bit-flip error in some
set of three qubits, it is possible to detect and correct it by
means of an analogous method used with Q. If a phase-flip
error happens in one of these three sets, and we have some
strategy to compare the sets, we will be able to detect and
correct them. Note that in Shor’s code, some errors such as
Ẑ110, Ẑ101 or Ẑ011, even though they do not produce orthog-
onal states, are equivalent (equal) and correctable. These
codes are calleddegenerated.

Almost simultaneously Steane (1996) introduced a
method for transforming certain types of classic codes into
quantum ones. The idea that guided him was that bit-flip er-
rors could be corrected with a code of a classic type, and the
phase-flip errors were equivalent to bit-flips if a Hadamard
rotation were previously made. When rotating the code-
words, it had to make sure that they did not leave some code
of a suitable distance.

Steane encoded two qubits|0〉 and |1〉 starting with
a classic Hamming code C = [7,4,3] containing its dual
C⊥ = [7,3,4] (even subcode, since it contains only the
codewords of even weight). The basis of the quan-
tum code include two entangled states obtained from
the classic codewords of each coset of C relative to
C⊥: C⊥⊕ (0000000) = C⊥ = {codewords of C with even weight},
and the C⊥⊕ (1111111) ={codewords of C with odd weight} (see
Fig. 8). The quantum codewords are:

|0E〉 =
∣∣C⊥〉

=
1√
8

{ |0000000〉+ |0001111〉+ |0110011〉+ |0111100〉
|1010101〉+ |1011010〉+ |1100110〉+ |1101001〉

}

|1E〉 =
∣∣C⊥ ⊕ (1111111)

〉
=

1√
8

{ |1111111〉+ |1110000〉+ |1001100〉+ |1000011〉
|0101010〉+ |0100101〉+ |0011001〉+ |0010110〉

}
(43)

The vector space generated by the (encoded) computa-
tion basis F ={|0E〉, |1E〉} corresponds to a quantum code Q
(analogous to Qb) correcting one bit-flip. In addition to the F
basis, we can use other bases, for example the dual (encoded)
basis P ={Ĥ⊗7|0E〉, Ĥ⊗7|1E〉}:

Ĥ⊗7 |0E〉 =
1√
2
{|0E〉+ |1E〉}

Ĥ⊗7 |1E〉 =
1√
2
{|0E〉 − |1E〉} (44)

consisting of two entangled and orthonormal states involv-
ing codewords of the [7,4,3] classic code that can correct one
bit-flip error.

10.4.1. Detection and error correction

Since the quantum encoding uses linear combinations of clas-
sic codewords (in C) of distance 3, it is possible to detect sin-
gle bit-flip errors. The appearance of an̂Xe error (the error is
applied to the qubits where the vector e∈ GF(??)7 has 1’s),
moves the codewords{|0E〉, |1E〉} towardsX̂e{|0E〉, |1E〉},
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both in the same coset of C, maintaining coherent superposi-
tions. In order to measure the syndrome, an ancilla with three
qubits (|000a〉) is used into which the syndrome is copied by
means of CNOT gates placed according to the parity check
matrix of C=[7,4,3]:

H[7,4,3] =




1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


 (45)

The measurement of the ancilla qubits provides the syn-
drome bits in accordance with which NOT gates are applied
(X̂(correction, a)) where necessary. The bit-flip errors pro-
duce the effect̂Xe|qE〉 = |qE ⊕ e〉, and the correction can be
outlined as:

R̂
{

X̂e |qE〉
}

=
{

X̂(correction, a)M̂(a)CNOT (q; a)
}

× |qE ⊕ e〉 |000a〉
→ X̂(correction, a = Se) |qE ⊕ e〉 |Se〉
= |qE〉 |Se〉 (46)

A phase-flip error transforms the qubit intôZe|qE〉. Its
detection involves a seven-qubit Hadamard rotation. By
virtue of theĤẐe = X̂eĤ condition, we transform phase-
flip errors in basis F into bit-flip errors in the P basis. The
relationship between both bases can be understood easily. A
phase-flip error in the computation basis F (|0〉 → |0〉 and
|1〉 → −|1〉) corresponds to a bit-flip error in the dual basis P
(Ĥ|0〉 → Ĥ|1〉 andĤ|1〉 → Ĥ|0〉). As the P basis involves
C codewords of distance 3, it is possible to make a correction
for bit-flips using a three-qubit ancilla state. We apply a set of
CNOT (q; a) gates to obtain the error syndrome and correct
with X̂(correction, a = Se) gates. To conclude, we rotate
back the qubit state to leave it in the original computation
basis. The complete correction circuit is shown in Fig. 9.

FIGURE 8. Relationship between the GF(??)7 = {0, 1}⊗7 vector
space and the subspaces conforming the [7,4,3] Hamming code and
its dual.

FIGURE 9. Quantum circuit implementing the syndrome extrac-
tion and qubit correction when it is encoded (|qE〉) by means of
Steane’s [[7,1,3]] quantum code. In order to measure the syndrome
for he bit-flip and phase-flip errors, six ancillas in the initial state
|0a〉 are used.

The syndrome (S1, S2, S3) describes bit-flip errors,
whereas (S4, S5, S6) corresponds to the phase-flip errors.
Correcting both, it is also done for thêYe errors, because
Ŷe = ẐeX̂e. We conclude that the Steane code is [[7,1,3]]
and corrects anŷX, Ŷ andẐ error.

10.4.2. CSS codes

The construction method of the Steane [[7,1,3]] code can be
generalised to obtain other codes. We now describe a fam-
ily of codes called CSS, whose design is based on the theory
of classic linear codes. Discovered by Calderbank, Shor [18]
and Steane [19], with the Steane’s code being a particular
case, the method is based on the theorem of the dual code.

Theorem of the dual code: By rotating Hadamard, a quan-
tum state obtained as the linear combination of all the code-
words of a linear classic code C = [n,k,d], we get a state which
is the linear combination of all the codewords of its dual C⊥

(linear) code:

Ĥ⊗n 1√
2k

∑

i∈C

|i〉 =
1√

2n−k

∑

x∈C⊥

|x〉. (47)

The CSS construction is as follows. Consider two clas-
sic linear codes: C1 = [n,k1,d1], whose parity check ma-
trix is H1[(n-k1)×n], and C2, with parity check matrix
H2[(n-k2)×n], are such that C2(subcode)⊆ C1. Then
k2 < k1 and the parity check matrix of H2 contains (n-k1)
rows of H1 and some other (k1-k2) linearly independent
rows, assuring C2 ⊆ C1. The subcode C2 defines an equiv-
alence relationship< in C1: ∀u, v∈C1, u< v ⇔ u-v∈ C2,
or, which is the same, u< v ⇔ if ∃ w∈C2| u = v + w.
The equivalence classes are cosets of C1 relative to C2 (el-
ements of the factor group C1/C2). The number of cosets is
2k1/2k2 = 2k1−k2 . Let us transform the classic codewords
of coset C2⊕a (a∈C1) into quantum states and construct an
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entangled state of the type:

|C2 ⊕ a〉 =
1√
2k2

∑

i∈C2

|i⊕ a〉. (48)

The set of these states forms an orthonormal base of a
subspace of dimension2(k1−k2) of the Hilbert space H⊗n

(see Fig. 10). The states|C2 ⊕ a〉 are created by the linear
combination of distance d2 codewords of a C2 code, so it will
be capable of correcting t2 = b(d2 − 1)/2c bit-flip errors. In
addition, as the syndrome of all the codewords depends solely
on the error, the syndrome extraction will maintain the qubit
coherence. In general we can provide the following

Definition: Given two linear classic codes C1 = [n,k1,d1]
and C2 = [n,k2,d2] (its dual being C⊥2 = [n, n-k2, d⊥2 ])
so that C2(subcode)⊆ C1, the subspace generated by the
encoded base{|C2 ⊕ a〉, a∈C1} is a quantum CSS code
Q(C1, C2) = [n,k1-k2,D] of dimension2(k1−k2) and distance
D ≥ Min{d1, d⊥2 }.

In order to construct quantum codes with this method, it
is sufficient to look for classic codes contained in its dual (or
vice versa). Given a classic code C, if C⊂ C⊥ is fulfilled,
it is called weakly self-dual. An example of weakly self-
dual and self-dual linear binary codes (C = C⊥) that cover
a large interval of distances and code rate (k/n) is the family
of Reed-Muller codes (RM) [?]. Starting with self-dual RM
codes, quantum codes of dimension one can be constructed
as [[n,0,d]]. From the [[8,4,4]] [[32,16,8]] and [[128,64,16]]
RM codes, we obtain [[8,0,4]], [[32,0,8]] and [[128,0,16]]
respectively. In order to obtain codes with dimension two,
the self-dual RM codes can be punctured, their dual code
being an even subcode. Puncturing (deleting coordinates)
the [[8,4,4]], we get [[7,4,3]], which contains the even sub-
code [[7,3,4]], providing the well-known [[7,1,3]] Steane
quantum code. From the other weakly self-dual RM codes,
the [[31,1,7]] and [[127,1,15]] are derived, correcting errors
of weight 3 and 7 respectively. From RM codes of greater
dimension such as [[64,42,8]] (whose dual is [[64,22,16]]),
other quantum codes can be obtained such as [[64,20,8]].

FIGURE 10. Construction process of a CSS code from the code
C2 ⊆ C1. Each box represents a coset with a different syndrome
depending on the displacement vector.

10.4.3. Stabiliser codes [21]

Quantum codes are certain vector subspaces of H⊗n. A way
to specify them is as the common eigenspaces of a set of com-
muting operators, forming itself an abelian sub-group (called
stabiliser groupSQ) of the Pauli group. The Pauli group Gn

is made up of the operators

{ ± 1} × {Â{i1,i2,...,in} = Â1
i1 ⊗ Â2

i2 ⊗ . . .⊗ Ân
in
}.

In the case of the repetition code [[3,1,3]], we have
a Hilbert space of dimension 23. If we want to specify
the code as a subspace of dimension 2, we can use the
eigenspace common to two operators. For example, the
common eigenspace of the set

{
Ẑ110, Ẑ101

}
is the code

Q = {|000〉, |111〉} ≡[[3,1,3]], which is where an encoded
qubit resides when it does not have errors. The set can be
transformed into a group SQ if the product of its operators is
included. This SQ group is abelian and is calledstabiliser,
because its operators fix the codewords of the quantum code
Q. Actually, SQ is a subgroup of theGn/{±Î} factor group.
The {±Î} is the centraliser of Gn, so that we do not care
about the global operator phase, and SQ is abelian. SQ can be

specified completely by its generatorsSQ =
〈
Ẑ110, Ẑ101

〉

(the notation〈. . .〉 is used to specify the group generators.).
If an encoded qubit |qE〉 undergoes an error

X̂v, its state becomesX̂v |qE〉, and is fixed by

X̂vSQX̂v =
〈
X̂vẐ110X̂v, X̂vẐ101X̂v

〉
because:

X̂vẐuX̂v(X̂v |qE〉) = X̂vẐu |qE〉
= X̂v |qE〉 (u = 110, 101) (49)

andX̂v|qE〉 ∈ X̂vQ. The syndrome is determined by the ex-
istence of an operator in SQ anticommuting with the error
operatorX̂v. If X̂v = X̂100,

{
X̂100, Ẑu

}

=
{

X̂100, Ẑ100

}
Ẑ(100)⊕u=0 (u=110, 101) (50)

sinceX̂100 commute withẐ010 andẐ001:

Ẑ101

(
X̂100 |qE〉

)
=Ẑ100X̂100Ẑ001 |qE〉=−X̂100Ẑ101 |qE〉

= −X̂100 |qE〉 = (−1)aX̂100 |qE〉 (51)

Ẑ110

(
X̂100 |qE〉

)
= −X̂100Ẑ110 |qE〉

= −X̂100 |qE〉 = (−1)bX̂100 |qE〉 (52)

The syndrome of thêX100 error is (a,b) = (1,1). An error
operator anticommuting with an operator in SQ changes the
eigenvalue of the state from +1 to –1. Fig. 11 shows the sin-
gle bit-flip error syndromes and their orthogonal subspaces.
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FIGURE 11. Relationship of the different subspaces from the rep-
etition code that corrects one bit-flip. The pairs in parenthesis in-
dicate the error syndrome in each subspace. For the code, the syn-
drome is (a,b) = (0,0).

FIGURE 12. Measurement circuit for the hermitian operatorÛ .
The gate connecting both qubits is a control-U.

In the case of the Steane code, the stabiliser is generated
by 6 operators (obtained by replacing the 1’s in the rows of
H[7,4,3], Eq. (45), byX̂ or Ẑ operators), whose common
eigenspace, with eigenvalue +1, makes up the code [[7,1,3]].
Shor’s [[9,1,3]] code can be described by means of a sta-
biliser with 8 generators. CSS codes are stabilisers; neverthe-
less these latter contain other codes that are not CSS. For ex-
ample, theperfectquantum code [[5,1,3]] [22](saturates the
quantum Hamming bound2(1 + 3n) ≤ 2n for codes with
d=3, [?], analogous to classic equation 5), is not a CSS code
although it is a stabiliser.

Given that the errors change the eigenvalue of the SQ gen-
erators, the correction circuit construction can be described
in a more general way as the collective measurement of these
operators. The measurement of operators is a fundamental
element in error correction. The objective is to project the
qubit state on an eigenstate of SQ, at the same time as we
keep an indicator from the eigenvalue in some quantum reg-
ister. Let us suppose that we have a hermitian operator (such
as an observable) and unitary (which can also represent a time
evolution)Û , having the±1 eigenvalues. In order to measure
Û , we must make a projection of the qubit on one of its two
eigenspaces. The circuit implementing the measurement ap-
pears in Fig. 12.

The initial state of the qubit is|qi〉 and an ancilla in the
|0〉 state is used. Its joint evolution is:

|qi〉 |0a〉 = {a |0〉+ b |1〉} |0a〉 Î⊗Ĥ−→ {a |0〉+ b |1〉} 1√
2
{|0a〉+ |1a〉}

CU(2;1)−→ 1√
2

{
a |0〉 |0a〉+ a(Û |0〉) |1a〉+ b |1〉 |0a〉+ b(Û |1〉) |1a〉

}

Î⊗Ĥ−→ 1
2

{[
a |0〉+ b |1〉+ aÛ |0〉+ bÛ |1〉

]
⊗ |0a〉+

[
a |0〉+ b |1〉 − aÛ |0〉 − bÛ |1〉

]
⊗ |1a〉

}
(53)

The CU(2;1) means a control-U gate acting on the
qubit 1 (target) depending on the qubit 2 value (control).
The projectors on the eigenspaces with eigenvalues±1 are
P̂± = (Î ± Û)/2. Measuring the ancilla qubit of the previ-
ous evolution, if we obtain the state|0a〉, we will have pro-
jected according tôP+; and if the result is|1a〉, the projection
will correspond toP̂−. Note that the qubits used can be ei-
ther non-encoded or encoded. Using this construction, we
obtain the circuit shown in Fig. 13. To determine the syn-
drome, the operatorŝZ110 andẐ101 are measured by means
of two ancilla qubits initially in state|00a〉. Bearing in mind
the equivalencêZ = ĤX̂Ĥ (Fig. 14), it is easy to obtain the
circuit as it appears in Fig. 7.

FIGURE 13. Quantum circuit measuring the generatorsẐ110 and
Ẑ101 of the [[3,1,3]] code. Gates M provide the error syndrome.

FIGURE 14. Equivalence of circuits used in the syndrome extrac-
tion.
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10.4.4. Codes on GF(??)

It is possible to relate the stabiliser quantum codes and the
classic codes in GF (4)[24], establishing an isomorphism be-
tween the elements of the stabiliser and those of a subcode
of GF(??)n that is selforthogonal with respect to a certain
symplectic product. This is the case in the [[5,1,3]] code that
comes from a Hamming code in GF(??). This connection
with the classic codes has allowed the well-known construc-
tions of these codes to be used to obtain a great number of
new quantum codes with a distance greater than 3, correcting
more than one error. In the same way, stabiliser codes can be
generalized to nonbinary alphabets over finite fields [25].

10.5. Quantum operation formalism applied to QECC

The fundamental pieces of quantum error correction are
quantum states to be protected and noise. There are several
ways to point out the theory [26]. Until now, we have used
state vectors or kets emphasizing the environmental effect on
the system studied as givin rise to the errors. Experimentally
it is not possible to know environment states, so a formalism
based on the concept ofquantum operations(or superoper-
ators, see Knill and Laflamme in Ref. 3) [?] will be more
general and powerful to treat the evolution of open systems
such as quantum computers.

In general, quantum states are described by means of the
density operator̂ρ (or density matrix, if a basis set is chosen),
and its time evolution by the quantum operation E defined as
a mapρ̂ → E(ρ̂), which has the following properties:

1.- E is a convex-linear mapin the density operator set,
fulfilling:

E

(∑

i

piρ̂i

)
=

∑

i

piE(ρ̂i), (54)

{pi} being the probability set for the{ρ̂i} states.

2.- E is a completely positive map. E(ÔS) is more than
a positive operator for any positive operatorÔS of the
system S. Consider all possible extensions T of S to the
combined system TS; then E is completely positive in
S if (IT⊗E)(ÔTS) is positive for any positive operator
ÔTS of TS.

3.- The value 0≤ tr[E(ρ̂)] ≤ 1 is the probability that the
process represented by E will occur whenρ̂ is its initial
density operator.

Analogous to the one-qubit evolution of Eq. (11), the
evolution of a system such as an n-qubit register|q1,. . . ,qn〉
in contact with the environment (in the initial state|e〉) can
be expressed as:

Û {|q1, . . . , qn〉 ⊗ |e〉}

=
∑

i

(
|µ(t)i〉 ⊗ B̂i

)
|q1, . . . , qn〉 . (55)

An orthonormal environment basis set{|µi〉} has been
used. Now the operatorŝBi could be (in general) linear com-
binations of (tensor product) Pauli operators [see Eq. (16)]
because of the basis change from{|ei〉} to {|µj〉}. The evo-
lution operator eliminates the possible initial factorization be-
tween the state of the register and the environment. Sup-
pose the initial state is characterized by the tensor product
of the density operator for the system and the environment:
ρ̂(0)s ⊗ ρ̂(0)e. The whole evolution can be written as

ρ̂s(0)⊗ ρ̂e(0) Evolution:Û−→ ρ̂(t) = Û [ρ̂s(0)⊗ ρ̂e(0)] Û+

→ ρ̂rs(t) = tre {ρ̂(t) } , (56)

ρ̂(t) being the density operator of the{system + environ-
ment} at time t,ρ̂rs(t) the reduced density operator (or ma-
trix) of the system obtained by taking the partial trace with
the environment states. Carrying out the calculation:

ρ̂rs(t) = tre {ρ̂(t)} =
∑

i

〈µi| Û [ρ̂s(0)⊗ |e〉 〈e|] Û+ |µi〉

=
∑

i

〈µi| Û |e〉 ρs(0) 〈e| Û+ |µi〉

=
∑

i

B̂iρ̂s(0)B̂+
i , (57)

whereB̂i = 〈µi| Û |e〉 are operators acting on the Hilbert
space of the system. Using the definition, it is not difficult to
show the normalization condition

∑

i

B̂+
i B̂i = Is

(identity for the system). The map

ρ̂s(0)αE(ρ̂s(0)) = ρ̂rs =
∑

i

B̂iρ̂s(0)B̂+
i (58)

defines a quantum operation representing the density opera-
tor evolution of the systemalone. All the environment effect
is hidden inB̂i, called interaction operators. The breaking
down of ρ̂rs in terms ofB̂i is called theoperator-sum rep-
resentationor Kraus representation. Note that this represen-
tation in terms ofB̂i is not unique because it is environment
basis-dependent.

The depolarizing error model applied to a qubit q and
shown in Eq. (15) can be described now by means of the
following interaction operators:

B̂1 =
√

1− εÂ1 B̂i =
√

ε

3
Âi with i = 2, 3, 4 (59)

describing the evolution of a qubit density operator:

ρ̂q(0) → E(ρ̂q(0)) = ρ̂qr(t) = (1− ε)ρ̂q(0)

+
ε

3

4∑

i=2

Âiρ̂q(0)Â+
i . (60)
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Redefining the parameterε = 3p/4, the reduced density
matrix is:

E ( ρ̂q(0)) = ρ̂qr(t) = p
Î

2
+ (1− p)ρ̂q(0). (61)

Its evolution is now very transparent, showing two con-
tributions: the untouched qubit with probability (1-p), and a
completely mixed statêI/2 with probability p.

The correction process can be seen as the search for the
inverse quantum operationE−1. Although theE−1 in the
whole Hilbert space (H⊗n) only exists in the case of a uni-
tary operator, it is possible to invert it, taking the restriction
to some special subspaces Q⊂ H⊗n. The quantum recovery
operation R fulfils the condition:

∀ρ defined in Q,R(E(ρ)) ∝ ρ (62)

The recovery R reverses the errors represented by E,
mapping them into an operator proportional to the identity
[Eq. (62)].

The notion of detectable errors has been explicitly intro-
duced by Knill and Laflamme [3], and can be established
thus: an errorB̂ is detectable by the quantum code Q if and
only if

∀ |u〉 , |v〉 ∈ Q fulfilling 〈u| v〉 = 0 ⇒ 〈u| B̂ |v〉 = 0 (63)

The errorB̂ transforms the Q-codewords, keeping their
orthogonality and making it possible to differentiate them.
Alternatively, an errorB̂ is detectable by Q if and only if the
condition P̂QB̂P̂Q=αBP̂Q is satisfied for a complex con-
stantαB depending on the error̂B, P̂Q being the projector
operator in Q. Without going into a full demonstration (see
details in Nielsen and Chuang [3] and [27]), imagine the con-
dition is fulfilled ∀|φ1,2〉 ∈ H⊗n, and

P̂Q |φ1,2〉 = |u1,2〉 ∈ Q. If 〈u1| u2〉 = 0,

the condition means

〈φ1| P̂QB̂P̂Q |φ2〉 = 〈u1| B̂ |u2〉 = αB 〈u1 | u2〉 = 0.

Consequently, a set of errors CQ = {B̂i} is called correctable
by the code Q if and only if the set CQC+

Q = {B̂iB̂
+
k } is de-

tectable. Eqs. (32) are an example of that fact.
From the general condition̂PQB̂iB̂

+
k P̂Q = αikP̂Q, it is

possible to obtain the recovery quantum operation R. As a
quantum operation, it is characterized by means of the set{

R̂i

}
defining the map:

ρ̂ → R(ρ̂) =
∑

i

R̂iρ̂R̂+
i . (64)

The matrixαik depends only on the error operatorB̂iB̂
+
k ,

and its elements areαik = 〈u| B̂iB̂
+
k |u〉, |u〉 ∈Q. Because it

is hermitian it can be diagonalized, and the new set of errors{
N̂i

}
, obtained as the appropriate linear combinations of

{
B̂i

}
, have{da} as eigenvalues. For each da 6= 0 (if da = 0,

N̂a |u〉 = 0, ∀|u〉 ∈ Q), a recovery quantum operation can be
defined as:

R̂a =
1√
da


 ∑

|u〉∈Q

|u〉 〈u|

 N̂+

a , (65)

fulfilling the conditionR̂a

(
N̂b

)
=
√

daδabÎQ for the states

in the code Q. Then̂Ra correctsN̂a in Q, and R corrects any
linear combination ofN̂a errors. Notice that, strictly speak-
ing, in order to have a quantum recovery operation R, it has
to be extended to the whole Hilbert space (for mathematical
details see Preskill [?]), which can be split as

H⊗n =
(
⊕
a

N̂aQ

)
⊕Q⊥,

where Q⊥ is the orthogonal complement of the code Q which
is not reached acting on the code with the operatorsN̂a.

In order to implement the recovery quantum operation,
the operatorŝRa can be written as:

R̂a =
1√
da


 ∑

|u〉∈Q

|u〉 〈u|

 N̂+

a

=
N̂+

a√
da


 ∑

|u〉∈Q

N̂a |u〉 〈u| N̂+
a


 = N̂+

a P̂aQ. (66)

The operator P̂aQ projects onto the subspace
N̂aQ ⊂ H⊗n. Its implementation involves the projection
of the corrupted state ontôNaQ according toP̂aQ, identify-
ing the subspacêNaQ characterized by the index a, and then
applying the inverse operator̂N+

a . To carry out the recovery
process, an ancilla system is introduced, characterized by the
Hilbert space HA and with a set of standard orthogonal states
{|ar〉}. Now we shall work within the subspace

(
⊕
a

N̂aQ

)
⊗HA.

The first step is to apply the unitary operatorV̂ (the|a0〉 state
is the initial ancilla state):

V̂ =
∑

a

P̂aQ ⊗ |aSa〉 〈a0|. (67)

The operatorV̂ is a generalisation of the standard
controlled-operation and will project ontôNaQ⊗|aSa〉. The
ancilla state carries the syndrome information Sa of the N̂a

error. Measuring the ancilla in the standard basis we obtain
the state|aSa〉 and, finally, applying the operator̂N+

a , the
error is reversed. This general process can be recognized in
what was done in Fig. 7 (Sec. 10.1.7) and 9 (Sec. 10.4.1) for
the three-qubit repetition code and Steane code, respectively.
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FIGURE 15. Phase-flip (̂Z) error propagation from the image qubit
to the control qubit in the case of a CNOT gate connecting both
qubits.

FIGURE 16. Forward bit-flip and backwards phase-flip error prop-
agation, due to the application of a CNOT gate.

FIGURE 17. Encoded CNOT gate in the [[3,1,3]] code. The left-
hand piece shows a perfect transversal CNOT gate performance
when the control and target registers are|111〉. On the right-hand
side, a bit-flip error corrupts the third qubit of the control register,
and is dispersed to the third qubit of the target register.

FIGURE 18. Dispersion of phase-flip errors in the measurement of
one bit of syndrome S. On the left, a phase-flip error propagates
from an ancilla qubit until the three qubits of the upper register.
This error cannot be corrected. On the right there is an equivalent
transversal version. A phase-flip error in the ancilla has been prop-
agated exclusively to one qubit of the upper register. In this case
the error could be correctable in later time steps.

10.6. Fault tolerance in QECC

The final mission of the decoherence control in quantum
computers is a static stabilisation of the information when
it is transmitted or stays in the memory, as well as a dynamic
stabilization of it. We need to process the informationdy-
namically, applying gates without an excessive accumulation
of errors, during the time sufficient to complete the execution

of the algorithm. The error correcting codes are the first step
to reaching it, the second is the use of fault-tolerance tech-
niques [?].

To implement a quantum gate, we could decode the quan-
tum state, carry out the gate, and encode the state again. This
process is not advantageous since, during the period of time
in which the gate is put into operation, the information is un-
protected. The fundamental idea of fault-tolerance is to use
an encoded logic:applying the encoded quantum gates to en-
coded qubits[?], without a previous decoding. Nevertheless,
the encoded logic, by itself, is not sufficient to ensure its tol-
erance to failures, and we will have to consider two additional
aspects. In the first place, the application of encoded gates to
encoded qubits can disperse the errors to other qubits within
the same register as well as to other registers, until they be-
come uncorrectable. Secondly, the error correction processes
are also quantum computations, which is why they can in-
troduce new errors. We will have to make an appropriate
design of encoded gates and error correction circuits to con-
trol error dispersion and accumulation. After reaching these
objectives, we shall make periodic encoded corrections to the
qubits.

10.6.1. Error propagation

One of the frequent types of gates in the computation and er-
ror correction are the control-M (M = NOT, Z). Let us see
how the CNOT gate propagates the errors. A bit-flip error in
the control qubit of a gate CNOT, propagatesforward towards
the target qubit. In addition to this spread (of a classic type), a
phase-flip error propagates backwards, from the target qubit
to the control qubit. Let us suppose we have a CNOT gate
whose control qubit is|q〉 = a|0〉 + b|1〉 and a phase-flip
error occurs in the target qubit (|0〉 + |1〉 in Fig. 15). The
phase-flip error(Ẑ) propagates from the target to|q〉. The
bit-flip and phase-flip error propagation is shown in Fig. 16.
Similar situations arise in gates involving several qubits, such
as the Toffoli gate. If we use a code allowing a single error
to be corrected in each quantum register, we define a fault-
tolerant procedure as one with the property thatif an error
occurs in one of its components, it causes (at most) one er-
ror in each register. The uncorrectable errors (for example in
two qubits) take place with a probability O(ε2), ε being the
probability per qubit that some time step or gate introduces
an error. This definition can be generalized to codes that cor-
rect t errors, just by demanding that no more than t errors are
introduced in each register after the procedure execution.

In the case that single qubits of the same register are re-
lated by a CNOT gate, the dispersion of errors could be fatal.
Some gates exist, depending on the code, which can be im-
plemented by means of atransversal logic, which ensures its
fault-tolerance. For example a CNOT gate can be transver-
sally implemented in a [[3,1,3]] code, as shown in Fig. 17.
A bit-flip error appearing in the third qubit of the control
register propagates solely (following the arrow) to the third
qubit of the target register. The CNOT gate is implemented
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transversally, by means of a procedure in which each qubit
of the control register is connected to a single qubit of the
target register. A transversally applied gate assures that it is
fault-tolerant. An error in each register can be corrected in
a later error correction step, thus avoiding its accumulation.
The error probability that two uncorrectable errors occur in
the control register (which would induce two errors in target
qubit) behaves like O(ε2).

Some gates cannot be implemented in a transversal
form, as would be the situation for the Hadamard rotations
in [[3,1,3]], and we should design more complex circuits that
could involve qubit measurements.

10.6.2. Fault-tolerant error-correcting circuits

Quantum error correcting codes imply encoding, syndrome
measurement, and qubit correction processes using ancilla
qubits, and adding new time steps and gates. In this situation,
the errors become more probable, with new routes appear-
ing in the error spreading. For the QECC to be useful, it is
necessary for their implementation to be sufficiently robust,
preventing more errors being introduced into them than they
try to eliminate, as well as being sufficiently fast.

Let us suppose that we use a QECC, and the probability
that a register has an error is O(ε), arising from evolution or
gate errors. The definition of a fault-tolerant error-correction
circuit reflects the intuitive idea that it must correct more er-
rors than are introduced by it. A quantum circuit (of a code
with distance 3) is considered fault-tolerant if the probability
of a register having an uncorrectable error after its execution
behaves like O(ε2). In general, a quantum circuit correcting
t errors is fault-tolerant if the probability of uncorrectable er-
rors is O(εt+1). The tolerance to failures tries to avoid all
ways in which such possibilities can take place.

One of the most important steps in the correction pro-
cesses is destructive and non-destructive measurements.
These are used in the encoding, syndrome determination and
ancilla synthesis (employed not only in error corrections, but
in the implementation of encoded fault-tolerant gates); this
is why its fault-tolerant accomplishment is of fundamental
importance. Concerning codes with distance three, to get a
fault-tolerant encoded measurement process, two conditions
must be met:

a) An error in any time step of the measurement process
must produce one error in each register, and

b) If an error occurs during the measurement process, the
probability that the result of the measurement is incor-
rect must be O(ε2).

The motivation of the first condition is that an error in
a register is tolerable by the code and can be corrected in a
later time step, whereas the second reflects the fact that the
measurement results could be used to correct one or several
qubits within a register. If the error probability in a measure-
ment behaves like O(ε), the subsequent error correction using
this result could introduce several errors into the same regis-
ter with O(ε) probability, with them being uncorrectable.

The destructive measurement produces the collapse of the
measured state. This is the case in the final ancilla measure-
ment for obtaining the error syndrome. If the error prob-
ability is O(ε) in each qubit, and these are not correlated,
the probability of an uncorrectable error taking place (two or
more errors in the register) is O(ε2). So the destructive mea-
surements are fault-tolerant.

As well as the destructive measurements, we can measure
hermitian operators non-destructively, such as the stabiliser
generators, as we have already seen in Fig. 12. The syndrome
copied into the ancilla, is found by measuring this last one de-
structively. Nevertheless a single ancilla state is not suitable
for extracting the syndrome because the circuit could spread
the errors in an uncorrectable way. As an example, let us look
at a piece (Fig. 18) of the correction circuit shown in Fig. 9
(measurement of the syndrome S1). A phase-flip error in the
ancilla qubit (we suppose in the state|1a〉) used as the target
of several CNOT gates is propagated to three qubits of the
upper register. If the phase-flip error probability is O(ε), the
propagation has introduced three errors affecting the upper
register with the same probability, these being uncorrectable
in later corrections (left-hand side in Fig. 18). This behaviour
appears because the same ancilla qubit is the target of all the
CNOT gates. We can solve the problem, by replacing the an-
cilla qubit by four, so that if there is an error in one of these
single qubits, they propagate to a single qubit in the control
register (the right-hand side of Fig. 18). Nevertheless this
operation does not completely solve the problem. Let us see
why in the following example.

Suppose we use the Steane [[7,1,3]] code to get|0E〉 and
|1E〉, and a bit-flip error occurs in the seventh qubit, rep-
resented byX̂7 ≡ X̂e (e = (0000001)). To obtain one bit
of syndrome (for example, measuring theẐ0001111 generator
shown in Fig. 18), we use an ancilla state|0000a〉, and four
CNOT gates are applied involving four qubits of the encoded
control register and four ancilla target qubits. The process
would be as follows:

X̂7 {a |0E〉+ b |1E〉} |0000a〉
= [a {|0000001〉+ . . .}

+b {|1111110〉+ . . .}] |0000a〉 four CNOT gates−→

→ a
(
X̂7 |0E〉

)
|0001a〉+ b

(
X̂7 |1E〉

)
|1110a〉 (68)

Measuring the ancilla destructively, we will find two
states|0001a〉 or |1110a〉 bringing about a collapse of the
whole state toX̂7|0E〉 or to X̂7|1E〉, with probabilities|a|2
and |b|2 respectively. The initial qubit coherence has been
destroyed, with certain information about it having been ac-
quired. To cope with the problem, we need to synthesize spe-
cial ancilla states and design appropriate recovery circuits.

10.6.3. Ancilla states

Ancilla states are involved in syndrome measurement as well
as intermediate states in fault-tolerant encoding and gates;
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therefore, the design of the ancillas is an important aspect in
the fault-tolerant computation. In QECC, we require an an-
cilla state to copy the error syndrome onto it and one that we
can measure destructively without losing the qubit coherence,
and without introducing too many new errors. The syndrome
measurement does not have to reveal anything about the state
of the information qubit.

DiVincenzo and Shor propose using a special ancilla
state |aShor〉 synthesized from the Schrödinger cat-state
(|0000〉+|1111〉), and Hadamard-rotating all qubits to obtain
an entangled state of equal-weighted, even-parity registers:

|aShor〉 =
1√
8
{|0000〉+ |0011〉+ |0101〉+ |1001〉

+ |1010〉+ |1100〉+ |0110〉+ |1111〉} (69)

In order to find each bit of syndrome, one Shor ancilla
state is needed, with the syndrome being copied onto it by
the appropriate CNOT gates and being, in the end, destruc-
tively measured. But why is this way of copying the infor-
mation advantageous? After applying the CNOT gates and
its measurement, the ancilla state (carrying the information
of the error) is not entangled with the qubit, so the ancilla
measurement does not collapse the qubit state. The ancilla
collapse takes place randomly in one of its even-parity reg-
isters, preventing information from being obtained about the
qubit. If the parity of the ancilla register has changed, the
syndrome bit is 1, if not it will be 0. The parity only reveals
the bit of syndrome and nothing about the qubit coefficients.
For example, using Steane’s code, we need three bits of syn-
drome to store the bit-flip error information and three more
for phase-flips, six Shor ancilla states altogether.

In the previous example, an̂X7 ≡ X̂e error took place
with e = (0000001); after the four CNOT gates (involved in
the Ẑ0001111 generator) and the measurement have been ap-
plied, the ancilla is not entangled with information qubit, and
the state is:

X̂e {a |0E〉+ b |1E〉}
⊗P̂M |(h34e4, h35e5, h36e6, h37e7)⊕ aShor〉 (70)

Where hij = (H[7,4,3])ij (parity-check matrix for the [[7,4,3]]
code, Eq. (45) and the operator̂PM represent a projective

FIGURE 19. Fault-tolerant circuit for the measurement of one
bit of syndrome corresponding to thêIÎÎẐẐẐẐ generator of the
[[7,1,3]] code. The different CNOT gates are applied transversally
connecting different qubits within each register.

ancilla measurement to get a single four-qubit register, whose
parity will provide the bit of syndrome. The circuit imple-
menting the fault-tolerant measurement of theẐ0001111 gen-
erator is shown in Fig. 19. Once the error has been identified,
it is corrected by applying the inverse operator. Similarly, we
could copy the syndromes of the generators involvingX̂ op-
erators, just by making Hadamard rotations before and after
the CNOT gates and using the previous ancilla states.

Another kind of ancilla has been proposed by Steane. It
involves an entangled state whose codewords correspond to
those of [7,4,3] classic Hamming code:

|aSteane〉 =
1√
2
{|0E〉+ |1E〉} =

1
4

∑

v∈C

|v〉 (71)

10.6.4. Synthesis and ancilla verification

The ancillas are quantum states whose synthesis involves
noisy circuits, and letting them interact with the information
qubit can propagate errors. So it is essential to take special
care in preparing high-quality ancilla states.

Consequently, to synthesize the Shor ancilla, the simple
circuit shown in Fig. 20 can be used. The first Hadamard
rotation on the left, along with the CNOT gates, creates a cat-
state (|0000〉+|1111〉) that is transversally Hadamard-rotated
to obtain the final state. If an error occurs in certain locations
of the circuit, it can be converted into two or more errors by
the CNOT gates dispersing them to the information qubit dur-
ing the syndrome measurement. A bit-flip error in the region
of the first three CNOT gates, could be propagated to two (or
more) errors that are transformed into two (or more) phase-
flip errors in the final Hadamard rotations, with the informa-
tion qubit being reached by backwards propagation (see Sec.
10.6.1). We arrive at an uncomfortable situation, since we
would have to use another error correction for the ancilla.
Trying to control the ancilla bit-flip error contamination, we
add a fifth qubit and two CNOT gates whose control is the
first and fourth qubits and the target is the fifth. In fact, any
two qubits could be used instead of the first and fourth, for
instance the second and fourth or third and fourth. If a single
bit-flip error occurs, the first and fourth qubit will have differ-
ent values; as a consequence the fifth qubit acquires value 1.
Supposing that the destructive measurement of the fifth qubit
is error-free, a result 1 would imply discarding the ancilla and
preparing a new the one. If the measurement detects a 0, we
proceed with the syndrome measurement from information
qubit, with the security that the appearance of two phase-flip
errors in the ancilla final state perform as O(ε2).

10.6.5. Syndrome verification

As we indicated previously , a bit-flip error in the ancilla syn-
thesis circuit can be propagated as phase-flip errors on the
information qubit. This possibility is controlled by verify-
ing the ancilla state by means of an ancilla checking circuit.
Moreover, if the ancilla has a phase-flip error, theĤ gates
(Fig. 20) transform it into a bit-flip error, providing a wrong
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FIGURE 20. Circuit to synthesize Shor ancilla state. To check the
ancilla quality a fifth qubit and two new CNOT gates are added
with a final measurement M. Open circles on the left represent|0〉
qubit states.

FIGURE 21. Quantum circuit extracting six bits of syndrome, char-
acterising any quantum error.

syndrome. As well as the errors in ancilla, the circuit for the
syndrome extraction can also introduce errors (with probabil-
ity ε) providing an incorrect syndrome that will contaminate
the qubit, if this syndrome is used for the correction. This re-
sults in two or more unrecoverable errors with an O(ε) prob-
ability.

FIGURE 22. Circuit encoding the qubit|q〉 = (|0〉 +|1〉)/21/2by
means of a [[7,1,3]]. Open circles on the left represent|0〉
states. The first part of the circuit generates a|0E〉 state, which
is transformed into the final qubit state by means of a transversal
Hadamard rotation.

We must make sure that the syndrome is correct, for ex-
ample by repeating it several times. If the syndrome indicates
that there is no error, we could repeat it to verify the value.
If both are equal, we do nothing. If the syndrome indicates
an error, we repeat the syndrome, and if we obtain the same
one, it will be used to correct the qubit. It is possible that both
syndromes are erroneous, whereas the information is correct,
but this situation has a probability O(ε2). If both, first and
second syndromes do not agree (due to an error in the in-
formation and another one in the syndrome; situation with a
probability O(ε2)), we can obtain a third one, by choosing the
syndrome repeated twice. In the case of three different syn-
dromes, we can continue to calculate new syndromes until
two of them agree or, more economically, we do not take any
action, waiting instead for the next recovery step. Some vari-
ations of this strategy can be raised that optimise the method.

The circuit measuring the six bits of syndrome, three for
bit-flip and three for phase-flip errors, is shown in Fig. 21.
In fact, each of the CNOT gates corresponds to four of them,
connecting ancilla qubits with the appropriate ones of the in-
formation qubit register, according to the classic [7,4,3] code
parity-check matrix of Eq. (45). The open circles on the left
represent cat-states. The upper part of the circuit (Fig. 21) de-
tects phase-flip errors and is made up using the equivalence
shown in Fig. 14. The lower piece of the circuit detects the
bit-flip errors, and the states inside the dotted boxes repre-
sent|aShor〉 states. Gates M are destructive ancilla measure-
ments.

10.6.6. Numerical simulation of an error correction

Using the depolarising error model, we have simulated the
qubit error correction encoded by means of Steane quantum
code [[7,1,3]] [?]. In order to show the advantages of the
fault-tolerant methods, two schemes for the syndrome extrac-
tion have been used. Firstly, by means of a non fault-tolerant
ancilla, and secondly using Shor’s.

The specific qubit|q〉 = (|0〉 + |1〉)/21/2 is encoded as
|qE〉, via the circuit shown in Fig. 22, and subsequently an
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error correction is applied. Although the encoding circuit is
not fault-tolerant, it is used as a reference circuit creating the
initial noisy state. As an example of the simulation, a fixed
gate error probability ofγ = 0.001 was taken, calculating the
final state fidelity as a function ofε (free evolution error prob-
ability). In all the cases simulated, the encoding includes evo-
lution as well as gate errors, with an error probability O(ε,γ).
These could propagate errors in two or more qubits with the
same probability because the encoding circuit represented in
Fig. 22 is not fault-tolerant.

In the first simulation case, a simple three-qubit|000a〉
ancilla state is used, onto which the error syndrome is copied.
If the correction circuit worked perfectly, it would correct all
the errors of weight one, which is why we would hope that
the fidelity would behave as FE(ε,γ) = 1 - O(ε2, γ2). Nev-
ertheless, since the encoding circuit is not fault-tolerant, a
linear term appears in FE(ε,γ). We fit the simulation results
(Fig. 23) for FE(ε,γ=0.001) to a polynomial of degree 3 in
ε, providing a linear term of -2.26ε (undergoing only small
variations when the degree of the polynomial increases). Ac-
tually, the correction process is a quantum computation and
therefore noisy. If we also introduce errors into the correcting
process step, the result obtained for FE(ε,γ=0.001) (Fig. 23)
has a linear term -77.47ε, and the fidelity quickly decreases
asε increases.

Instead of using a simple ancilla whose initial state is
|000a〉, we can use|aShor〉, repeating the syndrome three
times before correcting the qubit. In this way we hope to
improve the previous results, since the complete correcting

FIGURE 23. Fidelity versusε for γ=0.001. The encoding circuit
always is affected by gate and free evolution errors. The error cor-
rection step could be noisy (with errors) or perfect (without errors).
The qubit|qE〉 encoded by means of the circuit shown in Fig. 22, is
later corrected with the following methods: o simple ancilla|000a〉
with perfect correction step;• simple ancilla|000a〉 with a noisy
correction step and̈ fault-tolerant method using Shor’s ancilla,
with a noisy correction step.

FIGURE 24. Fidelity versus time steps forε = 10−4 andγ = 2
10−4. The curves correspond to a perfect qubit encoding and noisy
correction through a free evolution noisy channel of probabilityε
by means of two methods: o simple ancilla|000a〉 and• fault-
tolerant Shor ancilla.

method is now fault-tolerant. The simulation produces a fi-
delity (see Fig. 23) that, surprisingly, seems worse than that
obtained with the simple ancilla, displaying a linear term -
184.2ε.

So, where is the advantage in using a fault-tolerant er-
ror correction? We must try to find the answer in the error
accumulation over time. Whereas the appearance of one or
two errors in|qE〉 provides zero fidelity, both situations are
not equally pernicious. In the second case, the encoded qubit
state is not recoverable, whereas in the first it is. To appre-
ciate the advantage of using a fault-tolerant ancilla, we can
make a simulation for the error correction of the qubit per-
fectly encoded (without error) and sent through the channel
with only free-evolution noise of probabilityε. The noisy
correction process always includes evolution as well as gate
error. When the gate and evolution errors are sufficiently
small (ε = 10−4 andγ = 2 10−4 in Fig. 24), the Shor an-
cilla state with three syndromes avoids the pernicious error
accumulation over time. For the results shown in Fig. 24, be-
yond 140 time steps, the fidelity obtained with a fault-tolerant
method is better than that obtained with the simple ancilla.

More elaborate fault-tolerant strategies, the use of paral-
lelised ancilla states, or simpler circuits of interaction ancilla-
qubit could be more advantageous with respect to the use of
simple ancillas.

10.7. Concatenated quantum codes and threshold theo-
rem

We already have in our hands the fundamental building-
blocks to carry out a quantum computation robust to failures.
Given a quantum circuit, we encode each qubit by means of
a suitable code correctingt=b(d−1)/2c errors, using an en-
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coded fault-tolerant logic that controls dispersion and error
accumulation. After each encoded gate, we make a correc-
tion in each register using a fault-tolerant error correction cir-
cuit. This scheme seems to permit a computation for a time
long enough to implement any quantum algorithm. We only
need to choose a code with t large enough, since the proba-
bility that an uncorrectable error will appear in (t+1) qubits is
O(ηt+1) (η being the error probability per non-encoded qubit
and time step). Nevertheless an additional problem appears.
In order to implement codes with increasing values of t, more
complex circuits and greater number of qubits are needed,
so the small probability of error O(ηt+1), begins to be im-
portant. The recovery circuit can introduce more errors than
those it eliminates.

Shor [31] studied this situation in the case of Reed-Muller
codes, concluding that to make T time steps with a small
probability of error, it was necessary for the gate or time step
error to behave like O(1/log4T). The dependence of the toler-
able error on the number of time steps seems to prevent long
computations. We need codes whose t values increase more
quickly than the complexity of their recovery circuits; these
codes are theconcatenated quantum codes[32].

The concatenated codes use an encoding hierarchy. A
possible construction scheme is as follows. Each qubit is en-
coded with a quantum code Q1 = [[n1,k,d1]] (first encoding
level). The resulting qubits encoded at the first encoding level
are encoded again with the quantum code Q2 = [[n2,1,d2]]
(second encoding level), and so on. We could say that a
concatenated code is a code within another one. The result-
ing code has the parameters [[n1n2,k,d ≥ d1d2]]. A par-
ticular case of a concatenated code is the Shor code. It
was created by a repetition code correcting one bit-flip er-
ror [[3,1,3]] whose base is{|000〉, |111〉}, concatenated with
a later encoding of each of the encoded qubits by means of
a code that corrects one phase-flip error [[3,1,3]] whose base
is {(|0〉+ |1〉)⊗3, (|0〉 − |1〉)⊗3}. Although both codes have
distance 3 for the errors that they correct, with respect to the
set of both types of error they have distance 1. Therefore, the
resulting code is [32, 1, d = 3 > 1], with a distance strictly
greater than the product of their distances, which is why it is
capable of correcting any single quantum error.

In the case of using the same code [[n,1,d]] throughout
the hierarchy, after L levels of concatenation (or encoding)
we obtain the code [[nL,1, d≥ dL]]. In order that the code
can recover correctly, there must be fewer than (t+1) errors
(if d = 2t+1) at the first level. The error probability at the first
level P(??) is bounded by:

P (??)=
n∑

i=t+1

(
n
i

)
(1−η)(n−i)ηi ≤

(
n

t+1

)
ηt+1, (72)

η being the error probability of each qubit. If t=1,
P(??) ≤ (n2 )η2 = C η2. Likewise, the failure probability at
the second level fulfils P(??) ≤ C (Cη2)2 and when the L
concatenation level is reached, P(L) ≤ (1/C)(Cη)2

L

. If
η < 1/C=ηth (error threshold), the error probability of the

concatenated code can become as small as we want by adding
as so many levels of concatenation as necessary. For the
Steane code [[7,1,3]],ηth = 1/21. Although the value found
for ηth shows the method for obtaining the threshold, its
value is not real. More elaborate treatments provideηth ∼
6 10−4 for the gate (ηg) and free-evolution (ηe) error thresh-
olds [?]. For errors (ηg, ηe) < ηth, given a circuit, an-
other polynomial equivalent in size to the previous one can
be found that can make a sufficiently long computation. This
is in essence thethreshold theorem[?] for quantum compu-
tation.

By means of the previous error model (depolarizing error
channel, Secs. 6 and 10.6.6), it is possible to make a first esti-
mate of the computation threshold when L = 1 (no concatena-
tion is used). Considering thatη = ε ∼ γ, we compare the un-
correctable error probability in different cases when the qubit
(|0〉+ |1〉)/21/2 is sent through the noisy channel: (??) non-
encoded qubit, (??) perfectly encoded qubit and corrected
by means of a simple ancilla, and (??) perfectly encoded
qubit and corrected using a fault-tolerant Shor’s method. In
the first case, the uncorrectable error probability after t time
steps is P1(η, t) = 1-(1-2η/3)t, becausêY andẐ errors (but
not X̂) produce zero fidelity. The simple ancilla and Shor’s
method takes 12 and 20 time steps [?], respectively, to carry
out the error correction after one time step of free evolu-
tion. Therefore, the probabilities P1(η, 12) and P1(η, 20) are
compared with the uncorrectable error probability obtained
with methods (??) and (??). The results appearing in Fig.
25 show a quasi-linear behaviour for P2(η, 12) (simple an-
cilla) and a complete quadratic behaviour P3(η, 20) = aη2

(with a = 19151.6) when Shor’s fault-tolerant method is em-
ployed. There exists a clear crossing between P3(η, 20) and
the line P1(η, 20)∼ 40η/3 atη = 40/3a = 7 10−4. So when
η < 710−4, a clear benefit is obtained with method (??)
com-
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FIGURE 25. Non-correctable error probability comparison be-
tween: M P1(η,12), ◦ P1(η,20), N P2(η,12) simple ancilla and
• P3(η,20) fault-tolerant Shor’s method.
pared to the non-encoded. This value is very close to
Preskill’s threshold [?]. A stronger fault-tolerant threshold
can be infered asηth = 1/a = 5.2 10−5. If η < 5.210−5,
the error accumulation originating in the free qubit evolu-
tion is avoided to a great extent. Increasing L, the threshold
would, certainly, decrease. Recently, Reichardt [?] have used
the same [[7,1,3]] quantum code and the depolarising error
model to estimate the threshold butwithout memory errors,
providing a smaller threshold (9× 10−3) than the present
one.

Although the threshold theorem depends strongly on ex-
ternal considerations such as the error model, it demonstrates
that under certain circumstances an imperfect logic does not
impose a fundamental limitation for the operation of the
quantum computers.

11. Summary

We have reviewed the fundamental ideas for controling de-
coherence in a quantum computer, particularly the error cor-
recting codes. The appearance of concatenated quantum error

correcting codes has provided the first victory in the deco-
herence control even when imperfect devices are used. Fur-
thermore, with a simple depolarizing error model, we have
been able to estimate the memory threshold (5.2 10−5) below
which it is possible to greatly stabilise a qubit in the quantum
memory. Its value is not as important as its very existence.
In addition, it is possible to conjecture that the threshold for
process the quantum information dynamically, i.e. applying
quantum gates, would decrease this threshold by a factor less
than ten. These values are technologically achievable, so the
initial pessimism about the possibility of making sufficiently
long computations has been overcome.

At the moment, the correction circuits seem to be some-
what complex and expensive to be implemented experimen-
tally, and it will be necessary to develop more simplified
methods without losing their effectiveness. In this sense,
techniques such as the decoherence-free subspaces seem to
be a good way to reach these objectives.
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