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On the transformation of torques between the laboratory and center of mass
reference frames
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It is commonly stated in Newtonian Mechanics that the torque with respect to the laboratory frame is equal to the torque with respect to the
center of mass frame plus anR×F factor, withR being the position of the center of mass andF denoting the total external force. Although
this assertion is true, there is a subtlety in the demonstration that is overlooked in the textbooks. In addition, it is necessary to point out that
if the reference frame attached to the center of mass rotates with respect to certain inertial frame, the assertion is no longer true.
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En la mećanica newtoniana, es un hecho bien establecido que el torque con respecto al laboratorio es igual al torque visto por el centro de
masa ḿas un factorR×F, dondeR denota la posición del centro de masa yF la fuerza total externa. Aunque esta aseveración es correcta,
hay una sutileza en la demostración que es pasada por alto en los textos tradicionales. Adicionalmente, es necesario clarificar que si el sistema
de referencia asociado al centro de masa está en rotacíon con respecto a algún sistema inercial, dicha afirmación deja de ser cierta.

Descriptores: Torque; centro de masa; transformación de torques; fuerzas ficticias.

PACS: 01.30.Pp, 01.55.+b, 45.20.Dd

In Newtonian Mechanics, we define the total external
torque of a system ofn particles (with respect to the lab-
oratory frame that we shall assume as an inertial reference
frame) as

Next =
n∑

i=1

ri × Fi(e) ,

whereri, Fi(e) denote the position and total external force
for the ith particle. The relation between the position coor-
dinates between the laboratory (L) and center of mass (CM)
reference framesi is given by

ri = r′i + R,

with R denoting the position of the CM about the L, and
r′i denoting the position of thei−th particle with respect to
the CM, in general the prime notation denotes variables mea-
sured with respect to the CM. An standard demonstration
shows that [1]

Next =

(
n∑

i=1

r′i × Fi(e)

)
+ R× F , (1)

whereF corresponds to the total external force on the sys-
tem of particles (measured by the L). It is usually said that
the first term on the right side of Eq. (1) provides the exter-
nal torque relative to the CM. Strictly speaking, this is not
the case, sinceFi(e) is a force measured with respect to the
L system; and since the CM is not in general an inertial ref-
erence frame, the force measured by the CM is not equal to
the force in the L system. As is well known from the theory
of non-inertial systems [2], the total force on theith particle

measured about the CM reads

F′i = Fi −miACM, (2)

whereACM denotes the acceleration of the CM with respect
to the L. Taking into account that the force on theith particle
is given by the sum of the external forces plus the internal
ones, we have

F′i(e) +
n∑

k=1

F′ik = Fi(e) +
n∑

k=1

Fik −miACM, (3)

whereFik denotes the internal force on theith particle due to
thekth particle, andmi is the corresponding mass. Now, if
we take into account that the internal forces are independent
of the reference frameii, and using Eq. (3), we get

F′i(e) = Fi(e) −miACM . (4)

From Eq. (4), the external torque about the CM becomes

NCM =
n∑

i=1

r′i × F′i(e) =
n∑

i=1

r′i ×
[
Fi(e) −miACM

]

=
n∑

i=1

r′i × Fi(e) −M

(
1
M

n∑

i=1

mir′i

)
×ACM,

where the term in parentheses corresponds to the position of
the CM with respect to the CM itself; therefore it clearly van-
ishes, from which we see that

n∑

i=1

r′i × Fi(e) =
n∑

i=1

r′i × F′i(e) = NCM , (5)
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and replacing Eq. (5) in Eq. (1), we get

Next =

(
n∑

i=1

r′i × F′i(ext)

)
+ R× F . (6)

From Eq. (6) we can assert thatthe total external torque
about the laboratory is equal to the external torque about
the center of mass plus the torque equivalent to a particle
located at the position of the center of mass undergoing the
total external force of the system of particles.

This coincides with the assertion given in common texts.
However, this statement follows from Eq. (6) and not from
Eq. (1), as appears in the literature. Moreover, as it is clear
from the development above, the demonstration of Eq. (5) is
the clue to making this statement. In turn, Eq. (5) is satis-
fied because the fictitious forces do not contribute to the total
external torque.

Finally, this clarification is also necessary in order to es-
tablish the equation

dLCM

dt
= NCM ,

with LCM denoting the total angular momentum of the system
of particles about the CM. As is well known, this equation is
valid even if the center of mass is a non-inertial system of
reference [1], in which case the fictitious forces should be
included in the demonstration.
Example 1 Let us consider the case of a yo-yo of massM
and radiusb which drops, unwinding by means of a string,
as shown in Fig. 1a. In a system of reference located atO,
the forces over the yo-yo are the weight and the tension, both
of which produces a torque, and the problem is quite com-
plicated. In the system of reference of the CM, we have an
additional fictitious force. The weight has null torque, the
tension gives a torque ofbT k̂, and the torque associated with
the fictitious force can be written as

Nfict = −
∫

dm r′ × aCM,

whereaCM denotes the acceleration of the CM with respect
to O. FactorizingaCM, we getNfict = −MR′ × aCM = 0,
and hence the fictitious torque vanishes. Therefore we get the
result usually found in textbooks

Mg − T −Ma = 0,
dLCM.

dt
= I

dω

dt
= bT k̂.

Although the result is the same as in the literature, the cor-
rect procedure requires taking into account the fact that the
system of reference attached to the CM is non-inertial.

In the case in which the acceleration of the center of mass
is constant, we can relate the fact that the fictitious forces
do not produce torque, to the principle of equivalence. Ac-
cording to this principle, the resultant fictitious force on the
system of particles is equivalent to a weight due to a uniform
gravitational field. Consequently, it appears as a gravity force
acting on the CM (see Sec. 8.4 in Ref. 2), and therefore the

FIGURE 1. (a) A yo-yo unwinding from a string. Its CM is accel-
erated with respect to an inertial reference frame. (b) A physical
pendulum hanging from a fixed pointO. The system attached toO
is considered inertial, while the system associated with the CM is
in relative translation with respect to the latter. In this case, the
acceleration of the CM is not constant, but still the fictitious force
associated with the CM system does not give a torque.

torque with respect to the CM is clearly zero. Nevertheless,
we point out that, according to our demostration, the torque
due to the fictitious forces vanishes even if the acceleration
ACM is not constant, in which case the equivalence princi-
ple does not hold. Fig. 2b shows a system in which the CM
reference frame is in relative translation with respect to an
inertial frame; in this case, the torque associated with the fic-
titious force vanishes, althoughACM is not constant and the
equivalence principle cannot be applied.

In the previous treatment, we have implicitly assumed
that the center of mass reference frame defines coordinate
axes that are only in relative translation with respect to the
inertial system. Now let us assume that the center of mass
is at rest with respect to a certain inertial frame, but that the
axes of coordinates associated with the CM defines a rotating
system with angular velocityΩ with respect to the coordinate
axes of the inertial frame. As is well known, the vectors of
position coincide in both systems of reference (i.e. r′i = ri),
but not their time derivatives. The total torque on the system
is

N′
total =

n∑

i=1

ri × F′i =
n∑

i=1

ri

×



n∑

i 6=k

Fik + Fi(e) − 2miΩ×v′i −miΩ× (Ω× ri)


 (7)

where
∑n

i6=k Fik +Fi(e) defines the force on theith particle,
measured by the inertial reference frame, and−2miΩ× v

′
i,

−miΩ× (Ω× ri) refers to the coriolis and centrifugal
forces respectively. For simplicity, we shall assume that
the internal forces are central and that they depend on rela-
tive positions only (and not on relative velocities or higher
time derivatives), so that the torque associated with the inter-
nal forces vanishes, and only the external torque contributes,
yielding
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FIGURE 2. (a) Aerial view of a couple of identical beads sliding
along a rotating wire. TheZ-axis is off of the paper. The centrifu-
gal and coriolis forces are indicated in the diagram. (b) Two identi-
cal particles joined by a thin rod of negligible mass, and rotating at
constant angular velocityω; the centrifugal forces are indicated in
the diagram, and no coriolis force appears in a system that rotates
with the particles. In both diagrams we show only the fictitious
forces.

N′
ext =

n∑

i=1

ri ×
[
Fi(e) − 2miΩ× v′i −miΩ× (Ω× ri)

]

= Next + Nfict

with

Nfict = −
n∑

i=1

{miri × [2Ω× v′i + Ω× (Ω× ri)]} (8)

Eq. (8) shows that in the most general case, the fictitious
forces could produce a torque. Let us illustrate this point
with the following example.
Example 2 A couple of identical beads are sliding without
friction along a rigid wire (of negligible mass) rotating at
constant angular speedω (see Fig. 2a). In this case, the CM
of the system is at rest with respect to an inertial frame. But
we can define a rotating system with the origin at the CM and
rotating with the wire. The coriolis and centrifugal forces on
each bead are plotted in Fig. 2a. Since we are interested in
the torque produced by fictitious forces only, we do not con-
sider the torque coming from the (real) normal force. Assum-
ing the axis of rotation to be along with thez-axis, we obtain

FIGURE 3. In both figures, the car has an accelerationA and we
assume 2 dimensional reference frames for simplicity: (a) The thin
stick is at rest with respect to the car. The acceleration of the CM
of the thin stick is preciselyA, and the system of referenceS” has
the same acceleration. However the origin ofS” does not lie at
the CM of the stick. It can be shown that, in this case, the ficti-
tious force produces a torque. (b) The stick is oscillating around
its equilibrium position. In this case, the acceleration ofS” does
not coincide with the acceleration of the center of mass of the stick.
Once again, there is a torque associated with the fictitious force.

Nfict = r1 × (Fcor,1 + Fcent,1) + r2 × (Fcor,2 + Fcent,2) .

The centrifugal forces are parallel to the corresponding vec-
tors of position so that their contribution vanish, we also see
thatr2 = −r1 andFcor,2 = −Fcor,1 and the fictitious torque
becomes

Nfict = 2r1 × Fcor,1 = −2r1ωv′1k̂ = −2r1ṙ1ωk̂.

The values ofr1, ṙ1 can be calculated to be (see example 8.7
in Ref. [2])

r1 = Aeωt + Be−ωt ; ṙ1 = ω
(
Aeωt −Be−ωt

)
,

and the fictitious torques do not vanish. It is not difficult to
find examples in which the centrifugal force could also con-
tribute to the fictitious torque. The reader could try with the
system described by Fig 2b.

In conclusion, we can state that

Next = NCM + R× Fext;
dLCM

dt
= NCM

only if the system of reference attached to the CM is not in
relative rotation with respect to a certain inertial frame. It is
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related to the fact that the fictitious forces produced by rela-
tive accelerated translation do not produce torque, while the
fictitious forces associated with relative rotation do.

A final comment about a more general framework; let
us assume a non-inertial system (denoted byS”) in relative
translation with respect to an inertial frame. If the accelera-
tion of S” coincides withACM, but the origin ofS” is not

located at the CM, the fictitious forces associated withS” do
produce a torque; Fig. 3a shows an example. In addition, if
the acceleration ofS” is not the same as the acceleration of
the CM, the fictitious forces associated withS” also produce
a torque, as shown in Fig. 3b. These fictitious torques can
be calculated by assuming that the resultant fictitious force is
applied to the CM even ifACM depends on time.

i. For the center of mass reference frame we mean a system of ref-
erence whose origin lies at the CM, at that is in relative transla-
tion (but not in relative rotation) with respect to certain inertial
frame.

ii. In the case of central internal forces, it is clear since they are
functions of the relative positions among different pairs of par-
ticles. Nevertheless, even in the case in which the forces are not
central, they depend on relative positions, relative velocities,

relative accelerations etc., so that the invariance under different
frames still holds.
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