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Observing nanostructures with the Bohr-Heisenberg microscope: a subject for
introductory modern physics courses
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In this work we obtain the ground state energy of the infinite potential well using a quantum concept such as the Bohr-Heisenberg microscope
prevailing before the advent of the formalization of quantum mechanics and the uncertainty principle. Such energy value is equal to that
obtained using formal quantum mechanics. We used this result to estimate the size of novel quantum structures such as the so called
nanostructures or quantum wells, currently under study in solid state physics. This idea could be useful in teaching undergraduate introductory
modern physics courses.
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En este trabajo se muestra la energı́a de estado base de un pozo de potencial infinito, usando un concepto cuántico tal como el del microscopio
Bohr-Heisenberg, que prevalecı́a hasta antes de la formalización de la mećanica cúantica y del principio de incertidumbre. El resultado del
valor de la enerǵıa es igual al obtenido por medio del uso de mecánica cúantica formal, y es usado para estimar el tamaño de nuevas
estructuras cúanticas, tales como las nanoestructuras o los pozos cuánticos, que actualmente se encuentran en el campo de estudio de la fı́sica
de estado śolido. Esta idea seria de gran utilidad para fines didácticos dentro de los cursos universitarios de fı́sica moderna introductoria.
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1. Introduction

Before the advent of the formal development of quantum me-
chanics, a few simple, fundamental problems were worked
out exactly. It was the case of the Bohr atomic model for
the hydrogen atom. This kind of problem is treated in quan-
tum mechanics and modern physics textbooks prior to the in-
troduction of Schr̈odinger’s equation with which more rigor-
ous and general solutions can be obtained than those using
the primitive approach. In this work we obtain the ground
state energy of an infinite potential well using pre-quantum
mechanics ideas only. We consider a gedanken experiment
of a photon incident on a particle being observed through a
microscope (the “Bohr-Heisenberg” Microscope). This was
conceived by Bohr and for the first time conveyed Heisenberg
uncertainty principle, which was later formalized within the
framework of quantum mechanics.

In the first studies of quantum mechanics courses a sim-
ple expression is used: the relation of the Heisenberg uncer-
tainty principle to obtain information of a complex problem,
the ground state of the hydrogen atom for instance.

The calculations presented here to determine the ground
state of an infinite potential well are quite simple, and to our
knowledge are not found in the literature.

This could stand as another pre-quantum mechanics ex-
ample to be included in introductory textbooks [1-3] on the
subject for students not familiar with the uncertainty princi-
ple. Also, it could serve to introduce the concept of an infi-
nite potential well later treated with Schrödinger’s equation.
We know that most standard text books on quantum mechan-
ics usually discuss three problems with exact analytical so-

lutions: the infinite potential well, the harmonic oscillator
and the hydrogen atom [4]. It is possible to find out other
problems with an exact analytical solution in the research lit-
erature [5,6], one of them an interesting problem of systems
with position dependent massesi.e. m(x), (m mass and x
position) [6].The infinite potential problem is not calculated
in a simple form and is not handled in books that we men-
tion above, but appeals to the uncertainty principle because
it is reasonable to identify the position uncertainty with the
length of the well and the momentum uncertainty through the
kinetic energy of the trapped particle, but this gives us only
an approximate value. The approach presented here with pre-
quantum mechanics ideas, similarly to the Bohr atom in the
case of the hydrogen atom, gives us the exact value. This is
valuable teaching tool as an introducing in the classroom or
a textbook.

As an interesting application of the result obtained, we
use it in nanostructures studied at the present time in solid
state physics using quantum wells.

2. Theory

The idea of Bohr regarding the measurement of the position
and the momentum of a particle, “seeing it” through an op-
tic microscope, served “to deduce” Heisenberg’s uncertainty
principle and to present it in a graphic way, mainly for didac-
tic purposes.

On the other hand, the Heisenberg’s uncertainty princi-
ple is presented in elementary physics texts [3] and has been
used to obtain the order of magnitude of the ground state of
the hydrogen atom.
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FIGURE 1. Seeing a particle in a potential well using the Bohr-
Heisenberg Microscope.

Although with less accuracy, approximate values can be
obtained for the energy states on diverse problems. For a
one dimensional infinite square well of longitude L, Fig. 1,
a gross approximation is obtained, but using the Bohr-
Heisenberg microscope, we will obtain the exact value.

The resolving power of a microscope [7] gives us that the
separation distance for which two objects can just be resolved
is:

∆x =
λ

2 sin α
(1)

whereα is the half- angle subtended by the aperture.
Doing the deduction of the ground state of the infinite

potential well, suppose a photon is incident upon a parti-
cle trapped in a potential well with infinite walls as shown
in Fig. 1. An observer looking though an ideal microscope
needs, we assume only one photon to view the scene and
make measurements. The momentum associated with the
photon is given by the De Broglie relationship

P =
h

λ
(2)

i.e. Planck’s constant over the wavelength of the photon. The
photon is scattered by the particle within a cone of angle 2α.
By conservation of momentum the uncertainty in the momen-
tum of the particle after the scattering must be at least equal
to the scattered photon, if the total momentum of the photon
is P, then:

Px = P sinα =
h sinα

λ
(3)

Px is the x component of the momentum of the scattered pho-
ton.

Since the x component of the photon momentum can be
known exactly before the collision, the conservation of mo-
mentum requires that the trapped particle acquire a momen-
tum of magnitude∆Px equivalent to the magnitude of the
photon’s momentum, that is:

∆Px =
h sin α

λ
(4)

The uncertainty in x is the resolution between points of
the observed object, from optics: it is the wavelength of the
electromagnetic radiation over sinα of the same angle appear-
ing in Eq. (1).

Thus, the product of the uncertainties in x andPx at the
moment of observation is

∆x∆Px =
h

2
(5)

This relation is in accordance with the Heisenberg’s un-
certainty principle.

To calculate the ground state of the particle trapped in a
well of width L, we use the uncertainty in∆x equal to L.
From (5) the uncertainty in momentum is

∆Px =
h

2L

So the ground state energy of the potential well with
width L is:

E =
(∆Px)2

2m
=

h2

8mL2
(6)

But the value of Eq. (6) corresponds to the ground state of an
infinite potential well [4].

An important consequence of the use of the uncertainty
principle is that a particle confined to a small space cannot
have zero energy, as is shown by quantum mechanics.

The concept of an infinite well barrier means physically
that the trapped particle has much smaller energy than the
size of the well barrier.

To apply the result to a quantum well, we consider an
electron moving in a nanostructure (with quantum size ef-
fects) confining this electron in a region L. In particular, in
semiconductor materials we observe this quantum confine-
ment by absorption and emission of light, that is, by its opti-
cal properties.

What is the dimension of that system for an electron mov-
ing at T temperature?. The electron moves only in one direc-
tion. Using the energy equipartition principle, it has energy of
the order of1/2(kT ), where k is the Boltzman constant [8];
thus, using the last equation, L is:

L =
1
2

h√
mkT

(7)

In a semiconductor, the electron is not free, but bounded
to the periodic potential of the crystal it is possible to
represent that movement in a simple form; it’s inertia
to move is simulated with a “different mass” moving
with an equivalent mass m* in the semiconductor. This
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statement is rigorously demonstrated in solid state text-
books [9]; a typical value is m* = 0.1mo. At room tempera-
ture kT = 1/40 electron Volts (eV.). With these values we find
that we must have L approximately 10 nanometers; this is the
origin of the nanostructure word that is a structure nanome-
ters large. Thus a “thin semiconductor layer of thickness of
1 micrometer is not thin for purposes of confinement. It is
in fact a crystal which would not exhibit any quantum size
effects. To observe quantum size effects, we require thinner
layers.

The very small crystal dimensions required to observe
quantum confinement in semiconductors are calculated in
laboratory, using optical spectroscopy, observing the light ab-
sorption due to electron transition from the ground state to an
excited state. The theoretical knowledge of the excited state
is possible using quantum mechanics methods [10].

The ground state of a 10 nm GaAs quantum well using the
energy value for the infinite well has a value of 57 meV. [11];
a more realistic value according to the experiment is 32 meV,
which is obtained using a finite potential well. We have this
result only using quantum mechanics methods [12].

Although in this problem, the infinite well model overes-
timates the confinement energies, it is a useful starting point
for the discussion of the physics because of its simplicity. For
more exactly values it is necessary to use the Schroedinger
equation of Quantum Mechanics, see [13].

It is possible to make a nanostructure system with semi-
conductor doped glasses, such as CdS, ZnS, if they are intro-
duced into the glass during the melting process, microcrys-

tals are formed within the glass matrix. The dimensions of
the microcrystals depend on the way the glass is produced.
With careful preparation is possible to make nanocrystals
with good size and uniformity [11].

3. Conclusion

The expression for the product of position and momentum
obtained using the Bohr-Heisenberg microscope is a previous
resemblance of the formal uncertainty principle of Quantum
Mechanics, and in agreement with it, and could be useful for
introduce the first time in elementary modern physics courses
to the basic idea of the uncertainty principle and knowing the
infinite potential well and the exact value of the ground state
of energy. Besides the application introduced here have an
idea of modern systems handled in solid state physics such
as a quantum well.

The treatment of basic problems in Quantum Mechanics,
using simple arguments gives to undergraduate students, in
first courses of Modern Physics in Engineering, Chemistry
and Physics Programs, the opportunity of obtain a general
knowledge of them and a first idea of novel systems handled
currenty in solid state physics.
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