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The goal of this paper is to review the theoretical basis for achieving a faithful quantum information transmission and processing in the
presence of noise. Initially, encoding and decoding, implementing gates and quantum error correction will be considered error-free. Finally,
we shall relax this non-realistic assumption, introducing the quariawit-tolerantconcept. The existence of an error threshold permits

us to conclude thahere is no physical law preventing a quantum computer from being baiiterror model based on the depolarising

channel will be able to provide a simple estimate of the storage or memory computation error threghelds.2 10°°. The encoding is

made by means of the [[7,1,3]] Calderbank-Shor-Steane quantum code, and Shor’s fault-tolerant method is used to measure the stabiliser’s
generators.

Keywords:Quantum error correcting codes; decoherence; quantum computation.

El objetivo de este ditulo es la revigin de los fundamentosdgcos que permiten una correcta transgnsy procesado de la informacei
cuantica en presencia de ruido. Inicialmente, los procesos de codificatecodificadin, aplicachn de puertas y correcn de errores
se considera@n sin error. Finalmente relajaremos esta considanaco realista, lo que conduairl concepto déolerancia a fallos La
existencia de un umbral de error permite concluir gaéhay ninguna leyisica que impida construir un ordenadorémtico. Mediante un
modelo de error basado en un canal despolarizante, &aiharestimadin simple para el umbral de los errores de memayigi< 5.2 1075,
La codificacon se realiza mediante uddigo cwantico [[7,1,3]] de Calderbank-Shor-Steane, y se usaé&bdo de Shor tolerante a fallos
para medir los generadores del estabilizador.

Descriptores:Codigos correctores de erroresacticos; decoherencia; compui@eiclantica.

PACS: 0367-a; 0367Lx

1. Introduction two slits of a size compareble to its wavelength. Unfortu-
nately, the superposition of states is extremely sensitive to
Quantum Mechanics (QM) has traditionally been used td1oise and they are easily destroyed due to an uncontrollable
study microscopic systems, achieving unquestionable sudateraction with the environment. This process is known as
cesses in such varied fields as atomic structure, elementaggcoherencf?]. It would be possible to think about eliminat-
particles, solids, liquids, molecules, nuclei, radiation, etc. 1ing it by improving the isolation of the device. Nevertheless,
is currently expanding into a field traditionally dominated by the extraction of the information at the end of any computa-
a classic description: Computation and Information Theorytion process always implies some type of measurement; this
Although the devices making up a classic computer work acis why simple isolation is not a solution. In addition, it is im-
cording quantum laws, they do not make use of the quanturfossible to completely eliminate all the interactions that come
representation of the information, but they still use the classiérom the environment. Until 1995, it was believed that the
version: bits. The recognition that the information is closelyunavoidable decoherence would prevent the quantum infor-
related to its physical representation, and the non-local chamation processing from showing its advantages with respect
acter of the QM, is opening up an unsuspected perspectivi@ the classic case. Luckily, things were going to change [3].
from a classic point of view for data processing [1]. Inthis  The objective of the present paper will be to show how
context, the concept of the quantum computer appears to ligyise is not an unsolvable problem in building a quantum
a device that takes advantage of the quantum evolution to olgomputer. After a brief introduction to classic error correc-
tain new forms of information processing. Its minimum unit tion, the characteristics of quantum errors are introduced, and
of information is thequantum bitor qubit, that consists of a  the noise effect will be exemplified by means of the Grover
state (coherent superposition of two others representing th@gorithm including five qubits. Several strategies introduced
classic possibilitieg0) and|1)) of the type|q) = a|0) +b[1),  to control the decoherence will be reviewed, focusing the ex-
where a and b are complex numbers. planation on the quantum error correcting codes. A simple
Like classic computers, quantum computers experiencaumerical method, encoding a qubit by means of the [[7,1,3]]
the presence of noise that induces errors in them. Unlike clagault-tolerant quantum code, permit us to infer the existence
sic computers,quantum ones must handle coherent superpafan error threshold below which a sufficiently long quantum
sition and entangled states, allowing interference phenomer@mputation would be possible. Finally, concatenated codes
analogous to those produced when light crosses a system will promise to improve error correction capabilities.
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2. Classic errors and their correction

contains all binary sequences v 5 # e € V5* such as

o . d(u;,v) <t. Since code C is t-error-correcting, the spheres
In order to understand the main ideas in quantum error corfyre disjoint. The vectors inside the t-sphere come frgm u

rection, we start with some classic background.

affected by an error e of weight YMe) < t. Fig. 1 shows the

Classic information is represented by means of an alphgsase =5 (t=2). Any erroneous codeword U’ =Hie, with
bet of p symbols. The binary alphabet (p = 2) is made up OWH(el) = 2 is successfully corrected with a d = 5 code, but

two symbols{0, 1}, and the information contained in each ot if y’' = Uy +& With Wy (e;) = 3. In this case, u’ would be
symbol is called a binary digit or a bit. The information pro- \yrongly corrected asyu

cessing involves representing it as bit strings, sending them

If C is a vector subspace &f*, d is the smallest weight

through a channel or carrying out a computation and, finallyof a non-zero codeword. Thus, a binary classic code of di-
arriving at a result. Unfortunately, noise can always corrupinension k (including 2 codewords) of length n and min-
the information. A possible strategy for preserving the clasimym distance d is noted a§=[n,k,d] C Vi*. A linear

sic information against the noise effect is by means of an enggge [n k,d] (. a linear subspace) can be specified in ei-
coding method. The information contained in a single bit isiher of two ways:

spread out along a bit string of length n, called the classic
register orcodeword From a mathematical point of view, the
set of all words of length ni{;*), with modulo 2 arithmetic,
could have a structure. Of particular importance are the sets
of codewords GC V4, which have a vector space structure,
calledlinear codes This structure makes the correction pro-
cess easier. Itis also possible to define a product operation
which, together with addition, defines a finfteld also called
aGalois field The binary alphabef0, 1} is an example, and
will be referred to as the GRP) field or as vector spaceV
TheHamming distance(u,v) between two codewords u,
v € C C VJ" is the number of coordinates where the vectors
u and v differ:

du,v)={i: 1 <i<myu; #v;}. (1)

The bars signify the number of elements of this set. The
distance d satisfies the axioms for a metriclgh Themin-
imum distanceof a code is the smallest distance between
two different codewords. The number of non-zero compo-
nents of a binary string d¥;"* is called theweight(or Ham-
ming weight, Wy ), and the distance between u and v is
d(u,v)=Wg (u-v).

The code capability to correct errors is represented by
the code distance.
word u € C through a classic channel affected by some

Suppose the emitter sends the code-

1) The k basis vectors of C are arranged in thenlgen-

erator matrix G Thus
C={zG,z c VJ'}. 2)

This is useful for encoding. If the messages to be trans-
mitted are all k-tuples x over )/ then we can encode
them as the codewords xG.

Itis possible to define a scalar (or inner) productih

as the standard rule of multiplying the components and
making the addition modulo 2. Two vectors are orthog-
onal if their scalar product is zero. The code can also
be determined as the subspace orthogonal to some pre-
determined set of vectors. Each orthogonality condi-
tion divides the space in two, and then we can specify
a code having 2 vectors (and dimension k), through
its orthogonality to (n-k) vectors. These vectors can
be arranged as an (n=kh matrix, calledparity-check
matrix He, and the code can be specified as

C={veVy, Hov' =0} ()

This is useful for error correction. The set of correctable

error probability, and the receiver detects a slightly differ-errors S must satisfywe;, e, € SC V', Vu,ve C,ifu#v

ent codeword u’ = u+e£ u, affected by the error € V3.

By means of the minimum distance decoder, the word
u’ = u+e will be decoded as the closest codeword, accord-
ing to the Hamming distance. Having a code C with
distance d> 2t + 1 (or d> 2t), the receiver will recognize
the correct codeword u from u’ if and only if it fulfils
d(u,u’) = Wg(e) < t, because in this case d(u,w) d(v,u’),

Vv € C. As a result, code C with distance d will correct any
word u’ = u+e, satisfying W (e) < t, and it will be at-error-
correcting code Thus, good error correction means large

of a “sphere” with radius t =[(d — 1)/2]. The sphere

as .

Corrggtion
» .

ute;

u;tes

minimum distance. On the pther hand,_fast transmission ratEIGURE 1. Geometrical representation of a classic code with dis-
means many codewords, with a small distance between thern, .o 5 Each codeword, gblack squares) is at the “centre” of
This tension is the basis of coding theory. ‘
. To visualise the code d?stance and correcting capabilisquare) u’' = u + e, with W (e;) = 2 is successfully corrected as
ties, each codeword;uc C is represented as the “centre” u,. If Wy (e;) = 3 the codeword u’ = u+ e, is wrongly corrected

a “sphere” with radius t = 2. An erroneous codeword (unfilled
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then u + e #£ v + €. If vector u + g is detected, the receiver parameters are:
can correctly infer the codeword u. This process is very easy
for linear codes using the parity-check matrix. Suppose the RM (r,m) = [n =M k= ( 6"“ ) + ( ’1" )
receiver detects vector u + e, witheuC and e S. Applying
the parity-check matrix H,
TR ( " ) 2””}7 @

H, "= Heu" + Hoe" = Hee'.
colute) o+ Hoe ce witho<r<m.

o = , Other classic codes can be created be means of different

The vector it €" = s# 0, having (n-k) components, charac- g.aiar products and higher alphabet dimensions.

terizes the error; itis called treror syndromeand does not There are several bounds related to classic codes. One of
depend on u. Because the total number of syndromes,2 0y is the Hamming bound reflecting that a code C = [n,k,d]

the code can correct the same number of different errors. fi piock length n can correct errors of weight t if there is
we can deduce the error e from its syndrome, the correcnognough room in the total vector space (of dimension n) to

is immediate. accommodate the errors:

Even though a classic code is not necessarily a vector
space, in this paper we shall be concerned only with linear Number of different errors
codes. A simple classic code is the repetition code in which .
the 0 bit is encoded by copying the bit three times as a code- _ Z ( n ) < gn—k
word (000), and the bit 1 is encoded as the string (111). The S\ ! N

set of all codewords of length three span a vector space, and
the set{(000), (111} is a basis of a two-dimensional sub-
space G V3. This subspace C is our classic repetition code
of length three. The codg(000), (111} can be specified
as the subspace orthogonal to (110) and to (101), and bo

vectors written as a:23 matrix form theparity-check matrix ¢ d(y,v) <t Since the code C is t-error-correcting, the

L . . T
Hc, and the cod_e sat|sf|_es the conditidn€ C, Hou™ =0. spheres are disjoint. The summation in Eg?)(is the num-
T_he 1x3 generaﬂop mgtnx s (111). Clearly the code has ber of v = y + e vectors inside the t-sphere coming from
distance three, so is wnttgn as[3,13]. _ _ uj, affected by an error e of weight ¥\(e) < t. In order to

If we want to send a bit 0 through a noisy channel, usinggifferentiate errors, this value must be smaller than the num-
the repetition code, we send (000). Classic noise appears @gr of different syndromes. A codeperfectif it attains the

bit-flip errors, and can be represented as error codewords @fquality in (?), and the union of all the sphereslig'.
V3. If the channel introduces a bit-flip error (with a probabil-

ity €) into the third bit, e = (001), it will be enough for the re- 3 Origin of
ceiver to watch the three bits, and finding the syndrome (01)} rigin of quantum errors

it will sgpp(?;e t;'?i an erlror n:htheotgwd (_:Opty ha?_ oc%urred,A” of the systems are subject to noise of diverse origins (in-
recovering the bit fo replace the (000ngjority Votng G€-  taraction with the environment, incorrect application of gates,
coding. For this method to be advantageous, it is necessar

o o i ¥tc.), giving rise to errors. In order to carry out a quantum
for the.probablllty of correct tr.ansmlssm'n @'Of e_ach bit computation, it is necessary to eliminate or control these er-
to be higher than 50%, otherwise the majority voting metho
would provide an erroneous answer. A wrong decoding will
occur if the received word has two 1's.

= total number of different syndromes (5)

Let the codewords béu;, i=1,...,2}. For each code-
%ord we can draw a “sphere” with “centre” aj and “ra-
us” t. The sphere contains all binary sequences v such

Focusing on the quantum computation, and from the
point of view of their origin, these errors can imernal and

Given a parity-check matrix, each of its columns repre-external(Fig. 2). The internal ones appear even if there is no
sents the syndrome for an error. If all the columns are difinteraction with the environment and originate in the faulty

ferent, the code can correct one bit-flip and is calt&m-  gperation of some parts of the hardware. Several types of
ming codewhose general parameters aré-I2 2°-1-r,d]  them include:

withr > 2. An example that will be used in the quantum con-
struction is [7,4,3]. This code has a subcode € C whose

codewords of even weight are orthogonal (with respect to ; Hardware

. Preparation -y Read out
the scalar product) to those of C. In general, given a code errors = cad ot
C=[n,k,d], its orthogonal odual code is G-=[n, n-k, d“; —@—\ errors
and if Cc Ct, it is said that C isveakly self-dualand if Errors
C=C*, Cisself-dual The property of weak self-duality will External @
be used in the quantum error correcting code construction. errors

Besides the Hamming codes, Reed-Muller codes are an inteFcurEe 2. Framework of the different error sources in a quantum
esting family ofweakly self-duabndself-dualcodes. Their computer.
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1) Errors in the preparation of the initial states 4. Problems in the correction of quantum er-

Classically the errors appearing in the preparation of
the initial state propagate exponentially with respect

rors

to the number of steps; nevertheless, from a quanturfi't the timg of designing methods to control quantum errors,
point of view, they are constant. Let us suppose thathe following question arises; can we apply classic strategies
we prepare an initial staie);) evolving by means of a to the guantum systems? For example, coulq classg: error
process characterised by a Hamiltonién(or an evo- ~ €orrecting godes be used? The answer to this question has
lution operatoiy = e~ 1t h/2r=1) until reaching the been negative because of the following problems:

final statej)¢). In the case of a perfect preparation,
) = [g) = O () [i) = e F ) (6)

If the initial state corresponds to a set of single qubits,
all of them in the stat§d) except the k qubit having an
errore,

[40)=10)®10) ... (VI=e2 0¢) +¢ |11} ) @..®|0)
— m [1h;) + € |waste) (7)

and its time evolution will be:
[Vf) = mﬁ [y + eU |lwaste)
=122 |¢s) +¢|dirty waste,  (8)

which implies that the initial error (given big|? in

|1;)) does notincrease in the evolution. This behaviour
arises from the linearity of the QM. In some cases, the
quantum algorithms are even sensitive to these errors
in the amplitude, and their accumulation becomes dan-
gerous. It is necessary to pay special attention when
the initial errors affect, not the amplitude, but the rela-
tive phases], whose effect depends on the quantum
algorithm considered.

2) Hardware errors

Their origin is in the noisy gate application, especially
when they are analogical (working with continuous
parameters) and can be describeduagtary errors
due to an error termj in the noiseless Hamiltonian
Hy:H,=i+H,. The noiseless evolution is
e~ oty V=[+);). If the error operator; is small
enough, Hy, 7] = 0 and thes effect on [1;) is

e {tHOt |y = e~¥t |3p,). The exponential can
be expanded and only retain the linear term, and
evolves to(1 — int) |1). So the error probability
becones quadratic in time.

3 Read-out errors of the results at the end of the process

Related to the amplification of the results from the
quantum domain to the classic macroworld.

In addition to the internal errors, external ones may ap-
pear because the system is not completely isolated from its
environment, leading to a decoherence, and giving rise to a
non-unitaryevolution of the states in the quantum computer.

1.

3.

Continuous errors

Classically, the only permissible errors are those of
bit-flip (transformation of a bit 0 to 1 or the reverse)
and arediscrete but for the quantum case the situa-
tion is more complicated. The errors can affect the
modules of the coefficients a and b in the qubit super-
position (amplitude decoherence), as well as its rela-
tive phases (phase decoherence), both bemdinu-
ousones. For instance, if the physical representation
of qubits implies that0) is the fundamental state of
an atom, wheregg) corresponds to an excited state, a
spontaneous decaying process produces an amplitude
decoherence. Its time evolution will be

lg(1)) = ! {al0) +be 1)} ()

ViaP + b e

In the case where it only affects its relative phase, the
qubit is transformed into (&)+be’?|1)). If p=m, we
have a discrete phase-flip error, analogous to the classic
bit-flip. The phase-flip is only a quantum error.

2. Impossibility of introducing redundant information

copying it

One of the ideas on which the correct transmission of
classic information is based, is the possibility of copy-
ing it (introducing redundancy), which allows informa-
tion recovery in the presence of noise as indicated in
Sec. 2.

Unfortunately, quantum mechanically it is not possi-
ble to copy unknown qubits perfectly, due to tine-
possibility of cloning unknown qubit®]. In order

to copy a qubit, we need to know about it. Given a
qubit|g)=a|0)+b|1) (with unknown coefficients a and
b), we would have to measure it to obtain the a and b
values, but in doing so we would produce its collapse,
destroying it irreversibly.

Measurement problertn order to correct the errors,
we must measure the state of the system (for exam-
ple some qubits) to find out what type of error has oc-
curred. When doing so, the state collapses with the
consequent irreversible loss of information.

This loss of coherence is the most serious problem which fu- In the following sections we shall review the way in
ture quantum computers face. which all these problems were solved.

Rev. Mex. 5. E52(2) (2006) 218-243
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5. Discretization of quantum errors Statesle;) describe the environment, addX,Y, Z are

. . the operators whose representation in terms of the Pauli ma-
In 1995, the way was discovered to transform typically CONrices{l, oy .oy, 05} is:

tinuous quantum errors, in discrete solving the first afore-

mentioned problem. The strategy consists of embedding the 10 R 0 1
{environment + qubit continuous evolution only in the first, I'= ( 0 1 ) , X = ( 10 ) =0x

making a discrete description of the qubit state evolution.

Formally the interaction process of a qubit with its envi- Y/_< 0 -1 )_wy’ Z_< (1) 0 X )—UZ (12)

ronment can be described by means of the following evolu- 10
tion [?]:
0(t) sometimes called theanonical set of errorswhereas the
0) [e) — coo leo) [0) + co1 [e1) [1) states of the environment are:
U(t)
1) le) — c10leo) |0) + c11|en) 1) (10) ler) =%(000|eo>+011 le1))
{]0),|1)} being the qubit states ane) the initial state of the )
environment. The total initial state is the tensor product of the lex) = = (c10 |eo) + co1 le1))
2

qubit and the environment states, and evolve (unitarily) by

means of the coefficients cthat depend on the noise. This ley) = 1 (o1 le1) = c10 |eo))

is the most general form of the noise effect, assuming that 2
qubits do not leave the two-dimensiorfab), |1)} subspace 1
of the total Hilbert space H lez) = 5 (coo |€0) — c11 le1)) (13)
The qubit evolution whose initial (t = 0) state is
lq(0)) = al0) + b[1) can be expressed as: The stately)(t)) reflects a correlation between the states
U(t) of the environment and those of the qubit, describing a mixed
19(0)) [€) = (a|0) + b[1)) &) — [:(t)) state that has lost some coherence. If we could make a mea-

_ - A A A surement on the joint state vecigr(¢)) of the {environment
- {|eI> I lex) X ley) YVt |ez) Z} a0 A1) qubit} conserving the qubit coherenase would collapse
|  the state into one of the following terms:

ler) I 1g(0)) = |er) { a|0) +b|1)} — State without error
Measure | |ex) X |q(0)) = |ex){a|l) +b|0)} — Bit-flip error
o) == lez) Z q(0)) = |ez) { a|0) — b|1)} — Phase - flip error (14)
ley) Y [q(0)) = |ey){a|l) —b|0)} — Phase and bit - flip error

with a collapse probability given by

! This state is the front door to the error correction process.

lei|* = ‘<Q(0)7 el (Afr ® f) 0@)‘ q(0),€) If we have some way of recognising which state we have ob-
tained by measuring)(t)), the error correction is immediate,

" PO 5 .
and4; € {I,X,Y,Z}. Note that|e,[* imply the overlap  p gimply applying the inverse transformation of the detected
between the environment states (generally neither orthogQsy o since they are unitary.

nal nor normalised), and their value can depend on time by
means ofl/ (t). Process®?) has a fundamental importance
for several reasons: 6. Independent Error model
The complete qubit evolution can be expressed by means
of four basic operators, providingdiscretetranslation of the  The classic error model (or channel) par excellence considers
noise effect. It could be said that the qubit evolution is reprethe errors in different bits as independent. Even if this model
sented via three errors: bit-fligk(), phase-flip £) and both ~ does not exactly fit reality, it can provide some valuable con-
jointly (Y'). This fact shows that the matrices are a basis fosequences.
the 2x2 matrices. For the same reason, the errors coming In QM it is possible to introduce an analogous noisy
from unitary evolutions can be interpreted in this form, be-channel, called alepolarising error modelin which the
ing able to work without the environment states explicitly. In environment state§|e;), i=I1,X,Y,Z} are orthogonal and its
fact, for the error identification to be complete, the environ-scalar product i$(e;|e;)|*=d;;e/3(i,j # I), wheree/3 is
ment states must be orthogonal. the probability (constant) of one of the three possible er-
The noise isindependentf the qubit state considered, rors taking place, whereas the probability of no error is
which allows its initial coherence to be maintained after the|(e;|e;)|? = (1 — €). The qubit evolution can be represented
measurement step. by means of the operatéfp:

’ 2
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2. Sequentially independent erroi&he errors in same

S ubit during different time steps are not correlated.
Up (1(0)) ® e)) a g P

- {\/(1 —&)les) I+ \/i [\eX> X +ley)Y +lez) Z} } 3. We assume amall qubit-environment interaction

x 19(0) - (15) 4. Error-scalability independenc&he qubit error proba-

The error model is not completely unrealistic if one as- bility is independent of the number of qubits used in
sumes that single qubits are located at well-separated spatial  the computation.
positions, as in an ion-trap realization of a quantum computer.

As much as we are interested in handling and transmit-
ting quantum information just as if we consider the possibil- ~ Under these hypotheses, errors that affect an increasing
ity of some type of encoding, we will handle sets of n qubitsnumber of qubits are less probable, and the error operators
calledquantum registers; . ..d,). To see how the deco- for an n-qubit register are the tensor product of those one-
herence affects the registers, we can make some hypothegégit operators:
about the error model to simplify the problem and constitute
an approach to reality [7]:

{i1,02, . 0in} —

Al @Al ®... @A, (16)
1. Locally independenterrors If the environments to

which the qubits are connected (at the same time steRyhere the superscript refers to the qubit, and the subscript
are different and not correlated, the errors in differentyaries from 1 to 4: A™ (for the m qubit) € {1(in=1)
) (2 m ’

qubits will be independent. ox(im=2), -ioy (im=3), 07(im=4)}. In the depolarising er-
| ror model, the evolution of an n-qubit quantum register is:

Up (12~ a) le)) = [ (1)) = {(1 —e? (h@-@ 1) leo) + (1 - a><"—1>/2\/§

~ ~ A ~ ~ ~ g n/2
x {A7;® 2®---®In|e,}>+---+11®---®ln_1®Ai\e?>}+---+(g)

X > (A}, @ @ A7)

11,12,..,0n=2,3,4

ei;:::;’,f> 102+ qn) - (17)

As the interaction with the environment is small (hypoth-
esis 3), the successive terms decrease quickly. A measure: I s 593
ment of the registej¥(¢)) will produce a collapse in one of of error poss_lbllmes (except one) of the ﬁ’ XY, Zp .
its terms according to its probability. In Eq. (17), each error1N€ Simulation is done by means of a Montecarlo method
A; corresponds to three teri, Y, Z} (the I term is ex- with a statistic greater than or equal to 200ax{1/c, 1/v}.

plicitly shown) and the probability of an error appearing in  The Grover algorithm 9] implements the op-
a given qubit isz, that of m errors appearing in the register erator G=—H®%"1,) H®"1x,,, where H®" is a
is P(n,m) =,) (1-)"~™ &™, describing a Bernouilli dis- Hadamard rotation of all the n qubits and the operators
tribution of (1<) probability. If ¢ is small enough, the term [AW)> = 1 -2 |¢) (¢| represent inversions with respect
with greater collapse probability is a register without error. to the state|¢). The searched state is symbolized by
In order to observe the destructive effect that the errorgX), whereasf| x,) represents an oracle making an inver-
cause in the quantum algorithms (decoherence), a numericaion with respect to the searched state, acting as a black
simulation of the Grover algorithm is made. The errors arebox. The simulation is made within a modest data base
introduced by means of the depolarising error model. Thavith 25=32 elements. Its implementation requires at least
free evolution (or memory) errors have &8 probability per  five qubits. In the simulation, the element looked for is
single qubit and time step, whereas the gates affecting singlX,) = |11111) and the oracle is implemented by the quan-
qgubits have ay error. The CNOT gates have~dl5 error, tum gate CNOT(1,...,5;6), whose control qubits are the first
describing an isotropic probability for the 15 errors in the seffive qubits of Grover state and whose target is the sixth qubit
{I,X,V,Z}®{I,X,Y,Z}. Toffoli gates are affected by in the state |)) — |1)). The gate CNOT(1,...,5;6) is car-
an error probability of//N, where N = 63 is the total number ried out [9] by means of four Toffoli gates with four addi-
tional qubits. The operatof|0> is applied by means of a
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gate (X11111 CZ(1,...,4;5)X11111), between qubits of the the algorithm. Whereas far= ~ = 0.001 the first maximum
Grover state, for which two additional qubits are neededof the probability for the searched state reaches a value of 0.8,
The simplectic notationX;1111 = X ® X ® X @ X @ X)  fore = v = 0.01 its value is only 0.2. Decoherence causes an
will be used to express the tensor product of Pauli operatorattenuation of the Grover oscillations until the limit value of
(see Ref. 3, Preskill), and CU(i;k) means a control-U gatel/32 is reached, in the long-time region.
acting on the k-qubit depending on the i-qubit value. The
total circuit [?] for the Grover algorithm appears in Fig. 3.
Two calculations have been made with= + = 0.001,
0.01 whose results are compared with the case in which the
is no decoherences (= v = 0). As can be appreciated in
Fig. 4, even for a small search such as the present one (32
ements), the error effect quickly destroys the advantages

7. Quantum strategies for error control

tIewo great strategies for the error control can be implemented:
assive methodsiseful when we need a transmission of in-

if)rmation over short distances. The most elementary are
ased on a complete isolation between the computer and its

environment to minimise the noise. A second general method

G=-H I| o)H I| Xo) implies anactive stabilisation (necessary in more complex
A processes) by means of some type of error detection and cor-
-~ I rection.
H (®) Classic deteriorated infprmation is still recoverab!e_ if
B o @ somered.undancynas 'been mtroducgd. Unfortunately, it is
- %éq XHn) not pos_S|bIe tq use this red_undancy in the qu_antum case, due
< to the impossibility of cloning unknown qubits. However,
! ,EI .S @ methods have been developed that allow us to control the
H 4 & (Z}- qubit decoherence, thus solving the second problem settled in
Grover | |o-@ o0& Sec. 4. Next we review some of the main strategies (Fig. 5).
State o O @@
Synthesis O--&:DéB ______ 1. Quantum error preventing codes (QEPT)ese codes
- could be described axtivemethods in the sense that
Oracle they prevent the occurrence of errors, although if these
do take place they are incapable of correcting them.
FIGURE 3. Quantum Circuit implementing the Grover search al- They are based on the quantum Zeno effect.
gorithm for a data base with°2erms. The oracle detecting the
searched statgXo) =|11111)) is simulated by means of four Tof- 2. Quantum error avoiding codes (QEAChese encode
foli gates. Open circles represef} states. the information in states of certain subspaces that do
not undergo decoherence, and are catledoherence
1.0~ free-subspaces (DFSError detection is not needed
and they are useful with specific types of noise.
0.8 3. Quantum error correcting codes (QECGChis is an
active strategy defined as the pdy(E,R), made up
of an encoding operatioh and a recovery methof.
2 06+ They are methods capable of detecting and correcting
. guantum errors.
£
£ 04H
QEAC
0.2 | /_
lI, -
0.0 ) ' ) ' ' ' System System
0 10 20 30 ) 40 50 60 70 : System Co;'l‘ecte(l
Time with
FIGURE 4. Evolution of the coefficient squared (probability) for QEPC error QECC
the searched stat¢l(111)) versus time. Time means the number
of Grover gates(f?) applied. Solid line represents the evolution @i
without error; dashed lines include erros: ¢ = v = 0.001 and
oe =~v=0.01. FIGURE 5. Scheme of different strategies for error control.
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Notice that the corrected final system could still contain  Let us suppose that each computation time step has
some errors, shown in Fig. 5 as a heavy line around the syghe probability of producing a correct result {1-(with
tem (and a somewhat deforméd that differentiates it from 7 constant); after N steps, the probability of success is
the initial state. The QEPC are applibdforethe errors ac-  (1-n)" ~ exp(+)N), decreasing exponentially with N. If we
cumulate dangerously. On the other hand, the QEAC circumhave a stabilisation method that diminishes the error by a fac-
vent the problem of errors appearing. Even in this case, the ftor 1/R per step, after N time steps, the probability of suc-
nal state can contain errors since the symmetries upon whiatess will be exp@N/R) which can be within a (3) value,
these methods are based can only be approximate. Finallghoosing R =N/-log(1-), having a polynomial dependence
the QECC are even applied after the appearance of errors. on N. Therefore, an exponential error growth (such as ap-

Actually, the above distinction among the different quan-pears in the decoherence) can become stabilised by means
tum codes or strategies is not as radical as it could seem. Foff a method that reduces the error 1/R in each step. In this
instance a QECC applied very quickly could have the effecformalism, R is the redundancy introduced.
of a QEPC. Otherwise, some errors could not affect the en- The application of this stabilisation method is as follows.
coded states of a QECC, so for these errors the code is funtfwe carry out the same computation in R copies of our quan-
tioning as a QEAC. In spite of that, the previous classificationtum computer, they work independently and without errors,
helps us to arrange the methods used to control the decohehe total state of the R computers will be the tensor product:
ence.

Next we review each of the strategies, placing special em- [U(t)) =[0(t) (29 @ . @ |0(D)) (r) - (20)
phasis on the well-developed QECC, although because the
quantum circuits implementing them are expensive, they arehere all|¢(t)) ;) represents the same state, introducing a
giving way to other strategies which avoid errors. certain type of quantum redundancy. This state, in which
there is no error, belongs tosgmmetricasubspace of whole
Hilbert space K%. An error in a computation (or in all of
them), would imply different vectors, so:

These are codes preventing the appearance of errors, although
if they do take place, these codes are incapable of correcting [T (t)e) = |9(0)1) @ ... @ [(t)R) (21)
them. They are based on the quantum Zeno effect: measuring . )
repeatedly on a system, this continuously collapses freezing Defining asymmetrical subspadés;y C H®* as the
its evolution and avoiding the errorg[ The use of this effect Smallest subspace ofH containing the vectors of the form:
to prevent errors was suggested initially by Zur@k [ R

Let us consider a system described by the initial state ® |x>(i), (22)
vector |¢(0)), representing a quantum register of length n. =t
Suppose the system evolves unitarily under the Hamiltoniarojecting the noisy¥ (t).) state into H;; would eliminate
H = Hy + H. (since there is no danger of confusion, we usesgme of its errors.
the same notation as for a Hadamard rotation), wiigyele- In summary, the stabilisation method eliminates the pos-
scribes a perfect evolution artdl. represents an error. Under sipje errors projecting a state of R copies of our computer on
these condltlo_ns, the state vector after a certain itc@an be  he Hs7as Subspace. The advantage of this process is that the
expressed (with hi2= 1) as: dimension of KX is 2%, whereas the one of {4, is R+1,

_ifst if the dimension of H is 2. The ki, subspace has a dimen-
[#(01)) =e [#(0)) =a(dt) |$(0)) +b(3%) [¥:(0)) , (18) sion exponentially smaller than®¥. Nevertheless, not all

where|1(0)) is an state orthogonal {@(0)). After atimes  the errors are eliminated, since in;H, there are more vec-
t, the probability of obtaining the statg(0)) when measur- tors than those of the fori®)®...®[¢). In spite of that, it
ing on |4(8t)) is |a(dt)|?, and its value can be expressed ascan be demonstrated that the error decreases by a factor R in
(¢(0)|exp(—iHdt)|6(0)). The probability for short time§t ~ €ach symmetrisation.
is

8. Quantum error preventing codes (QEPC)

la(dt)]? ~ 1— <(FI— <FI>)2> 5t2=1—(AE)%5t2 (19) 9. Quantum error avoiding codes (QEAC)

The probability that we project the stali¢(5¢)) on the  These are strategies that encode the information in states of
subspace generated by (0))} (outside the subspace of in- certain subspaces that do not undergo decoherence, therefore
terest generated by(0))) behaves like Oft?). Sufficiently  they do not need to detect errors. These methods are useful
frequent measurements make the error probability as small agith certain types of noise having some symmetry.
one wishes. This strategy is used in the stabilisation by the The idea arose in a work of Palma [14] where they were
symmetrisation method that could be considered as an extenalledavoiding codeslater on to be calledecoherence-free
sion of the majority voted method to the quantum scale. Nexsubspaces (DFS) [15]. A simple model will clarify the main
we consider the formalism introduced in Ref. 13. idea.
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Let us suppose that single qubits undergo a decoherence, b) Maintaining the coherencé&he correction process

introducing a random phase anglendependent of the sys- must conserve the qubit coherence. Inside each orthog-
tem space coordinates: onal subspace, the total state must be the tensor product
, of the qubit and the environment state. This behaviour
0) — [0) and [1) — €™ [1) (23) allows the erroneous qubit to be recovered by means of
a measurement that projects the total state into one of
A qubit [g) = a[0) 4 b[1) put under this noise suffers a those subspaces (see Eq. 14). After measurement, the
rapid loss of coherence. The decoherence effect on a sub- qubit is uncoupled from the environment, and once the
space of dimension 4, made up of two qubits, is: subspace on which we have projected is detected, we
100) — [00) 101) — ¢i% [01) will be able to correct the error.

110) — €' |10) 111) — €29 |11) (24) 10.1. Quasi-classic error correcting codes

The simplest case in error correction consists of considering
only bit-flip errors as in the classic case. Bit-flips attack the
qubit |¢) = a|0) + b|1), transforming it into &) + b|0). We
must be able to detect the ernaithout destructively mea-
suring the qubit otherwise we would destroy its coherence.
Next we review the fundamental steps of the whole process.

Since the state)1) and|10) acquire the same phase, if
we use the encodin@z) = |01) and|1g) = |10), a general
qubit encoded agr) = a|0g) + b|1g) evolves under the
noise until the state’® {al0g) + b|1x)}. The phase appear-
ing has no importance and the subspace generatd¢Dby,
|10)} is a decoherence-free subspace.

The fact that the phasg¢ does not depend on space co-
ordinates causes the decoherence to be invariant under qu
permutations. The recognition of such types of symmetries ign addition to the aforementioned noise characteristics, we
what allows the introduction the decoherence free subspacegsume a symmetrical binary channel witheaz<0.5) error
in which the system evolution is purely unitary. probability per qubit and time step. The purpose is to improve

this level of error by means of an encoding and correction.

%R.l.l. Error model

10. Quantum error correcting codes (QECC) 10.1.2. Encoding

A QECC can be defined as a p&}( £, k) made up of an
encoding operatio’ and a recovery methof. These are
methods capable of detecting and correcting errors. Despit

Our starting point could be a classic binary repetition
ode [3,1,3], identifying each bit as a qubit. The encoding

the impossibility of introducing redundancy as in the classic will be:

codes, itis feasible to disperse the quantum information em- 1oy _, |0,) = [000) and |1) — [1z) = [111)  (26)
bodied in the qubit, allowing its recovery after undergoing

certain types of errors. Given a quljd) = aj0) + b|1), its A general qubitg) is encoded as

encoding is an applicatiof: H®* — H®" from the Hilbert .

subspace of dimension k to a Hilbert space of a greater di- E(|)|00))=|gr)

mension n. The simplest case is to encode a single qubit =a|0g)+b|15)=a|000)+b|111).

(k =1), where n is the number of qubits in the code states
(registers). Formally, to maintain the number of qubits in theThe information contained in the single qubit has been dis-
application, (n-1) initial qubitd0) are introduced, and the persed between three qubits, embedding the qubit into a

qubit|¢) can be encoded as: two-dimensional subspace (generated{ly00), |111)}) of
the 2 = 8 dimensional Hilbert space,*H. The set of cor-
E {(a |0) +b(1)) ® ’0®("—1)>} rectable errors (§) is made up of tensor products involving

three factors, including the identity (which is not an error it-
=lgp) =a|0g) +b|lg), (25)  self) and a bit-flip error, represented by thiePauli operator:

where E is the encoding operation and the qubllg) and Co = {f @I®l=Xo0,l®I®X = Xoo1,
|1g) are calledencoded The application only chooses an

encoding subspace quantum cod€ ¢ H®" of dimension IoX@l=XX0Iel= Xloo} (27)
two. So, for the encoding to be useful, it must fulfil two con-
ditions: The operator subscript indicates the affected qubit. The

code cannot correct other errors, as we shall see later. Notice
a) The error subspaces must thistinguishableTo iden-  that we could have chosen another basis for the subspace or
tify the errors they must transform the encoded statesjuantum code, for examplg000) + |111)}, but its correc-
of Q to states ofmutually orthogonal subspaces tion capability is the same as the previous one, and both are
in H®™, equivalent codes.

Rev. Mex. 5. E52 (2) (2006) 218-243



INTRODUCTION TO ERROR CORRECTING CODES IN QUANTUM COMPUTERS 227
10.1.3. Decoherence process

Sending a qubitgz(0))=(a|0g)+b|1£)) through a depolarising noisy channel produces an entanglement between the quk
and its environment:

(1—¢e)3/2|es) I+
+(1—¢e)ye ‘eg?)> Xio0 + ’€§7)> Xoio + ‘eg?)> XKoot | +

@) = +evl—e { €§2)> X110+ ‘€§3)> Xio1 + ‘e§3)> Xou} + l92(0)) (28)
+e3/2 ’eg§2g)> X1

A particular case of the process would imply a single term
describing a unitary error. If we can correct decoherence, th
will be able to do it with the unitary errors.

spite of the previous syndrome extraction, the receiver in-

troduces two additional qubits @ncilla in the initial state

|00,), preparing the statel(¢))|00,). In this code, the col-

10.1.4. Error detection lective measurements, consist of comparing the logical val-
ues of two pairs of qubits: the first and second and the first

The emitter sends the qubgz(0)) through the noisy chan- and third. The results are introduced in the ancilla qubits.

nel. The qubit-environment entanglement causes the receives the collective measurement we are not interested in find-

to detect the¥/(¢)) state involving a linear combination of all ing out the definite values of the qubits, only whether they

possible bit-flip errors, each one with a certain coefficient reqre equal or different. The process is analogous to the clas-

lated to its probability. To detect the error, the receiver wouldsijc case of the error syndrome measurement according to the

have to measure some of the qubits, but in doing so, it woulgharity check matrix:

collapse the state, losing the information about the qubit co-

efficients flestructive measureméniVe need another form He — ( 110 ) 29)

to measure the qubits indirectly beaintain the coherence. 1 01

Instead of destructively measuring the(¢)) state, we

can make a&ollective measuremetttat will allow the error

syndrome to be obtained without acquiring knowledge abou

the qubit coefficients. A set of two CNOT gates (CNOT(1;2),

CNOT(1;3)) could .be used to trans_late the error syndrome ¢ {Ai 1g5(0)) ® |e;) ® \00(1)}

to the last two qubits. After measuring them, the syndrome

would permit us to recover the correct encoded qubit by ap- =A; |gp(0)) ® |e;) ®1S;),  (30)

plying the appropriateX gates. Unfortunately, this method

has some drawbacks: it eliminates the encodiegthe qubit  where the ancilla statS;) contains the syndrome informa-

protection) after the measure and, what is worse, it will not baion of the error and does not depend on the qubit state, but

appropriate for fault-tolerant error correction (see Sec. 10.6)only on the error. Whel' is applied to the entangled state of

| the{qubit + environmenkt system (Eq. 28), we obtain:

Altogether the process of syndrome extraction consists of
an interactionS' that permits the following operation to be
carried out:

Collective Measurement
[W(t)) [004) —

(1—e)3/2es) T [00,)+

+(1—e)ve ‘eﬁ}’?)> X100 [114) + ‘eﬁ}’?)> Xo10[104) + ‘6§?)> Xoor |01a>:| +
+evl—e { €§2)> X110 |01,) + ’6§3)>X101 |10,) + ‘62?3)> Xon |11a>:| +
a3/ (e§23>> X111 ]00,)

lq2(0))  (31)

10.1.5. Syndrome extraction

The receiver measures the ancilla destructively on the compuhe measurement maintains coherence. Note that the four an-
tation basig|0), |1)}, collapsing the total state and obtaining cilla states identifying the error are orthogonal. This way
two classic bits corresponding to the error syndrome. Sincef measuring solves the aforementioned third problem in the
the codewords have aqgual syndrome for the same erfor quantum error correction (Sec. 4).
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10.1.6. Error correction and for the present code aftéz| X;"X;|1z) = 4;; and

_ . (0g| X;* X, [1g) = 0. The code cannot correct any two er-
Once the syndrome is measured, we correct the qubit state by, affecting the encoded qubits.

applying the inverse unitary transformation: the ide_nfltyr Finally, we must bring back the ancilla (whose state con-
a transformationx (i) =X, is applied to the i-qubit. For  (ains the error syndrome) to its initial std@,) so as to be
the previous repetition code, the collective measurement proghe 1o use it again. A cheaper possibility is to reject it and
vides one syndrome for two different errors (implying that thegy nhesise a new one. For the quantum codes, a distance anal-
code does not correct all the errors); nevertheless, its prOb%'gous to the classic cas®] [see Sec. 2) can be defined. If
bility (given by the square of the coefficient) is different, with 1h¢ gistance is & 2t+1, the code is able to correct t errors in
the applied correction corresponding to the error with high-y one of the positions within the quantum register. Defin-
est probability. The code only corrects one bit-flip error, SiNC&ng the weight of an error operator as the number of operators
the orthogonal states of the code are transformed by the agjtterent from the identity in their tensor product, the value
tion of these errors into states orthogonal to each other and g agrees with the weight of the error operators that the code
the code itself. If this condition is fulfilled, the code is called -4, correct. In the present case, the quantum code has a dis-
non-degenerate tance 3 (with respect to the bit-flip errors), since it can correct
With this code, the correc;?b!e_(_arrorsgo‘:ransform. the  gne error, so Q is a code [[3,1,3]]. If we increase the number
codewords0g), |1g) € Q C H®" (initially orthogonal) into ¢ qupits in this code, the distance increases. For example,

codewords orthogonal to each other, as well as haviqg thg repetition code generated by0000), |11111)} has a dis-
same syndrome if they come from the same error. Fig. 5nce 5 and corrects bit-flip errors of weight two.
shows how the three errors that can be corrected produce

three orthogonal subspaces, each one with a different sy
drome.
The general error correction conditions are:

Yo0.1.7. Quantum circuit

The syndrome is extracted by means of a set of CNOT
VA; e Co and Y|u),[v) e Qc H®® gates between the qubit g (control) and the ancilla a (tar-
o get). We can represent the syndrome extraction as the op-
= (ulAfAj|v) = 60w, (32)  erator§ = CNOT(g; a), constructed by means of the parity
check matrix of the code H (Eq. 29). The 1's in each row
indicate the position of the control g-qubits, whereas target
gubits are those of the a-ancilla. The circuit implementing

2 s X N P the total process appears in Fig. 7.
w092 oo e w8 The recovery operator could be written as

R=X (correction,a)M (a)S where X (correction, a) rep-

[Si>=[11> |Sz>=[10> [Ss>=[01>

I A resents the application of NOT gates depending on the syn-
)"(m Ko 5(001 drome contained in ancilla a antf () is an operator that
describes the ancilla measurement. The former circuit is not
@ |So>=(00> unitary since it involves measurements. Although it is possi-
ble to construct a unitary circuit for the correction, the use of
{]000>, [111>} =Q measurements has certain advantages when the tolerance to
|qe>=2]|000>+b|111> failures is taken into account.

FIGURE 6. Action of the bit-flip error operators on the Q sub- Note that the loss of information comes from the entan-
space. The three error operators transform Q into mutually orthog-9l€ment between the encoded qubit (quantum register) and its
onal subspaces. environment. Paradoxically, it is the entanglement between
the ancilla and the register that allows us to recover the state
Correction if errors have taken place.

X(correction, a)

la> i )E%% 10.2. Fidelity
bl p Y

0>

|0> Pa N

* In the process of detection and error correction, there is a

MP -4 %j probability that two or more different errors in qubits will ap-
M

Encoding

10,> &-& pear simultaneously. In order to measure the code capability
Ancilly b Ancilla to_c_orrect errorsﬂ_dellty can _be__\ used. Th_|s is defined as the
States  pleraction  Measurement minimum probability of obtaining the desired state of the sys-
CNOT(q :a) M(a) tem after a certain process has been carried out. In the present

FIGURE 7. Quantum circuit that implements the [[3,1,3]] encod- Case, the desired state|s; (0)), whereas the final state is a
ing, syndrome extraction and qubit correction. Time flows from the mixed one arising after measuring(z)). The probability
left to the right. that measuring¥ (¢)) will collapse in the same initial state
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is < qeO)[tre{|T(t)) < ¥(t)|}qz(0)). The ‘tr,’ means the The positive terms are zero in the least favourable
partial trace over the environment states. As this value desituation, so the fidelity in the encoded case is
pends on the qubit coefficients a and b, we will choose théx = (1<) + 3¢(1¢)? ~ 1 - OE?), eliminating the linear
magnitude which characterises how good the process is, asrm ine. In order for Fz > Fy g to be fulfilled,e < 0.5is
the minimum value with respect to all the possible states: required (as in the classic case).

Fidelity

= |Min> {ge0)|tre [| () (¥ (t)|] |¢e(0))}. (33) 10.3. Error correcting codes for phase-flip errors
V|ag (0)

Fidelity does not depend on the initial state consideredPhase-flip errors are typically quantum, although their cor-
but only on the particular process, through(¢)). The main  rection is related to the bit-flip errors. They arise when the
objective of error correction is to maximise the fidelity. entanglement of the system with its environment gives rise to

Considering only bit-flip errors, if we sent a quij{0)) a phase decoherence. The general noise characteristics con
without encoding (or using error correction) the fidelity sidered are the same as those of the previous case.

would be: In order to look for the appropriate encoding, we see

g 5 21 that there is a close relationship between the bit-flip er-
FWE_VJ?(/}[(%?) {(1_8)+5 ’<q(0)‘X \q(0)>‘ }_1_5 (34) rors and those of phase-flip, through the form of the op-

Since the second term is positive and its minimum value®rators that produce them. The phase-flip errors can be
corresponds to the casg(0)) = |0) with zero value, the fi- ePresented by’ operators, buZ=HXH, whereH is a
delity behaves asiFz~ 1-O). Hada[nard rotation. We use as codewords of the new Q

Let us assume now that we encode the qlifit)) witha ~ 0deH®" {|0z) . |15)}, where|0z) and|1) are codewords
quantum code Q = [[3,1,3]], that corrects one bit-flip error in©f & code Q correcting single bit-flip errors (and therefore
any one of the three quibits in the regisiigs(0)). Supposing  With minimum distance 3). Encoding the quhjb provides
that the correction process is error free, all the errors affectl4) = ¢H " [05) +-bH®" |1p). If the channel introduces
ing one qubit can be eliminated, which is reflected in the ternf: Phase-flip erroZZ. in the qubitjqz), we will have
3¢(1-¢)? of the (encoded) fidelity:

7 _ 7 T®n rT®n
FE:v{\/f?(;L» {(1—¢)*+3e(1—¢)*+positive termg  (35) Zelap) = Ze { aH®" 0g) + bH |1E>}
qE

| and, applying the recovery operator

R= { H®" X (correction, a) M(a) S H'@"} = {H@"X(correction,a)M(a)CNOT(q;a)ﬁ®”} , (36)
we obtain:
R {Ze |qE>} = {ﬁ®”X(correctiona)M(a)CNOT(q; a)ﬁ@’”} {Ze (aﬂ'@" 0g) + bH®" |1E>>} 100,,)

= H®" X (correction, a) M (a)CNOT(q; a) {aXe 0g) + bX. |1E>} |00,)

= H®" X (correction,a = S) {af(e 05) + bX, |1E>} 1S,) = {aﬁ®” 05 + bH®E" |1E>} 1S.)  (37)

The CNOT(q; a) operation on the codeword®g) and |1g) of Q, copy the bit-flip error information of the qubit q
(control) onto the ancilla a (target), in accordance with the parity check matrix. The opMz(itxjrrepresents the ancilla
measurement (whose result is the error syndr®ng and theX (correction,a = S.) represent the correction depending on
the ancilla measurement result. Finally, the encoded qubit is restored to the original encodéfftialisr) , |15)}.

If we take Q = {|000) = |Og), |111) = |1g)}, the new codewords of Qare:

- 1 1 1
17%1000) = [of;) = 75 (100 +11)) = (10) + 1) == (10) +11))
= %{ |000) + ]001) + |010) 4 |100) + |011) + |101) + |110) + |111)} (38)
. AR 2 o — iy L ey —
H®3|111>—|1E>—%<|0> 1) 75 (10) = 11) 5 (10) = 1)
= % {|000) — |001) —]010) — [100) + [011) + |[101) + |110) — [111)} (39)
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With this code Q = {ﬁ®3 000) , H®3 |111>}, the  sible: correcting quantum errors. The encoding was:

qubit|g) = a|0) + b|1) is encoded afyl) = a|0L) + b|1L). . o 1
The two codewords of Qare also orthonormal. E{|0) @ [09%)} = |0g) = 22 (|000) + [111))
Sending the qubiqé) through a noisy channel that intro-
duces phase-flip errors, an entanglement with its environment
occurs, similarly to that established in the previous code. The b (e ]0®8>} 1) = 1
difference is replacing the operataks;; for Z;;; and their o 2V2
correlated environment states in ERf).
x (]000) — |111)) (J000) — |111)). (42
The set of correctable errors of;@s: (1000) = [111)) (J000) = [111)). (42)

x (|000) + [111)) (J000) + |111)) (41)

(1000) — [111))

So a qubit |¢)=a|0)+b|1) is encoded into
Co, = {f@ I1®1= 200, I®I®Z=Zyn, lgz)=a|0g)+b|15). If there appears a bit-flip error in some
set of three qubits, it is possible to detect and correct it by
I9Z9l=7Z002010l= Zmo} (40) means of an apalogous method used with Q. If a phase-flip
error happens in one of these three sets, and we have some
i . strategy to compare the sets, we will be able to detect and
qnd the code for the phase-flip errors i Q[[3,1,3]]. Just correct them. Note that in Shor’s code, some errors such as
like the Q, = Q code, there are errors that cannot be corrected; 10, Z101 OF Zo11, even though they do not produce orthog-

but their weight is greater than those that can be corrected angh 5 states are equivalent (equal) and correctable. These
the encoded fidelity behaves like 13Y. codes are calledegenerated.

The syndrome measurement circuit and qubit correction  Almost simultaneously Steane (1996) introduced a
implementingS' is analogous to the one in the previous casemethod for transforming certain types of classic codes into
(Fig. 7), with the difference that the encoding is carried out inquantum ones. The idea that guided him was that bit-flip er-
the base{|0%,). |17} }, and three Hadamard gates must appeafors could be corrected with a code of a classic type, and the
just before and after the error correction. phase-flip errors were equivalent to bit-flips if a Hadamard

rotation were previously made. When rotating the code-

words, it had to make sure that they did not leave some code
10.4. Phase and bit-flip error correcting codes of a suitable distance.

Steane encoded two qubits) and |1) starting with

The correction power of the previous codes is limited. Thea classic Hamming code C = [7,4,3] containing its dual
code Q =[[3,1,3]] uses qubit redundancy to correct a singlec =[7,3,4] (even subcode, since it contains only the
bit-flip error; the Q@ = [[3,1,3]] uses sign redundancy to cor- codewords of even weight). The basis of the quan-
rect a single phase-flip error. Nevertheless, we must find &ym code include two entangled states obtained from
singlequantum code capable of correctibgthtypes of er-  the classic codewords of each coset of C relative to
rors. Historically it was Shor [17] who in 1995 introduced CcL: Cl@ (0000000) = G = {codewords of C with even weigh
the first code that did what for some time was thought imposand the G ¢ (1111111) ={codewords of C with odd weight (See
| Fig. 8). The quantum codewords are:

0) = [ = 1 { ]0000000) + |0001111) + [0110011) + [0111100)
B/ = = /3 | 11010101) +[1011010) + |1100110) + |1101001)
1 |1111111) + |1110000) + [1001100) + |1000011)
_ L -
1p) = [C* @ (1111111)) = \/g{ 0101010) 4 [0100101) 4 |0011001) + |0010110) (43)

The vector space generated by the (encoded) computa-
tion basis F {|0z), |1)} corresponds to a quantum code Q consisting of two entangled and orthonormal states involv-
(analogous to @ correcting one bit-flip. In addition to the F  ing codewords of the [7,4,3] classic code that can correct one
basis, we can use other bases, for example the dual (encodesi-flip error.
basis P 5{H®"|0g), H®"|1x)}:

1 10.4.1. Detection and error correction
HET|0p) = 7 {10g) + [1£)}

V2 Since the quantum encoding uses linear combinations of clas-
B 1 sic codewords (in C) of distance 3, it is possible to detect sin-
H [1p) = ﬁ {105) = [1p)} (44) gle bit-flip errors. The appearance of &R error (the error is

applied to the qubits where the vectooees’ﬁ!:(??)7 has 1's),
moves the codewordg0g), |1x)} towardsX.{|0g), |1£)},
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INTRODUCTION TO ERROR CORRECTING CODES IN QUANTUM COMPUTERS 231
both in the same coset of C, maintaining coherent superposi- Q \—
tions. In order to measure the syndrome, an ancilla with three % ®—
qubits (000, )) is used into which the syndrome is copied by r@\ Oﬁ"
means of CNOT gates placed according to the parity checkla® % @
matrix of C=[7,4,3]: ® ®

® B—
1 01 01 0 1
Hpam=|01 100 11 (45) Mo o 0> -84
O 0 O 1 1 1 1 [0,> weeeee .@3@ [0,> = 29@
. . . |0“> E;, S. [0,> - 9. S
The measurement of the ancilla qubits provides the syn- w EL g s Y

drome bits in accordance with which NOT gates are applied T R
(X(COTTGCtiOTL,Aa)) where necessary. The blt-ﬂlp errors pro- Bit-flip error correction Phase-flip error correction
dUC? the effecK.[qr) = |gr @ ¢), and the correction canbe Figure 9. Quantum circuit implementing the syndrome extrac-
outlined as: tion and qubit correction when it is encoddd#)) by means of

Steane’s [[7,1,3]] quantum code. In order to measure the syndrome

R {)A(p |QE>} _ {X(cow’ection, a)M(a)CNOT(q; a)} 1|‘8r >h§r2ih-;lie%and phase-flip errors, six ancillas in the initial state

X @ e) |000, . -
gz @e)l ) The syndrome (§ S, S3) describes bit-flip errors,

— X (correction,a = S,) |qp ® €) |S.) whereas ($ S;, &) corresponds to the phase-flip errors.
B g 46 Qorrec}ing both, it is also done for th€ errors, because
= lag) |5e) (46) Y. = Z.X.. We conclude that the Steane code is [[7,1,3]]

and corrects an, Y andZ error.

A phase-flip error transforms the qubit inff) |q). Its
detection involves a seven-qubit Hadamard rotation. BYjg 42 SS codes
virtue of the HZ, = X_.H condition, we transform phase-

flip errors in basis F into bit-flip errors in the P basis. TheThe construction method of the Steane [[7,1,3]] code can be
relationship between both bases can be understood easily. generalised to obtain other codes. We now describe a fam-
phase-flip error in the computation basis|)(— [0) and iy of codes called CSS, whose design is based on the theory
1) — —[1)) corresponds to a bit-flip error in the dual basis P of ¢|assic linear codes. Discovered by Calderbank, Shor [18]
(H]0) — H|1) andH|[1) — H|0)). As the P basis involves - ang steane [19], with the Steane’s code being a particular
C codewords of distance 3, it is possible to make a correctiogase the method is based on the theorem of the dual code.
for bit-flips using athree-ngit ancilla state. We apply a set of Theorem of the dual cod®y rotating Hadamard, a quan-
CNOT (g; a) gates to obtain the error syndrome and correch,,, gtate obtained as the linear combination of all the code-

with X (correction,a = S.) gates. To conclude, we rotate 4 of a linear classic code C = [n,k,d], we get a state which

back the qubit state to Ieaye it i.n th.e. original _com_putationis the linear combination of all the codewords of its dual C
basis. The complete correction circuit is shown in Fig. 9. (linear) code:

H@njﬁzg@ _ V;Tk S ). @
S

zeC+

GF(2)

The CSS construction is as follows. Consider two clas-
sic linear codes: C=[n,k;,d;], whose parity check ma-
trix is Hi[(n-k;)xn], and G, with parity check matrix
Hao[(n-ke)xn], are such that &subcode)C C,. Then
ko < ky and the parity check matrix of Hcontains (n-k)
rows of H, and some other (kks) linearly independent
rows, assuring € C C,. The subcode £defines an equiv-
alence relationshif in C;: Yu,veC;,uR v < u-v e Cy,
or, which is the same, R v & if I weCy| u=v + w.
The equivalence classes are cosets pftdlative to G (el-
FIGURE 8. Relationship between the GE) = {0, 1}®7 vector ~ €ments of the factor group,{.). The number of cosets is
space and the subspaces conforming the [7,4,3] Hamming code and® /2¥2 = 2*1=F2 | et us transform the classic codewords
its dual. of coset Gda (eeC,) into quantum states and construct an

Odd codewords

> C=[7,4,3]

C'=[7.3.4]. Even
codewords
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entangled state of the type: 10.4.3. Stabiliser codes [21]
1 ) Quantum codes are certain vector subspaces®f. A way
[Co®a) = NG Z i ®a). (48) o specify them is as the common eigenspaces of a set of com-

€Cs muting operators, forming itself an abelian sub-group (called

stabiliser groupSg) of the Pauli group. The Pauli group,G
The set of these states forms an orthonormal base of @ made up of the operators

subspace of dimensio2(¥*—#2) of the Hilbert space A"

(see Fig. 10). The staté€, @ a) are created by the linear {+1} x {A{h’w’___’in} - 121111 ® Ai ®...® AZ}'

combination of distance,dcodewords of a €code, so it will /

be capable of correcting t= | (d» — 1)/2] bit-flip errors. In In the case of the repetition code [[3,1,3]], we have

addition, as the syndrome of all the codewords depends solely Hilbert space of dimension®2 If we want to specify

on the error, the syndrome extraction will maintain the qubitthe code as a subspace of dimension 2, we can use the

coherence. In general we can provide the following eigenspace common to two operators. For example, the
Definitiort Given two linear classic codes, & [n,k;,d;] common eigenspace of the s ]211072101} is the code

and G = [nky,db] (its dual being G = [n, n-ko, 1) Q=1|000),|111)} =[[3,1,3]], which is where an encoded

so that G(subcode)c C,, the subspace generated by the g pit resides when it does not have errors. The set can be

encoded basg|C; © a), acCy} is a quantum CSS code transformed into a groupcsif the product of its operators is

Q(Ci, Cs) = [n,ki-k»,D] of dimension2t*1~*2) and distance  jncluded. This $ group is abelian and is callestabiliser,

D > Min{d,, dy }. because its operators fix the codewords of the quantum code
In order to construct quantum codes with this method, itQ. Actually, S, is a subgroup of thé?,, /{+1I} factor group.

is sufficient to look for classic codes contained in its dual (orThe {+/} is the centraliser of G so that we do not care

vice versa). Given a classic code C, if€C* is fulfilled,  about the global operator phase, angiSabelian. $ can be

it is called weakly self-dual An example of weakly self-  gpecified completely by its generatds = { Z110, Z101

_ i i =
dual an_d self-dual I_mear binary codes (C I:thgt COVET  (the notatiory. . .) is used to specify the group generators.).
a large interval of distances and code rate (k/n) is the famil .

If an encoded qubit |gz) undergoes an error

of Reed-Muller codes (RM)7]. Starting with self-dual RM . ) .
codes, gquantum codes of dimension one can be constructgg{“’ 'ES Stat? Abecgmgs)@ ‘QE)’ and is fixed by
as [[n,0,d]]. From the [[8,4,4]] [[32,16,8]] and [[128,64,16]] XvSeXv = <XvZuonvaZlev> because:

RM codes, we obtain [[8,0,4]], [[32,0,8]] and [[128,0,16]] o o

respectively. In order to obtain codes with dimension two, XoZuXo(Xy lgr)) = XoZu |ag)

the self-dual RM codes can be punctured, their dual code
being an even subcode. Puncturing (deleting coordinates)
the [[8,4,4]], we get [[7,4,3]], which contains the even sub- . .
code [[7,3,4]], providing the well-known [[7,1,3]] Steane andX,|qe) € X,,Q. The syndrome is determined by the ex-
quantum code. From the other weakly self-dual RM codesistence of an operator ingSanticommuting with the error
the [[31,1,7]] and [[127,1,15]] are derived, correcting errorsoperatorX,. If X, = X0,

of weight 3 and 7 respectively. From RM codes of greater _ .

dimension such as [[64,42,8]] (whose dual is [[64,22,16]]), { X100 Z’u,}

other quantum codes can be obtained such as [[64,20,8]].

= {X1007 ZlOO} Z(lOO)@uZO (u=110,101) (50)

4 since X100 commute withZo;o and Zoor :
u |C2®a>
a Zi01 (X100 \QE>):Z100X1002001 lgr) =—X100Z101 |9E)
G < -~ = — X100 lgr) = (=1)"X100 lg5) (51)
T 2110 (Xloo \(JE>> = —X1002110 lge)
& = — X100 lg) = (=1)* X100 |g5) (52)
.

The syndrome of th&, error is (a,b) = (1,1). An error

FIGURE 10. Construction process of a CSS code from the code Operator anticommuting with an operator ip Shanges the '
C., C C,. Each box represents a coset with a different syndrome€igenvalue of the state from +1 to —1. Fig. 11 shows the sin-
depending on the displacement vector. gle bit-flip error syndromes and their orthogonal subspaces.
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001>, [110>

XOOI Q
©.1)

010>, [101>
XO'IOQ
(L,0)

100>, [011>

X100 Q
(1.1)

In the case of the Steane code, the stabiliser is generated
by 6 operators (obtained by replacing the 1's in the rows of
Hi7.43, EQ. (45), byX or Z operators), whose common
eigenspace, with eigenvalue +1, makes up the code [[7,1,3]].
Shor’s [[9,1,3]] code can be described by means of a sta-
biliser with 8 generators. CSS codes are stabilisers; neverthe-
less these latter contain other codes that are not CSS. For ex-
ample, theperfectquantum code [[5,1,3]] [22](saturates the
quantum Hamming boung(1 + 3n) < 2" for codes with
d=3, [?], analogous to classic equation 5), is not a CSS code
although it is a stabiliser.

Given that the errors change the eigenvalue of hgén-
erators, the correction circuit construction can be described
in a more general way as the collective measurement of these
operators. The measurement of operators is a fundamental

element in error correction. The objective is to project the
qubit state on an eigenstate of) Sat the same time as we
'l]<eep an indicator from the eigenvalue in some quantum reg-
ister. Let us suppose that we have a hermitian operator (such
as an observable) and unitary (which can also represent a time
P |q,) evolution)U/, having thet1 eigenvalues. In order to measure
> lar> > U, we must make a projection of the qubit on one of its two

: eigenspaces. The circuit implementing the measurement ap-
pears in Fig. 12.
[0,> —— The initial state of the qubit i&y;) and an ancilla in the
@ . > |0) state is used. Its joint evolution is:

FIGURE 12. Measurement circuit for the hermitian operator
The gate connecting both qubits is a control-U.

FIGURE 11. Relationship of the different subspaces from the rep-
etition code that corrects one bit-flip. The pairs in parenthesis in-
dicate the error syndrome in each subspace. For the code, the sy
drome is (a,b) = (0,0).

|
1g:) 102) = {a]0) + (1)} [02) 22 {a |0) + b[1)}

{00 + 1))

V2
cuz 1 A R
=57 5 {10} 10a) + (@ 10)) 1) + b11) o) + (0 [1) 1)}
C o . . . .
e { [a 10) +b[1) + all [0) + b0 \1>} ® |0a) + [a 10) +b[1) — all [0) — bU \1>} ® |1a>} (53)
The CU(2;1) means a control-U gate acting on the
qubit 1 (target) depending on the qubit 2 value (control).I 5 m
The projectors on the eigenspaces with eigenvaitibsare Z] -
P, = (I +U)/2. Measuring the ancilla qubit of the previ- lqe>

]

ous evolution, if we obtain the sta}e, ), we will have pro-

jected according t@, ; and if the result i$1,), the projection

will correspond toP_. Note that the qubits used can be ei- l

ther non-encoded or encoded. Using this construction, we neilla { 10.> @' """"""""
1

obtain the circuit shown in Fig. 13. To determine the syn-
drome, the operator8;,o, and Z;o; are measured by means R
of two ancilla qubits initially in stat¢00,). Bearing in mind ~ FIGURE 13. Quantum circuit measuring the generatahso and
the equivalenc&/ = H X H (Fig. 14), it is easy to obtain the Zi0: of the [[3,1,3]] code. Gates M provide the error syndrome.
circuit as it appears in Fig. 7.

pp g

FIGURE 14. Equivalence of circuits used in the syndrome extrac-
tion.
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10.4.4. Codes on GRQ) An orthonormal environment basis sfllz;) } has been

) ) - used. Now the operatoi8; could be (in general) linear com-
It is possible to relate the stabiliser quantum codes and thginations of (tensor product) Pauli operators [see Eq. (16)]
classic codes in GF (4)[24], establishing an isomorphism bepecause of the basis change fréfe;)} to {|u;)}. The evo-
tween the elements of the stabiliser and those of a subcoqgtion operator eliminates the possible initial factorization be-
of GF(??)" that is selforthogonal with respect to a certain yyeen the state of the register and the environment. Sup-
symplectic product. This is the case in the [[5,1,3]] code thajpse the initial state is characterized by the tensor product

comes from a Hamming code in GFj). This connection  of the density operator for the system and the environment:
with the classic codes has allowed the well-known construc o),  5(0)... The whole evolution can be written as

tions of these codes to be used to obtain a great number of

new quantum codes with a distance greater than 3, correcting; ( @ 5.(0 EvolutionU/ 8 = U 15.(0) @ 5. (0) T+
more than one error. In the same way, stabiliser codes can b s(0)@ £e(0) == A1) [£+(0) ® pe(0)]
generalized to nonbinary alphabets over finite fields [25]. — prs(t) = tre {p(t) }, (56)

10.5. Quantum operation formalism applied to QECC ~ A(t) being the density operator of thgystem + environ-
meng at time t,5,.;(¢) the reduced density operator (or ma-

The fundamental pieces of quantum error correction arerix) of the system obtained by taking the partial trace with
quantum states to be protected and noise. There are sevethé environment states. Carrying out the calculation:
ways to point out the theory [26]. Until now, we have used R .
state vectors or kets emphasizing the environmental effect onjs(t) = tre {p(t)} = > _ (i U [p<(0) @ |e) (el] U |pus)
the system studied as givin rise to the errors. Experimentally i
it is not possible to know environment states, so a formalism ~ ~
based 0?1 the concept gliantum operationgor superoper- - Z (il U le) ps (0) (el U 1)
ators, see Knill and Laflamme in Ref. 3J][will be more '
general and powerful to treat the evolution of open systems = Bips(0)B], (57)
such as quantum computers. i

In general, quantum states are described by means of the R . . )
density operatop (or density matrix, if a basis set is chosen), Wne€re Bi = (u;| U |e) are operators acting on the Hilbert
and its time evolution by the quantum operation E defined aSPace of the system. Using the definition, it is not difficult to
amapp — E(p), which has the following properties: show the normalization condition

1.- E is aconvex-linear mapn the density operator set, ZBQLBi = I
fulfilling: i
(identity for the system). The map

E (ZPiﬁi) = ZpiE(f%% (54) "

ﬁs(o)aE(ﬁs (0)) = prs = Z Bzﬁs (O)Bz (58)

{p;} being the probability set for thp; } states. i ) . .
defines a quantum operation representing the density opera-

2.- E is acompletely positive mapE(Os) is more than  tor evolution of the systeralone All the environment effect
a positive operator for any positive operat@g of the s hidden inB;, calledinteraction operators The breaking
system S. Consider all possible extensions T of S to thelown of j,., in terms of B; is called theoperator-sum rep-
combined system TS; then E is completely positive inresentatioror Kraus representationNote that this represen-
S if (I7®E)(Ors) is positive for any positive operator tation in terms ofB; is not unique because it is environment
Orgs Of TS. basis-dependent.

3.- The value 0< trE(5)] < 1 is the probability that the The_depolarlzmg error model_ applied to a qubit g and
. RS shown in Eq. (15) can be described now by means of the
process represented by E will occur whieis its initial

density operator. following interaction operators:

Analogous to the one-qubit evolution of Eq. (11), the B, = /T —:A, B; = \f;li withi =2,3,4 (59)
evolution of a system such as an n-qubit register. . . ,g,) 3

in contact with the environment (in the initial stdte) can describing the evolution of a qubit density operator:

be expressed as:
U{‘qh o 7Qn> ® |€>} Pq(o) - E(Pq(o)) = pIIT(t) = (1 - €)p(1(0)

=Y (Iu(t)i> ® Bi) g1, .., qn). (55) N

4
> Aipg(0)AF. (60)
=2

W ™

K2
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Redefining the parameter= 3p/4, the reduced density {Bi}, have{d,} as eigenvalues. For each ¢ O (if d, = 0,

matrix is: N, |u) =0, V]u) € Q), a recovery guantum operation can be

X R i X defined as:
E (p4(0)) = par(t) = p3 + (1 = p)py(0).  (61)
R 1 .
Its evolution is now very transparent, showing two con- R, = \/7 Z luy (u| | N, (65)
tributions: the untouched qubit with probability (1-p), and a @ \|uyeqQ

completely mixed staté/2 with probability p.

The correction process can be seen as the search for thgfilling the condition i2,, (Nb) = \/@(Sabe for the states
inverse quantum operatioB—!. Although theE~! in the
whole Hilbert space (A") only exists in the case of a uni-
tary operator, it is possible to invert it, taking the restriction
to some special subspacest@H®". The quantum recovery
operation R fulfils the condition:

in the code Q. Thek, correctsN, in Q, and R corrects any
linear combination ofV, errors. Notice that, strictly speak-
ing, in order to have a quantum recovery operation R, it has
to be extended to the whole Hilbert space (for mathematical
details see Preskill]), which can be split as

Vp defined in QR(E(p)) x p (62) .
Hon = (@NGQ> ©Q,
The recovery R reverses the errors represented by E, e
mapping them into an operator proportional to the identityW
[Eq. (62)].
The notion of detectable errors has been explicitly intro-
duced by Knill and Laflamme [3], and can be established[he
thus: an erroB is detectable by the quantum code Q if and

here @ is the orthogonal complement of the code Q which
is not reached acting on the code with the operatéys

In order to implement the recovery quantum operation,
operatorsz, can be written as:

only if .
A » = \ +
V|u), [v) € Qfulfiling (u] v) =0 = (u| Blv) =0 (63) Ra= 7= %:Q'm {ul | Na
The errorB transforms the Q-codewords, keeping their -

orthogonality and making it possible to differentiate them. _ N, Z No ) (u| N} | = NfP,g.  (66)
Alternatively, an erroi3 is detectable by Q if and only if the Vo leo
condition Po BPy=ap P is satisfied for a complex con-
StantOKB depend'ng on the erch, PQ be|ng the pl’OjeCtOI’ The Operator PGQ projects onto the Subspace

operator in Q. Without going into a full demonstration (seeNaQ c H®". Its implementation involves the projection
details in Nielsen and Chuang [3] and [27]), imagine the conyf the corrupted state ontly, Q according tof,, identify-
dition is fulfilled v|¢, 2) € H*", and ing the subspacd/,Q characterized by the index a, and then
p B it B applying the inverse operatdﬁ’j. To carry out the recovery
Q912) = lur2) € Q. {ua] u2) =0, process, an ancilla system is introduced, characterized by the
the condition means Hilbert space H and with a s_et pf standard orthogonal states
{la-)}. Now we shall work within the subspace
(01| PoBFq |d2) = (u1| B |uz) = ap (w1 | uz) =0.
o (@9 NQQ) ® Hay.
Consequently, a set of errorgyG {B; } is called correctable a
by the code Q if and only if the setdC}, = {B; B, } is de- , , , X
tectable. Egs. (32) are an example of that fact. The first step is to apply the unitary operatofthe |&) state
From the general conditioRy B, B P = aPg, itis 'S the initial ancilla state):
possible to obtain the recovery quantum operation R. As a N .
guantum operation, it is characterized by means of the set V= ZPGQ ® |as,) {aol- (67)
{ Ri} defining the map: ¢
The operatorV is a generalisation of the standard
p— R(p) = Z RipRY. (64)  controlled-operation and will project onfg,Q ® |as, ). The
i ancilla state carries the syndrome informationds the N,
) . error. Measuring the ancilla in the standard basis we obtain
The matrix;. depends only on the error operafiB3’,  the statelag, ) and, finally, applying the operatd¥., the
and its elements arg;, = (u| B; By |u), |u) € Q. Becauseit  grror is reversed. This general process can be recognized in
is hermitian it can be diagonalized, and the new set of errorg,nat was done in Fig. 7 (Sec. 10.1.7) and 9 (Sec. 10.4.1) for

{ Ni}, obtained as the appropriate linear combinations othe three-qubit repetition code and Steane code, respectively.
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lq>=al0>+b[1> of the algorithm. The error correcting codes are the first step
. to reaching it, the second is the use of fault-tolerance tech-
Z (al0>+b[1>) Z (|0>+]1>) niques P].
To implement a quantum gate, we could decode the quan-
tum state, carry out the gate, and encode the state again. This
FIGURE 15. Phase-flip £) error propagation from the image qubit process is not advantageous since, during the period of time
to the control qubit in the case of a CNOT gate connecting bothin which the gate is put into operation, the information is un-
qubits. protected. The fundamental idea of fault-tolerance is to use
an encoded logicapplying the encoded quantum gates to en-
><‘_ _‘* —— _,*_ coded qubitg?], without a previous decodingNevertheless,
the encoded logic, by itself, is not sufficient to ensure its tol-
‘ ‘ erance to failures, and we will have to consider two additional
aspects. In the first place, the application of encoded gates to
_Ga_ _69)< *GB_ _EB* encoded qubi_ts can disperse the errors t(_) other qu_bits within
the same register as well as to other registers, until they be-
Bit-flip errors Phase-flip errors come uncorrectable. Secondly, the error correction processes
are also quantum computations, which is why they can in-
troduce new errors. We will have to make an appropriate
design of encoded gates and error correction circuits to con-
trol error dispersion and accumulation. After reaching these
> { — s o> { = fiio- objectives, we shall make periodic encoded corrections to the
- qubits.

Z.(10>+1>)

FIGURE 16. Forward bit-flip and backwards phase-flip error prop-
agation, due to the application of a CNOT gate.

10.6.1. Error propagation

111> < —bL@— 000> 11> FD— 001> . .
i {—e—}' : {—GH(—}l One of the frequent types of gates in the computation and er-

FIGURE 17. Encoded CNOT gate in the [[3,1,3]] code. The left- rOr correction are the control-M (M = NOT, Z). Let us see
hand piece shows a perfect transversal CNOT gate performancBow the CNOT gate propagates the errors. A bit-flip error in
when the control and target registers &rel). On the right-hand  the control qubit of a gate CNOT, propagatesvard towards
side, a bit-flip error corrupts the third qubit of the control register, the target qubit. In addition to this spread (of a classic type), a
and is dispersed to the third qubit of the target register. phase-flip error propagates backwards, from the target qubit
to the control qubit. Let us suppose we have a CNOT gate
: whose control qubit i3g) = a|0) + b|1) and a phase-flip
K P error occurs in the target qubit0§ + |1) in Fig. 15). The
— _‘{*ﬂ\_ — phase-flip error(Z) propagates from the target tg). The

-3
) bit-flip and phase-flip error propagation is shown in Fig. 16.

-

- Similar situations arise in gates involving several qubits, such
Ancilla 159 EI as the Toffoli gate. If we use a code allowing a single error

0000,>
[0,> fv 7 \II S| l N {' o
A

Phase-flip error

to be corrected in each quantum register, we define a fault-
tolerant procedure as one with the property tifian error
occurs in one of its components, it causes (at most) one er-
FIGURE 18. Dispersion of phase-flip errors in the measurement of r5r in each register The uncorrectable errors (for example in
one bit of syndrome S. On the left, a phase-flip error propagates,, o qubits) take place with a probability QO: ¢ being the
from an ancilla qubit until the three qubits of the upper register. Probability per qubit that some time step or gate introduces

This error cannot be corrected. On the right there is an equivalenan error. This definition can be aeneralized to codes that cor-
transversal version. A phase-flip error in the ancilla has been prop- ) 9

agated exclusively to one qubit of the upper register. In this casd €Ct L errors, just by demanding that no more than t errors are

the error could be correctable in later time steps. introduced in each register after the procedure execution.
In the case that single qubits of the same register are re-
10.6. Fault tolerance in QECC lated by a CNOT gate, the dispersion of errors could be fatal.

Some gates exist, depending on the code, which can be im-
The final mission of the decoherence control in quantunplemented by means ofteansversal logicwhich ensures its
computers is a static stabilisation of the information whenfault-tolerance. For example a CNOT gate can be transver-
it is transmitted or stays in the memory, as well as a dynamisally implemented in a [[3,1,3]] code, as shown in Fig. 17.
stabilization of it. We need to process the informatiys A bit-flip error appearing in the third qubit of the control
namically, applying gates without an excessive accumulatiorregister propagates solely (following the arrow) to the third
of errors, during the time sufficient to complete the executiomgubit of the target register. The CNOT gate is implemented
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transversally by means of a procedure in which each qubit  The destructive measurement produces the collapse of the
of the control register is connected to a single qubit of themeasured state. This is the case in the final ancilla measure-
target register. A transversally applied gate assures that it iment for obtaining the error syndrome. If the error prob-
fault-tolerant. An error in each register can be corrected irability is O) in each qubit, and these are not correlated,
a later error correction step, thus avoiding its accumulationthe probability of an uncorrectable error taking place (two or
The error probability that two uncorrectable errors occur inmore errors in the register) is €%). So the destructive mea-
the control register (which would induce two errors in targetsurements are fault-tolerant.
qubit) behaves like Q). As well as the destructive measurements, we can measure
Some gates cannot be implemented in a transvers@lermitian operators non-destructively, such as the stabiliser
form, as would be the situation for the Hadamard rotationggenerators, as we have already seen in Fig. 12. The syndrome
in [[3,1,3]], and we should design more complex circuits thatcopied into the ancilla, is found by measuring this last one de-

could involve qubit measurements. structively. Nevertheless a single ancilla state is not suitable
. o for extracting the syndrome because the circuit could spread
10.6.2. Fault-tolerant error-correcting circuits the errors in an uncorrectable way. As an example, let us look

at a piece (Fig. 18) of the correction circuit shown in Fig. 9

Quantum error correcting codes imply encoding, syndrom measurement of the syndrome)SA phase-flip error in the

measurement, and qubit correction processes using ancil

o : T -flip error probability is=Q(the

ing in the error spreading. For the QECC to be useful, it iS55 4ation has introduced three errors affecting the upper
necessary for their |mpIerr_1ent_at|on to be_sufﬁuently rObuStregister with the same probability, these being uncorrectable
prevent.mg more errors bemg. mtrodchd into them than they, |arer corrections (left-hand side in Fig. 18). This behaviour
try to eliminate, as well as being sufficiently fast.

appears because the same ancilla qubit is the target of all the

h Let us_supr;}ose that we usea QECC; and th? prObab”itY‘,NOT gates. We can solve the problem, by replacing the an-
that a register has an error is&(arising from evolution or ¢y qupit by four, so that if there is an error in one of these
gate errors. The definition of a fault-tolerant error-correctlonsingle qubits, they propagate to a single qubit in the control
circuit reflects the intuitive idea that it must correct more €T register (the ,right—hand side of Fig. 18). Nevertheless this
rors than are mtroducegl by it. A quantum c_erUlt (of a CF’_deoperation does not completely solve the problem. Let us see
with distance 3) is considered fault-tolerant if the probabllltyWhy in the following example

of a register having an uncorrectable error after its execution Suppose we use the Steane [[7,1,3]] code td@et and
behaves like Q). In general, a quantum circuit correcting 1), and a bit-flip error occurs in the seventh qubit, rep-

t errors is fault-tolerant if the probability of uncorrectable er- resented byX; = X, (e = (0000001)). To obtain one bit

. 41 } . .
rors 15 Oéh. r? Tr;]e tolergvge to faliu:(es tlnes to avoid all of syndrome (for example, measuring thg 1111 generator
Way; n Wf I'fh suc tp935| Itl |ets ctan a etﬁ ace. ’ shown in Fig. 18), we use an ancilla st&®€0Q,), and four
ne o de tmost_ |mpordan S Zps tm t'e correction pro-cnoT gates are applied involving four qubits of the encoded

cesses 1S destiuclive and non-destruclive measurements, register and four ancilla target qubits. The process
These are used in the encoding, syndrome determination a .

. . X : uld be as follows:
ancilla synthesis (employed not only in error corrections, but
in the implementation of encoded fault-tolerant gates); this X7 {a|0g) 4+ b|1x)} |0000,)
is why its fault-tolerant accomplishment is of fundamental
. . . . = 1 .
importance. Concerning codes with distance three, to get a [ {10000001) + ...}
fault-tolerant encoded measurement process, two conditions

must be met:
a) An error in any time step of the measurement process —a ()27 |0E>> |0001,) + b (X7 |1E>) [11104) (68)
must produce one error in each register, and
b) If an error occurs during the measurement process, the Measuring the ancilla destructively, we will find two
probability that the result of the measurement is incor-states|0001,) or |1110,) bringing about a collapse of the
rect must be Q). whole state taX;|0z) or to X;|1z), with probabilities|a|?
The motivation of the first condition is that an error in and |b|? respectively. The initial qubit coherence has been
a register is tolerable by the code and can be corrected in @estroyed, with certain information about it having been ac-
later time step, whereas the second reflects the fact that tiguired. To cope with the problem, we need to synthesize spe-
measurement results could be used to correct one or seveil ancilla states and design appropriate recovery circuits.
qubits within a register. If the error probability in a measure- .
ment behaves like Gf, the subsequent error correction using 10.6.3. Ancilla states
this result could introduce several errors into the same regisAncilla states are involved in syndrome measurement as well
ter with O¢) probability, with them being uncorrectable. as intermediate states in fault-tolerant encoding and gates;

four CNOT gates
+H{|1111110) + .. .}] |0000,) e
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therefore, the design of the ancillas is an important aspect iancilla measurement to get a single four-qubit register, whose

the fault-tolerant computation. In QECC, we require an an-arity will provide the bit of syndrome. The circuit imple-

cilla state to copy the error syndrome onto it and one that wenenting the fault-tolerant measurement of HRo1111 gen-

can measure destructively without losing the qubit coherencesrator is shown in Fig. 19. Once the error has been identified,

and without introducing too many new errors. The syndromat is corrected by applying the inverse operator. Similarly, we

measurement does not have to reveal anything about the stateuld copy the syndromes of the generators involiihgp-

of the information qubit. erators, just by making Hadamard rotations before and after
DiVincenzo and Shor propose using a special ancillahe CNOT gates and using the previous ancilla states.

state |aspo-) Synthesized from the Sdbdinger cat-state Another kind of ancilla has been proposed by Steane. It

(J0000)+|1111)), and Hadamard-rotating all qubits to obtain involves an entangled state whose codewords correspond to

an entangled state of equal-weighted, even-parity registers:those of [7,4,3] classic Hamming code:

1 1 1
ashor) = —= {]/0000) + |0011) + |0101) 4 |1001 Asteane) = — {|0g) + |1 B v 71
lashor) \/§{| ) +10011) +[0101) + |1001) lasteane) \/5{\ e) + 1)} 4uze:c|> (71)
1010 1100 0110 1111 69
* | ) A )+ ) (69) 10.6.4. Synthesis and ancilla verification

In order to find each bit of syndrome, one Shor ancilla h i i tat h thesis invol
state is needed, with the syndrome being copied onto it b € ancilias are quanium states whose Syntnesis involves
oisy circuits, and letting them interact with the information

the appropriate CNOT gates and being, in the end, destruc-"". . . .
tively measured. But why is this way of copying the infor- qub|t_can propagat.e errors. So 't. Is essential to take special
mation advantageous? After applying the CNOT gates anﬁarecIn prepanr:lg htlgh-qut?lllty'an(iula gtﬁtes. il the simol
its measurement, the ancilla state (carrying the information . _(t)ns;]equer} ylé' 0 s%/g es'ée N d O_Fhan?' ?'H E;Slmpgz
of the error) is not entangled with the qubit, so the ancilla®!Teult Shown In ™g. can be used. € first Hadamar

measurement does not collapse the qubit state. The ancilfé?tat'on on the left, along with the CNOT gates, creates a cat-

collapse takes place randomly in one of its even-parity reg§tate {(0000)+|1111)) that is transversally Hadamard-rotated

isters, preventing information from being obtained about thé[O obtain the final state. If an error occurs in certain locations

qubit. If the parity of the ancilla register has changed, theof the circuit, it can be converted into two or more errors by

syndrome bit is 1, if not it will be 0. The parity only reveals f[he CNOT gates dispersing them to the information qubit dur-

the bit of syndrome and nothing about the qubit coefficients"9 the syndrome measurement. A bit-flip error in the region

For example, using Steane’s code, we need three bits of syﬁ)]c the first three CNOT gates, COUld. be propagated to two (or

drome to store the bit-flip error information and three more]fpore) errors that_ are transformed |nt_o two (.O ' morg) phase-

for phase-flips, six Shor ancilla states altogether. lip errors in 'the final Hadamard rotations, with the informa-
In the previous example, ali; = X, error took place tion qubit being reached by backwards propagation (see Sec.

with e = (0000001); after the four CNOT gates (involved in 10.6|.dl)r.1 Wetarrlve at a?huncomfortablet_sﬂuz;tlor;h smce_l\INe
the Zyoo1111 generator) and the measurement have been a vou ave 1o use another error correction for the ancifia.

. g L . . rying to control the ancilla bit-flip error contamination, we
lied, the ancilla is not entangled with information qubit, and ! . ;
fhe state is: g g add a fifth qubit and two CNOT gates whose control is the

first and fourth qubits and the target is the fifth. In fact, any
X {al0g) +b|1g)} two qubits could be used instead of the first and fourth, for
A instance the second and fourth or third and fourth. If a single
®Pyr |(hases, hases, hages, harer) @ asnor)  (70)  bit-flip error occurs, the first and fourth qubit will have differ-
) ) ent values; as a consequence the fifth qubit acquires value 1.
Where h; = (Hi7 4.5)); (parity-check matrix for the [[7,4,3]]  sypposing that the destructive measurement of the fifth qubit
code, Eq. (45) and the operat®h, represent a projective s error-free, a result 1 would imply discarding the ancilla and
preparing a new the one. If the measurement detects a 0, we
proceed with the syndrome measurement from information

—4
. qubit, with the security that the appearance of two phase-flip
Fault-tolerant errors in the ancilla final state perform as=€)(
measurement
—) 4 10.6.5. Syndrome verification
M L . N . .
0.> DD lashor> { & As we indicated previously , a bit-flip error in the ancilla syn-
v thesis circuit can be propagated as phase-flip errors on the

FIGURE 19. Fault-tolerant circuit for the measurement of one information qubit. This possibility is controlled by verify-
bit of syndrome corresponding to tid7ZZZZ generator of the  ing the ancilla state by means of an ancilla checking circuit.
[[7,1,3]] code. The different CNOT gates are applied transversally Moreover, if the ancilla has a phase-flip error, tHegates
connecting different qubits within each register. (Fig. 20) transform it into a bit-flip error, providing a wrong
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Ty

Ancilla checking circuit

FIGURE 20. Circuit to synthesize Shor ancilla state. To check the

;lj ®_

- @—

O—@ & {(H)—

_0_® ) OH Encoded qubit
4 o lqe> = (112")[0>+15>]
S >—$ ®_
O—& & $_®_
N Y,
'

|0g> Generation

FIGURE 22. Circuit encoding the qubitg) = (|0) +|1))/2'/?by
means of a [[7,1,3]]. Open circles on the left represgit
states. The first part of the circuit generatef0g) state, which

is transformed into the final qubit state by means of a transversal
Hadamard rotation.

We must make sure that the syndrome is correct, for ex-
ample by repeating it several times. If the syndrome indicates
that there is no error, we could repeat it to verify the value.
If both are equal, we do nothing. If the syndrome indicates
an error, we repeat the syndrome, and if we obtain the same

ancilla quality a fifth qubit and two new CNOT gates are added ON€: it will be used to correct the qubit. Itis possible that both

with a final measurement M. Open circles on the left reprefignt

qubit states.

~

—O—— Cat-state

_{)_@— |aShor>

FIGURE 21. Quantum circuit extracting six bits of syndrome, char-

acterising any quantum error.

— Information

qubit

Phase-flip
Syndrome

Bit-flip
Syndrome

syndromes are erroneous, whereas the information is correct,
but this situation has a probability €%). If both, first and
second syndromes do not agree (due to an error in the in-
formation and another one in the syndrome; situation with a
probability O€?)), we can obtain a third one, by choosing the
syndrome repeated twice. In the case of three different syn-
dromes, we can continue to calculate new syndromes until
two of them agree or, more economically, we do not take any
action, waiting instead for the next recovery step. Some vari-
ations of this strategy can be raised that optimise the method.

The circuit measuring the six bits of syndrome, three for
bit-flip and three for phase-flip errors, is shown in Fig. 21.
In fact, each of the CNOT gates corresponds to four of them,
connecting ancilla qubits with the appropriate ones of the in-
formation qubit register, according to the classic [7,4,3] code
parity-check matrix of Eq. (45). The open circles on the left
represent cat-states. The upper part of the circuit (Fig. 21) de-
tects phase-flip errors and is made up using the equivalence
shown in Fig. 14. The lower piece of the circuit detects the
bit-flip errors, and the states inside the dotted boxes repre-
sent|asyor) States. Gates M are destructive ancilla measure-
ments.

10.6.6. Numerical simulation of an error correction

Using the depolarising error model, we have simulated the
qubit error correction encoded by means of Steane quantum

syndrome. As well as the errors in ancilla, the circuit for thecode [[7,1,3]] [?]. In order to show the advantages of the
syndrome extraction can also introduce errors (with probabilfault-tolerant methods, two schemes for the syndrome extrac-
ity €) providing an incorrect syndrome that will contaminate tion have been used. Firstly, by means of a non fault-tolerant
the qubit, if this syndrome is used for the correction. This re-ancilla, and secondly using Shor’s.

sults in two or more unrecoverable errors with am JQfrob-

ability.

The specific qubitg) = (|0) + [1))/2'/? is encoded as
|gg), via the circuit shown in Fig. 22, and subsequently an
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error correction is applied. Although the encoding circuit is 0.985

not fault-tolerant, it is used as a reference circuit creating the
initial noisy state. As an example of the simulation, a fixed
gate error probability ofy = 0.001 was taken, calculating the
final state fidelity as a function ef(free evolution error prob-
ability). In all the cases simulated, the encoding includes evo- .

) . - 0.975
lution as well as gate errors, with an error probability @f. 2
These could propagate errors in two or more qubits with the g
same probability because the encoding circuit represented iri. ) o,
Fig. 22 is not fault-tolerant.

In the first simulation case, a simple three-qubRQ,)

ancilla state is used, onto which the error syndrome is copied. 0.965
If the correction circuit worked perfectly, it would correct all
the errors of weight one, which is why we would hope that
the fidelity would behave asge,y) = 1 - OE?, 72). Nev- 0960 —r—~1 — 1 o 1 . "
ertheless, since the encoding circuit is not fault-tolerant, a 0 50 100 150 200 250
linear term appears in{e,7). We fit the simulation results Time Steps
(Fig. 23) for Fz(¢,4=0.001) to a polynomial of degree 3 in Figure 24. Fidelity versus time steps far = 10°* and~ = 2
€, providing a linear term of -2.26 (undergoing only small  10~*. The curves correspond to a perfect qubit encoding and noisy
variations when the degree of the polynomial increases). Aceorrection through a free evolution noisy channel of probabiity
tually, the correction process is a quantum computation antly means of two methods: o simple ancil@0Q,) ande fault-
therefore noisy. If we also introduce errors into the correctingtolerant Shor ancilla.
process step, the result obtained fgr(E,v=0.001) (Fig. 23)

has a linear term -77.47, and the fidelity quickly decreases Method is now fault-tolerant. The simulation produces a fi-
ase increases. delity (see Fig. 23) that, surprisingly, seems worse than that

Instead of using a simple ancilla whose initial state is°Pt@ined with the simple ancilla, displaying a linear term -

|000,), we can usdagsn.r), repeating the syndrome three 184.2¢. . ] )
times before correcting the qubit. In this way we hope to SO, Where is the advantage in using a fault-tolerant er-

improve the previous results, since the complete correctin§Pr correction? We must try to find the answer in the error
accumulation over time. Whereas the appearance of one or

two errors in|qg) provides zero fidelity, both situations are
not equally pernicious. In the second case, the encoded qubit
state is not recoverable, whereas in the first it is. To appre-
ciate the advantage of using a fault-tolerant ancilla, we can
make a simulation for the error correction of the qubit per-
fectly encoded (without error) and sent through the channel
with only free-evolution noise of probability. The noisy
correction process always includes evolution as well as gate
error. When the gate and evolution errors are sufficiently
small ¢ = 1074 and~ = 2 10~ in Fig. 24), the Shor an-
cilla state with three syndromes avoids the pernicious error
accumulation over time. For the results shown in Fig. 24, be-
yond 140 time steps, the fidelity obtained with a fault-tolerant
method is better than that obtained with the simple ancilla.
More elaborate fault-tolerant strategies, the use of paral-
0.0 N T D R lelised ancilla states, or simpler circuits of interaction ancilla-
0.000 0.002 0.004 0006 0008 0.010 qubit could be more advantageous with respect to the use of
€ simple ancillas.

0.980

1.0 me—e—s

Fidelity (g, y=0.001)

FIGURE 23. Fidelity versus: for v=0.001. The encoding circuit
always is affected by gate and free evolution errors. The error cor-
rection step could be noisy (with errors) or perfect (without errors).

The qubit|gz) encoded by means of the circuit shown in Fig. 22, is . o
later corrected with the following methods: o simple andiliao, ) We already have in our hands the fundamental building-

with perfect correction stepi simple ancillaj000,) with a noisy ~ blocks to carry out a quantum computation robust to failures.
correction step and fault-tolerant method using Shor's ancilla, Given a quantum circuit, we encode each qubit by means of
with a noisy correction step. a suitable code correcting=|(d—1)/2] errors, using an en-

10.7. Concatenated quantum codes and threshold theo-
rem
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coded fault-tolerant logic that controls dispersion and erroconcatenated code can become as small as we want by adding
accumulation. After each encoded gate, we make a correas so many levels of concatenation as necessary. For the
tion in each register using a fault-tolerant error correction cir-Steane code [[7,1,3]}:» = 1/21. Although the value found
cuit. This scheme seems to permit a computation for a timéor 7, shows the method for obtaining the threshold, its
long enough to implement any quantum algorithm. We onlyvalue is not real. More elaborate treatments provige ~

need to choose a code with t large enough, since the prob&-10-* for the gate {,) and free-evolution.) error thresh-
bility that an uncorrectable error will appear in (t+1) qubits isolds [?]. For errors+,, n.) < mnw4, given a circuit, an-
O(n**1) (n being the error probability per non-encoded qubitother polynomial equivalent in size to the previous one can
and time step). Nevertheless an additional problem appearbe found that can make a sufficiently long computation. This
In order to implement codes with increasing values of t, mords in essence ththreshold theorenfi?] for quantum compu-
complex circuits and greater number of qubits are neededation.

so the small probability of error @{*!), begins to be im-

portant. The recovery circuit can introduce more errors than  BY means of the previous error model (depolarizing error
those it eliminates. channel, Secs. 6 and 10.6.6), it is possible to make a first esti-

Shor [31] studied this situation in the case of Reed-MullerMaté Of the computation threshold when L =1 (no concatena-
codes, concluding that to make T time steps with a smalio" iS used). Considering that=c ~ v, we compare the un- -
probability of error, it was necessary for the gate or time Steé:orrectable ?;;o_r probability in d|ﬂereqt cases when the qubit
error to behave like O(1/1dg). The dependence of the toler- (10) + [1))/2/% is sent through the noisy channe?? non-
able error on the number of time steps seems to prevent lorfg'c0ded qubit, 1?) perfectly encoded qubit and corrected
computations. We need codes whose t values increase mopd Means of a simple ancilla, an@? perfectly encoded
quickly than the complexity of their recovery circuits; these dubit and corrected using a fault-tolerant Shor's method. In
codes are theoncatenated quantum cod&g]. the f|r§t case, the uncorrecttable error probability after t time

The concatenated codes use an encoding hierarchy. €PS iS (1, ) = 1-(1-2)/3)", becausé” and Z errors (but ,
possible construction scheme is as follows. Each qubit is eHjOtX) produce zero f'de“,ty' The simple anC|IIa. and Shor’s
coded with a quantum code, G [[n, ,k,c]] (first encoding method takes 12 and_ 20 time steps _[?], respectively, to carry
level). The resulting qubits encoded at the first encoding levepUt the error correction after one time step of free evolu-
are encoded again with the quantum code=Q[n,,1,cb]] tion. Therefqre, the probabilities B, 12) and I?(v],_ 20) are
(second encoding level), and so on. We could say that gompared with the uncorrectable error probability obtained

concatenated code is a code within another one. The resuff‘fith methods '(’?) gnd ¢?). The results appearing in Fig.
ing code has the parameters ffa,k,d > did]]. A par- 25 show a quasi-linear behaviour fos(R, 12) (simple an-

ticular case of a concatenated code is the Shor code. fil2) @nd a complete quadratic behaviou(f 20) = a”
was created by a repetition code correcting one bit-flip er{With @ = 19151.6) when Shor’s fault-tolerant method is em-
ror [[3,1,3]] whose base i§/000), |111)}, concatenated with P!0Yed- There exists a clear crossing betwe@4(r17P20) and

a later encoding of each of the encoded qubits by means 6lf1e line H_(f’ 20) ~ 40n/3 a_tn.: 40/3? =1 1,0 . So when

a code that corrects one phase-flip error [[3,1,3]] whose basé < 7107, a clear benefit is obtained with metho@?|

is {(|0) 4 |1))®3, (J0) — |1))®3}. Although both codes have M-

distance 3 for the errors that they correct, with respect to the
set of both types of error they have distance 1. Therefore, the
resulting code is [ 1,d = 3 > 1], with a distance strictly
greater than the product of their distances, which is why it is
capable of correcting any single quantum error.

In the case of using the same code [[n,1,d]] throughout
the hierarchy, after L levels of concatenation (or encoding)
we obtain the code [[n,1, d > d’]]. In order that the code
can recover correctly, there must be fewer than (t+1) errors
(if d = 2t+1) at the first level. The error probability at the first
level P?? is bounded by:

- n n—i) i n
Po= 3o (1 )< () ) a2

i=t+1

0.012

0.010

0.008

0.006

0.004

Uncorrectable Error Probability

n being the error probability of each qubit. If t=1,
P(?? < (3)n? =Cn?. Likewise, the failure probability at

T T T [T T T T[T T T T [T T T T[T T T [TTTT

L1l ‘ L1l ‘ I ‘ L1l ‘ I | I ‘ I ‘ Ll \ I ‘
the second level fulfils ) < C (Cp?)? and when the L 00000 0.0005 0.0010
concatenation level is reached("P < (1/C)(Cn)*". If
n < 1/C=ny, (error threshold), the error probability of the n
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FIGURE 25. Non-correctable error probability comparison be- correcting codes has provided the first victory in the deco-
tween: A Pyi(n,12), o P1(n,20), A P2(n,12) simple ancilla and  herence control even when imperfect devices are used. Fur-
* Ps(1,20) fault-tolerant Shor's method. _ thermore, with a simple depolarizing error model, we have
pared to the non-encoded. This value is very close {geen aple to estimate the memory threshold (5:216elow
Presklll’§ threshold [?]. A stronger fault-tolerant threshold,,pich it is possible to greatly stabilise a qubit in the quantum
can be infered agy, = 1/a = 5.2 10°. If n < 52107,  memory. Its value is not as important as its very existence.
the error accumulation originating in the free qubit evolu-jn aqgition, it is possible to conjecture that the threshold for
tion is av0|d¢d to a great extent. Increa;mg L, the threShOkﬂ)rocess the quantum information dynamically, i.e. applying
would, certainly, decrease. Recently, Reichafiihpve used  yantum gates, would decrease this threshold by a factor less
the same [[7,1,3]] quantum code and the depolarising ermojap, ten. These values are technologically achievable, so the
model to estimate the threshold buthout memory errors  jpitia| pessimism about the possibility of making sufficiently
providing a smaller threshold (2 10-3) than the present long computations has been overcome.

one. At the moment, the correction circuits seem to be some-

Although the threshold theorem depends strongly on exjna¢ complex and expensive to be implemented experimen-
ternal considerations such as the error model, |tdemonstrat(§§"y, and it will be necessary to develop more simplified
that under certain circumstances an imperfect logic does ngfa,qqs without losing their effectiveness. In this sense,
impose a fundamental limitation for the operation of theye hniques such as the decoherence-free subspaces seem to
quantum computers. be a good way to reach these objectives.
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