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We discuss here Kovalevskaya’s integrable case of a rigid body, with a symmetric inertia moment, with half the value for the different of
inertia moment, and the position of the center of mass and fixed point both placed on a plane orthogonal to the axis of symmetry. We
introduce an auxiliary vector space that is a function of two complex conjugate variables and enables ys to simplify many of the calculations
necessary to separate the variables in the explicit solution of the Kovalevskaya top. This vector space plays an important role in the study of
the elliptic integrals and in particular, in the use Kovalevskaya made of the theory of elliptic integrals.
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Se revisa el caso integrable de Kovalevskaya para el movimiento de un cuerpo rı́gido con una matriz de inercia simétrica, cuyo momento
principal de inercia diferente tiene la mitad del valor de los otros dos momentos iguales, y cuya posición del centro de masa se encuentra en
el plano perpendicular al eje de simetrı́a. Se ha introducido un espacio vectorial auxiliar que es función de dos variables complejo conjugadas
y permite simplificar muchos de los cálculos necesarios para separar las variables en la solución expĺıcita del trompo de Kovalevskaya. Este
espacio vectorial juega un papel importante en el estudio de las integrales elı́pticas y en particular, en el uso que hizo Kovalevskaya de la
teoŕıa de integrales elı́pticas.

Descriptores: Cuerpo ŕıgido; solucíon de Kovalevskaya.

PACS: 03.20.+i; 46.10.+z

1. Introduction

In 1888, Sophia Kovalevskaya was awarded the Bordin price
by the Paris Acad́emie des Sciences for her discovery of a
new integrable case of dynamics of the rigid body in the field
of constant gravity. An extract of her work [1] was published
in Acta Mathematica the folowing year. In the present pa-
per we are interested in giving a new approach to the Ko-
valevskaya methods, from a pedestrian point of view. Previ-
ous work on this line [2] will be improved in this publication.

One of the fundamental problems in Classical Mechanics
is the movement of a rigid body. Among the few integrable
cases of this rigid body motion, that due to Kovalevskaya
possesses a great deal of richness and complexity. The un-
derstanding of the solutions in this case is very important in
order to complete the other two better-known cases of Euler
and Lagrange. We shall start with Euler’s and Poisson equa-
tions for a rigid body in dimensionless form, and then find
a vector basis and a constant matrix which will allow us to
do the separation of the variables for the Kovalevskaya top
with economy and simplicity in the algebra involved. We be-
lieve this approach to the Kovalevskaya’s problem is novel
and original. Lastly, the particular solution in which the Ko-
valevskaya constant is equal to zero will be analyzed.

Euler equations for the dynamics of a rigid body in the
body frame are [3]

Iω̇ + ω × Iω = N, (1)

whereω is the angular velocity vector,I is the inertia matrix,
andN the torque vector, and a dot on a letter denotes the time
derivative.

We consider the rigid body with a fixed point. The me-
chanic problem consists in determining the rotation around
this fixed point by means of a rotation matrixR. The velocity
of this rotation matrix is related to the angular velocity in the
body frame according to

Ṙ = Rω × . (2)

Assuming the force on any particle of the rigid body to be
the constant gravity, one finds [2] the expression of the torque
in the body frame

N = −mgda× u, (3)

wherem is the mass of the body,g is the gravity constant
acceleration,d is the distance from the fixed point to the cen-
ter of mass of the body,a is the constant unit vector pointing
from the fixed pointto the center of mass in the body frame,
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andu are the components of the time dependent unit vector
in the opposite direction to the force of gravity in the body
frame. This unit vector is rotated to a constant directionk
along the vertical in the inertial frame by means of

k =




0
0
1


 = Ru. (4)

The time derivative of this constant is zero, and using
Eq. (2) we find the Poisson equation [4]

u̇ = u× ω. (5)

Equations (1) and (5) form a system of six equations for
the six quantitiesω andu with three constants of motion.
These constants are: the unit character of vectoru:

1 = uTu, (6)

the superscript T denoting the transpose vector or matrix; the
conserved energyh

h =
1
2
ωTIω + mgdaTu; (7)

the conserved angular momentum component along the force
that is

` = uTIω. (8)

In order to solve the system of six equations some other
independent constant of motion must be found. In this a case,
the rotation matrix can be found using either Piña parametiza-
tion [5] or any other equivalent method. Piña parametization
is written in terms of the vectors k and u, which are assumed
to be known, and an angleγ : R(k,u, γ). This last is de-
termined from the expression for angular velocity in these
coordinates,

ω =
1

1 + kTu
[u̇× (u + k)] + γ̇u. (9)

Note that (in a Lagrange formalism of mechanics)γ is a
cyclic variable in these coordinates and the constant of mo-
tion ` is the conjugate momentum toγ.

In the Kovalevskaya case [1] one assumes the moment in-
ertia of to be a symmetric one and the principal moments of
inertia can be written as

(I1, I2, I3) = D(2, 2, 1), (10)

with two equal moments of inertia and the different moment
of inertia being half the value of the other two. Kovalevskaya
also assumed the unit vector a is in the plane of the two equal
moments inertia, for example, we choose

a =




1
0
0


 . (11)

We write the Euler equations of motion for this Ko-
valevskaya case using the unit of time pD=mgd, and we find

2ω̇1ω2ω3 = 0, (12)

ω2 + ω1ω3 = u3, (13)

and

ω̇3 = −u2. (14)

The Poisson equations (5) are the same, with components
we write as

u̇1 = u2ω3 − u3ω2, (15)

u̇2 = u3ω1 − u1ω3, (16)

and

u̇3 = u1ω2 − u2ω1. (17)

The energy constant, in units ofmgd, becomes

h = ω2
1 + ω2

2 +
1
2
ω2

3 + u1. (18)

The constant component of the angular momentum vec-
tor, written also in dimensionless quantities, is in this case

` = 2ω1u1 + 2ω2u2 + ω3u3. (19)

To obtain the fourth constant of motion, it is convenient
to use the variablesu1 + iu2 andω1 + iω2 with the equations
of motion

d

dt
(u1 + iu2) = iu3(ω1 + iω2)− iω3(u1 + iu2), (20)

and

2
d

dt
(ω1 + iω2) + iω3(ω1 + iω2) = iu3. (21)

Clearing outiu3 between these two equations, one has

d

dt
[(ω1 + iω2)2 − (u1 + iu2)]

= −iω3[(ω1 + iω2)2 − (u1 + iu2)]. (22)

From this, and its complex conjugate one obtains the Ko-
valevskaya constant of motion

[(ω1+iω2)2−(u1+iu2)][(ω1−iω2)2−(u1−iu2)]=k2. (23)
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2. The first steps in the Kovalevskaya solution

To study the motion of the Kovaleskaya top [1-7] one intro-
duces a complex variable

ξ = (ω1 + iω2)2 − (u1+iu2), (24)

and its complex conjugateη; the Kovaleskaya constant is the
product of both,

k2 = ξη. (25)

The system is solved in terms of the complex variable

x = ω1 + iω2, (26)

and its complex conjugatey.
Using this notation, from the energy conservation Eq. (7)

one getsω2
3 . The ` constant in (8) yields−u3ω3; and we

expressu2
3 from the Eq. (6) grouped as




ω2
3

−ω3u3

u2
3


 = ξ




1
−y
y2


 + η




1
−x
x2




+




2h− (x + y)2

−` + xy(x + y)
1− k2 − x2y2


 , (27)

that is expressed in vector form to group the Kovalevskaya
equations in a form suitable for introducing an auxiliary vec-
tor space, as we shall see in the next equations.

The independent variablesx andy are subjected to the
equations of motion

2ẋ = −i(ω3x− u3), 2ẏ = i(ω3y − u3). (28)

Consequently, it is important to consider the squares and
products inside parentheses on the right sides of the equations
(28), namely

(ω3x− u3)2 =
(
ω2

3 −ω3u3u
2
3

)



x2

2x

1


 , (29)

(ω3x− u3)(ω3y − u3) =
(
ω2

3 −ω3u3 u2
3

)

×



xy
x + y

1


 , (30)

(ω3y − u3)2 =
(
ω2

3 −ω3u3 u2
3

)



y2

2y
1


 . (31)

We note that vector (27) appears in transposed form in the
three previous equations, contracted with three important
vectors. On the right side of these equations, we recognize a
basis of vectors which are linearly independent whenx 6= y,

b1 =




x2

2x
1


 , b0 =




xy
x + y

1


 , b2 =




y2

2y
1


 . (32)

This basis is used in this and the following sections, with
much economy in the algebra of the transformation of the

variables of the Kovaleskaya top. This is our main contribu-
tion to this problem.

Related to this basis, we found the constant matrix

Q =




0 0 2
0 −1 0
2 0 0


 , (33)

which has many useful properties in this paper.
There are also the properties

bT
1 Qb1 = bT

2 Qb2 = bT
0 Qb2 = bT

0 Qb1 = 0. (34)

The transpose equations also hold sinceQ is a symmetric
matrix

bT
1 Qb0 = bT

2 Qb0 = 0. (35)

Besides there are the properties

bT
0 Qb0 = −(x− y)2, (36)

and

bT
1 Qb2 = bT

2 Qb1 = 2(x− y)2. (37)

In additon vectors appearing in (27) may be expressed in
terms of the same vector space as

1
2
Qb1 =




1
−x
x2


 ,

1
2
Qb2 =




1
−y
y2


 . (38)

The algebra of the scalar products in (29–31) is now sim-
plified to give

(ω3x− u3)2 = ξ(x− y)2 + R(x), (39)

(ω3y − u3)2 = η(x− y)2 + R(y), (40)

and

(ω3x− u3)(ω3y − u3) = R(x, y), (41)

whereR(x) is the four order polynomial

R(x) = −x4 + 2hx2 − 2`x + 1− k2, (42)

and

R(x, y) = −x2y2 + 2hxy − `(x + y) + 1− k2. (43)

These functions will also be expressed in terms of the vectors
defined in our auxiliary space, after we present the theory of
the elliptic integrals in the next section, where these functions
are generalized.

An important relation that will be used to write theξ andη
variables in terms of x and y can be obtained by realizing that
the square of (41) is equal to the product of (39) times (40);
that is

R2(x, y) = R(x)R(y) + (x− y)2[ξR(y) + ηR(x)]

+k2(x− y)4, (44)

where we have used (25).
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The use of these properties allows us to write

(
ω3x− u3√

R(x)
± ω3y − u3√

R(y)

)2

=
(x− y)4

R(x)R(y)





[
R(x, y)±

√
R(x)

√
R(y)

(x− y)2

]2

− k2



 , (45)

which results in the equations

ẋ√
R(x)

− ẏ√
R(y)

=
i

2
ω3y − u3√

R(y)
+

i

2
ω3x− u3√

R(x)
=

i

2
(x− y)2√
R(x)R(y)





[
R(x, y) +

√
R(x)

√
R(y)

(x− y)2

]2

− k2



 , (46)

and

ẋ√
R(x)

+
ẏ√
R(y)

=
i

2
ω3y − u3√

R(y)
− i

2
ω3x− u3√

R(x)
=

i

2
(x− y)2√
R(x)R(y)





[
R(x, y)−

√
R(x)

√
R(y)

(x− y)2

]2

− k2



 , (47)

To separate the variables Kovalevskaya uses the algebra of
the elliptic integrals of first order, which we develop in the
next section by using the auxiliary vector space introduced
above.

3. The algebra of the elliptic integrals of first
order

The transformation theory of elliptic integrals can be used
also with many other purposes than just the separation of
variables in the Kovaleskaya’s problem. For this reason we
present, in this section, the use we made of our auxiliary vec-
tor space to present this algebra in a more general context
that is necessary. We postpone for the next section the choice
of the particular parameters that adjust to the Kovalevskaya
case.

In this section, we consider the first order elliptic integrals
∫

dx√
R(x)

, (48)

whereR(x) is the fourth order polynomial

R(x)=Ax4+4Bx3+6Cx2+4B′x+A′

=(x2 2x 1)




A B C − 2λ
B C + λ B′

C − 2λ B′ A′







x2

2x
1


 , (49)

with λ an arbitrary parameter, multiplying the matrixQ of
the previous section that does not contribute to the polyno-
mial R(x). It has been written in terms of the symmetric
matrixM

M =




A B C
B C B′

C B′ A′


 , (50)

with entries that are related to the coefficients of the different
powers of the polynomial. Notice that we are using the same
notation for this polynomial and the polynomial used in the
Kovaleskaya case that will be identified until the next section.

We want to place emphasis on the fact that our auxiliary
vector space, including ourQ matrix, play an important role
in this theory of elliptic integrals.

We form the bilinear transformation of the integration
variable

x =
αz + β

γz + δ
(αδ − βγ = 1), (51)

whereα, β, γ, δ, are real or complex numbers. The inte-
gral (48) is transformed into another elliptic integral of first
order

∫
dz

R̃(z)
, (52)

whereR̃(z) is a third or fourth order polynomial obtained
from




x2

2x
1


 =

1
(γz+δ)2




α2 αβ β2

2αγ αδ+βγ 2βδ
γ2 γδ δ2







z2

2z
1


 (53)

The factor1/(γz+δ)2 does not appear (outside the root),
since it is canceled by the same factor from the differential

dx =
dz

(γz + δ)2
. (54)

We note that the matrix Q remains invariant with respect
to the transformation of the matrix in (53), whereas matrix M
is transformed according to

M̃ =




Ã B̃ C̃

B̃ C̃ B̃′

C̃ B̃′ Ã′


 =




α2 2αγ γ2

αβ αδ + βγ γδ
β2 2βδδ2




×M




α2 αβ β2

2αγ αδ + βγ 2βδ
γ2 γδ δ2


 , (55)
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To give the coefficients of the transformed polynomial, we
have

R̃(z) = (z2 2z 1)(M̃ − λQ)




z2

2z
1


 . (56)

The determinant of the square matrix in (53) is equal to 1
and one has the invariance

|M̃ − λQ| = |M − λQ| = −4λ3 + g2λ + g3, (57)

with the two invariants

g2 = AA′ − 4BB′ + 3C2, (58)

and

g3 = ACA′ + 2BCB′ −A′B2 −AB′2 − C3. (59)

Matrix MQ−1 satisfies the characteristic equation forλ,
when expression (57) is equal to zero; therefore we have the
matrix equation

4MQ−1MQ−1M = g2M + g3Q, (60)

whereQ−1 is equal to

Q−1 =




0 0 1/2
0 −1 0

1/2 0 0


 . (61)

We again use the auxiliary vector space with the basis of
the three vectors b1, b0, b2 that were found in the previous
section; the y is considered here a constant parameter.

We find the non trivial representation for matrixQ−1 in
terms of this basis

Q−1 =
1

(x− y)2

(
1
2
b1bT

2 + b2bT
1 +

1
2
b0bT

0

)
, (62)

which will be used in (60).
We have compact expressions for polynomialR(x) in

terms of our auxiliary vector space as stated above:

R(x) = bT
1 Mb1, (63)

and also

R(y) = bT
2 Mb2, (64)

and define other functions in terms of the same linear algebra

N(x, y) = bT
1 Mb2 = bT

2 Mb1 = bT
0 Mb0. (65)

The Weierstrass theory of elliptic integrals proposes a
more general transformation than the bilinear one, namely

s =
N(x, y)±

√
R(x)R(y)

2(x− y)2
. (66)

It follows that the standard form of the elliptic integral
∫

dx√
R(x)

=
∫

ds√
4s3 − g2s− g3

, (67)

is independent of the value chosen fory.
The proof that (66) implies (67) is done in several stages.

We define two other functions in the same auxiliary algebra
of our basis

P02(x, y) = P01(y, x) = bT
0 Mb2, (68)

and

P01(x, y) = P02(y, x) = bT
0 Mb1. (69)

The Taylor series expansion of functionsN(x, y) and
P02(x, y) in the neighborhood ofx = y are (to all orders)

N(x, y) = R(y) +
x− y

2
R′(y) +

(x− y)2

12
R′′(y), (70)

and

P02(x, y) = R(y) +
x− y

4
R′(y), (71)

which become

P01(x, y) = P02(y, x) = R(x)− x− y

4
R′(x). (72)

We now take the differential of (66) to obtain

ds =
dx

2(x− y)4

{
(x− y)2

[
N ′(x, y)± R′(x)

√
R(y)

2
√

R(x)

]
−

[
N(x, y)±

√
R(x)R(y)

]
2(x− y)

}
=

dx√
R(x)

1
(x− y)3

×
{√

R(x)
[
R′(y)

x−y

4
+

x−y

12
R′′(y)−R(y)−x−y

2
R′(x)− (x−y)2

12
R′′(y)

]
±

√
R(y)

[
R′(x)

x−y

4
−R(x)

]}

=
dx√
R(x)

1
(x− y)3

[
−

√
R(x)P02(x− y)∓

√
R(y)P01(x, y)

]
(73)
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The demonstration of (67) comes from this equation pro-
vided one can prove that

4s3 − g2s− g3 =
1

(x− y)6

×
[
−

√
R(x)P02(x, y)±

√
R(y)P01(x, y)

]2

, (74)

which in its turn needs the proof of both,

N3(x, y) + 3R(x)R(y)N(x, y)− 2P01(x, y)R(y)

−2P02(x, y)R(x)=g2N(x, y)(x−y)4+2g3(x−y)6, (75)

and

3N2(x, y) + R(x)R(y)− 4P01(x, y)P02(x, y)

= g2(x− y)4. (76)

To deduce Eq. (75), we substitute (62) in (60) and we multi-
ply on the left and right by vectorsbT

1 andb2, respectively.
Equation (76) results in a similar way if we multiply

Eq. (62) by vectorsbT
1 andb1, respectively.

We notice that the algebra associated with the auxiliary
vector space of our basis permeates all the equations of these
transformations and provides a simple linear algebraic deduc-
tion of many apparently wild expressions.

Wheny is a root of the polynomialR(x), R(y) = 0, then

N(x, y) =
x− y

2
R′(y) +

(x− y)2

12
R′′(y), (77)

and transformation (66) becomes the bilinear transformation

s(x) =
R′(y)

4(x− y)
+

R′′(y)
24

. (78)

4. Separable coordinates

The previous algebra was used by Kovaleskaya to separate
equations (46) and (47). PolynomialR(z) in the previous
section is particularized to Kovalevskaya’s case by choosing
the constants in the polynomial according to

A=−1, B=0, C=
h

3
, B′=− `

2
, A′=1−k2. (79)

The invariantsg2 andg3 become

g2 = k2 − 1 + h2/3, (80)

and

g3 = (k2 − 1)h/3 + `2/4− h3/27. (81)

We also have the property

N(x, y) = R(x, y) +
h

3
(x− y)2. (82)

Transformation (66) is used with both signs, allowing pa-
rameter y to be the complex conjugate of x, to define two new
coordinates

s1 =
R(x, y)−

√
R(x)R(y)

2(x− y)2
+

h

6
, (83)

s2 =
R(x, y) +

√
R(x)R(y)

2(x− y)2
+

h

6
. (84)

Instead of relation (67) where y was considered constant,
one has now have

ṡ1√
4s3

1 − g2s1 − g3

=
ẋ√
R(x)

+
ẏ√
R(y)

(85)

ṡ2√
4s3

2 − g2s2 − g3

= − ẋ√
R(x)

+
ẏ√
R(y)

(86)

Transforming the right hand side of equations (46) and (47)
for the new coordinates, they become

ṡ1√
4s3

1 − g2s1 − g3

= i

√
(s1 − h/6)2 − k2

s2 − s1
(87)

ṡ2√
4s3

2 − g2s2 − g3

= i

√
(s2 − h/6)2 − k2

s2 − s1
(88)

Using the polynomial

φ(s) = (4s3 − g2s− g3)[(s− h/6)2 − k2], (89)

the coordinatess1 ands2 can be separated in the symmetric
form

ṡ1√
φ(s1)

− ṡ2√
φ(s2)

= 0, (90)

s1ṡ1√
φ(s1)

+
s2ṡ2√
φ(s2)

= 1. (91)

5. The navel of the Kovaleskaya top

The minimum value of the Kovalevskaya constant is zero.
For this particular case, each factor in equation (25) is zero,
and we have

(ω1 + iω2)2 = (u1 + iu2). (92)

Separating the real and imaginary parts, we have

u1 = ω2 − 1− ω2
2 , (93)

and

u2 = 2ω1ω2. (94)

Equations (12) and (13) are dependent in this case from
Eqs. (15) and (16), and there remain only four independent
equations for the quantitiesω1, ω2, ω3, andu3

2ω̇1 = ω2ω3, (95)

2ω̇2 = −ω1ω3 + u3, (96)

ω̇3 = −2ω1ω2, (97)
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and

u̇3 = −ω2(ω2
1 + ω2

2). (98)

The constants of motion acquire new expressions, the en-
ergy becomes

h = 2ω2
1 +

1
2
ω2

3 , (99)

which should be positive or zero. The constant angular mo-
mentum component is now given by

` = 2ω1(ω2
1 + ω2

2) + ω3u3. (100)

As vector u has unit magnitude, we also have

1− u2
3 = (ω2

1 + ω2
2)2, (101)

where componentsu1 andu2 have been replaced everywhere
to deduce these equations.

A simple case occurs when in addition,h = 0. In this
caseω1 = 0, ω3 = 0, ` = 0. The previous constant of mo-
tion gives usu3 =

√
1− ω4

2 , which, when substituted in the
equation of motion2ω̇2 = u3, gives the solution

t = 2
∫

dω2√
1− ω4

2

(h = 0), (102)

which shows thatω2 is a sinus lemniscate. In this case, since
ωT(u + k) = 0, we haveγ̇ = 0 andγ is a constant angle.

For h 6= 0, the energy constant allows the parameteriza-
tion, in terms of an angleµ, of the quantitiesω1 andω3, as
follows

ω1 =

√
h

2
sin µ, (103)

and

ω3 =
√

2h cosµ; (104)

the energy equation then becomes an identity.
We use Euler angleθ to express the third component of

vectoru

u3 = cos θ. (105)

The equation (101) is simplified to

sin θ = ω2
1 + ω2

2 , (106)

since the Euler angleθ is defined in the interval[0, π].
Substitution of these equations in the expression for` pro-

duces the result

` =
√

2h cos(µ− θ). (107)

The angleµ − θ is therefore a constant that we denote
by β.

µ = θ + β, cosβ = `/
√

2h. (108)

Replacing the previous result in the equations of motion
we obtain a generic solution with

ω2 = µ̇ = θ̇. (109)

Equations (103), (108) and (109) in (106) lead us to the
differential expression

µ̇2 +
h

2
sin2 µ = sin(µ− β), (110)

that is integrated as

t =
∫

dµ√
sin(µ− β)− h/2 sin2 µ

. (111)

Onceµ(t) is known,u andω are known as functions of
time andγ̇ is obtained from equation (9)

γ̇ =
ωT(u + k)

1 + u3
. (112)

A particular case occurs when in additionω2 = 0. Quan-
tities ω1, ω3, u3, h, `, γ̇ are then constants. And the Ko-
valeskaya top pivots with a constant angular velocity around
a constant unit vector in the plane formed by the symmetry
axis and the vector a pointing from the fixed point to the cen-
ter of mass.

6. Concluding Remarks

In this work, we have achieved the separation of the system
of equations of the Kovalevskaya top in a clear, original, di-
rect way that can be followed in a straightforward manner.
To unify several equations, we have used standard proper-
ties of linear algebra in a non trivial use for the theory of
Kovalevskaya’s hyperelliptic integrals and the related elliptic
functions. In addition, we obtain the explicit solution when
the Kovalevskaya constant is zero that is the simplest solution
because it corresponds to the minimal value of that constant.
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Lara. We also thank stimulating comments from Dr. Marı́a
Teresa de la Selva.

Rev. Mex. F́ıs. E51 (2) (2005) 59–66
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