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The confined two-dimensional hydrogen atom in the linear variational approach
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In this work we analyze the problem of a two-dimensional hydrogen atom confined in a circular region of impenetrable walls. We study the
size effect on the energy eigenvalues as a function of the radius of the gircl/e used the linear variational method with the basis set

of a free particle in a circle. We compare our results with those obtained by perturbation theory and the Rayleigh-Ritz variational method
reported previously.
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En este trabajo analizamos el problema deatomo de hidbgeno bidimensional confinado al interior de una @agtircular de paredes
impenetrables. Estudiamos los efectos de farsobre los valores propios de la ernargomo funadn del radio del Tculo. Usamos el
método variacional lineal con la base de la marta libre en un tculo. Comparamos nuestros resultados con los obtenidos mediante la
teoiia de perturbaciones y elatodo Rayleigh-Ritz que h#@mn sido reportados previamente.

Descriptores:Atomo de hidbgeno; confinamiento é@ntico; sistemas bidimensionales.
PACS: 73.23.-b; 73.20.Dx; 71.24.+q; 85.30.Vw; 31.15.Pf

1. Introduction coulombian potential does not satisfy the Gauss law in two-

dimensions, but for our purpose it is not relevant, because we
Many pages of some journals have been devoted to digre going to be dealing with a tridimensional system whose
cussing the problem of free one—dimensional (1D) and two-dynamics are restricted to bidimensional planar regions.
dimensional (2D) hydrogen atoms [1-18]. For the particu- The Hamiltonian of the 2D confined hydrogen atom
lar case of 2D hydrogen atom, some authors have used thg[25]

coulombian potential in two dimensions as the interaction 2 g
potential between the electron and the nucleus [8-13,16-17], o-r e, +V(p). (1)
whereas others have used a logarithmic potential [14-15]. 2mo  p

These kinds o_f systems are of much interes_t in the field ofyhere the potentia¥ (') is given by

guantum confined systems at the mesoscopic level, in Con-

densed Matter and Solid State Physics and also in Atomic , 0, 0<p < ph,

and Molecular Physics. One of its first applications was V(p) = { +o0, p' > ph, @)
developed by Khon and Luttinger [18] 50 years ago, when

they studied the 2D hydrogen atom as a limit case of afwherey’ is the distance from the nucleus to the electrap,
anisotropic crystal impurity. Recently, the interest in thisis the electron mass aritt is the nuclear charge. The prime’
system has been renewed due mainly to applications, dgdicates variables with dimensions.

for example, the study of H-like atoms subject to high The first approximate solution to this problem was given by
magnetic fields [19], very intense and high frequency laseAquino and Casfao [25] using first order perturbation the-
fields [20], quantum wells and superlatice systems [21], therory (PT) to compute the energy for ground state and the two
mal compression of 2D atomic hydrogen gas [22], interacfirst excited states. The expressions obtained with this ap-
tion of atomic hydrogen wittg surface phase [23], proton- proximation are:

hydrogen collisions in 2D Cartesian space [24], among oth- 28016 3.5135

ers. Eio(p) = 5 ,
In this paper we discuss the problem of a 2D hydro- Po po
gen atom confined in a circular region of impenetrable Fao(p) = 15.2356 4-3576’
walls [25-26],i.e. a hydrogen twice confined. First, we con- 1% Po
sider that both the nucleus and the electron are restricted to 73010  2.0540
move in the same bidimensional plane, and second, the elec- Eanl(p) = P 3)

tron motion is confined to the interior of a circular region that

is centered around the nucleus. We take the interaction bevhere the variables without * are dimensionless variables
tween charges as the coulombian potential. Some authogiven by p’ = agp, in which ap is the Bohr radius, and
argue [15,17] that this potential is not physical because ithe energy is given in hartrees.

does not obey the Gauss Law in two-dimensions and, instead These formulas produce good results [25] only for small
of this, we must use a logarithmic potential. Certainly, theradii less than 2 au, whereas for radii greater than 2.0 au it
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is necessary to use a different approach. An alternative treat- Before applying the linear variational method, it is con-
ment was applied through the Rayleigh-Ritz method. Aquinovenient to write the Hamiltonian (9) as follows

and Castho [25] used the following trial functions for the

ground state, and the first two excited states: H=H, — g_ (11)

Rio(p) = e “**(po — p),

ey In this equationH, represents the Hamiltonian of a free
Rao(p) = e [p1(2) = pl(po = p), particle inside a circle with an impenetrable wall whose en-
Ra1(p) = pe=**"(po — p), (4)  ergy eigenvalues (in atomic units) and eigenfunctions are

o well known [19-20].
where,a;, as andas are variational parameters apg(«s)

is the node of the radial functioRy, that is determined by 0 (@nr)?

the orthogonality conditioR1o|Rzo) = 0. Enx :W’
Itis well known that the linear variational method is more

accurate than PT and Rayleigh-Ritz methods, when the basisheren is the quantum radial number, wheréais the angu-

set used to diagonalize the Hamiltonian is large. In this worlar quantum number. We must note that fof 0 the system

we are going to use the linear variational method with the freés two fold degenerate with eigenfunctions given by

particle in a circle basis set to find the energy eigenvalues and

eigenfuctions of the 2D confined hydrogen atom.

n=1,2,..., k=0,£1,42,... (12)

The rest oflthis work is_ organized as follows: In Sec_. 2, Unr(p, ¢) = Cni Je(Znk p/po) €75, (13)
we apply the linear variational method to the 2D confined V2

hydrogen atom problem. In Sec. 3, we compare the results . . , .
obtained in this work with those obtained by perturbation the-where‘]k is the Bessel function of first kind of ord z.x

ory and the Rayleigh-Ritz method. Finally, in Sec. 4, we give's thenth zero ofJy, and the normalization constant is given

our conclusions. by
2
C2 = —55——0. 14
2. The method R ywn) 4
The Schodinger equation to solve is The basis sefy,.,} is a complete orthonormal set,
H'U = E'V, (5)
<¢nk‘¢n’k’> = 671,’7L5k’k7 (15)
whereH’ is the Hamiltonian of Eq. (1), and the wavefunction
¥’ is subjected to the following boundary condition whered;. ; is the Kronecker delta.
V(g = plyd) =0 () The eigenstate¥ of Eq. (5) have definité, so we may
P = Po @) =T expand them in terms of the free particle basis/sgt
It is convenient to introduce a change of variable
U = n|Vkn) = k). 16
p/ = app, @) zn: a 1|¢k L> zn:anm > (16)

wherep is a dimensionless variable angy = h?/mge? is

. e ) For the variational method of the energy, we must minimize
the Bohr radius. Substituting (7) in (1) we found that

the energy

H, = €0H, (8)

where the new HamiltoniaH is given as / WYy
o= p; _Z +V(p). 9) subject to the constraint

This is the Hamiltonian (1) written in natural or atomic units, /\I/*\Ildv =1,
whereh = m = e = 1, and from Eq. (5)

E' =¢E, (10) e
whereF are the eigenvalues @f and 5 [/ U O dy — A/\P*‘I!dv} _ 0 (17)

4
€ = mO: = 1 hartree, o ) o ) ) )

h As V¥ is linear in the coefficients,,, this procedure is equiv-

is the energy unit. alent to diagonalising the matrix(nk|H|n'k}|| for a fixed
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TABLE |. Energy eigenvalues for a few values of the radiiof the box and the numbeY of basis functions.

p=0.5 p=1.0
N E1 (1s) Eso (2s) E30(3s) N E1 (1s) Eso (2s) Es30 (3s)
10 3.919636 52.090189 140.101033 10 -1.328687 10.782790 32.601253
20 3.910523 52.074532 140.077439 20 -1.344187 10.764625 32.575216
30 3.908761 52.071553 140.073078 30 -1.347249 10.761099 32.570303
40 3.908135 52.070498 140.071543 40 -1.348345 10.759841 32.568562
80 3.907524 52.069470 140.070052 80 -1.349420 10.758611 32.566864
100 3.907450 52.069346 140.069872 100 -1.349552 10.758462 32.566658
120 3.907410 52.069278 140.069775 120 -1.349623 10.758381 32.566546
exact[26] 3.907318 52.069124 140.069551 exact[26] -1.349786 10.758194 32.566289
p=>5 p=10
N Eqp (1s) Eao (25) E3 (3s) N E1o (1s) Eoo (2s) FE30 (3s)
10 -1.755094 -0.130389 0.627801 10 -1.412892 -0.192307 0.003258
20 -1.919101 -0.144237 0.603013 20 -1.750244 -0.210962 -0.011991
30 -1.960842 -0.147357 0.597554 30 -1.866727 -0.216165 -0.015782
40 -1.977082 -0.148532 0.595510 40 -1.918177 -0.218297 -0.017284
80 -1.993950 -0.149731 0.593431 80 -1.976944 -0.220620 -0.018888
100 -1.996090 -0.149881 0.593171 100 -1.984925 -0.220927 -0.019098
120 -1.997267 -0.149964 0.593028 120 -1.989388 -0.221097 -0.019214
exact[26] -1.999999 -0.150155 0.592697 exact[26] -2.000000 -0.221500 -0.019488
TABLE Il. Energy eigenvalues for few values of the radgiiof the box and the numbéY of basis functions.
p=05 p=10
N Eo1 (2p) E31 (3p) Ea (4p) N Eo1 (2p) E31 (3p) Ea (4p)
10 25.213233 93.158157 201.004620 10 5.242815 21.956264 48.743429
20 25.213213 93.158039 201.004254 20 5.242790 21.956128 48.743023
30 25.213211 93.158032 201.004233 30 5.242789 21.956111 48.742999
40 25.213211 93.158030 201.004229 40 5.242788 21.956118 48.742995
50 25.213211 93.158030 201.004229 50 5.242788 21.956118 48.742994
exact[26] 25.213211 93.158030 201.004228 exact[26] 5.242788 21.956118 48.742994
p=>5 p=10
N E21 (2p) E31 (3p) Ea (4p) N E21 (2p) E3 (3p) Ea (4p)
10 -0.177109 0.435156 1.456649 10 -0.220363 -0.030396 0.208619
20 -0.177277 0.434764 1.455784 20 -0.221666 -0.031314 0.206902
30 -0.177288 0.434739 1.455730 30 -0.221766 -0.031383 0.206778
40 -0.177291 0.434734 1.455720 40 -0.221784 -0.031395 0.206755
50 -0.177291 0.434733 1.455717 50 -0.221790 -0.031399 0.206749
exact[26] -0.177291 0.434732 1.455715 exact[26] -0.221794 -0.031402 0.206744
value of angular momenturk. Substituting¥ Eg. (16)
into (11), we obtain straightforwardly the following matrix
elements: {nk|1/pln'k)

(n'k|Hnk) = EQ 8, — Z(nk|1/pln'k).  (18)

where

1
= ChrChri Po/Jk(CEnkU)Jk(iCn/kU)dU, (19)
0

with the integration variable defined as: = p/po.
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TaBLE Ill. Energy eigenvalues for few values of the radjiof the box and the numbeY of basis functions.
p=0.5 p=1.0
N Es» (3d) E42 (4d) FEs2 (5d) N Es (3d) E4s (4d) Es2 (5d)
10 49.291771 137.353919 265.089327 10 11.452383 33.246787 65.030182
20 49.291771 137.353915 265.089307 20 11.452383 33.246783 65.030160
30 49.291771 137.353915 265.089306 30 11.452383 33.246783 65.030160
40 49.291771 137.353915 265.089306 40 11.452383 33.246783 65.030160
exact[18] 49.291771 137.353915 265.089306 exact[18] 11.452383 33.246783 65.030160
p=>5 p=10
N E35 (3d) Ey (4d) Es2 (5d) N E35 (3d) Eys (4d) Ess (5d)
10 0.168965 0.972907 2.197867 10 -0.057438 0.127074 0.420069
20 0.168964 0.972897 2.197824 20 -0.057444 0.127046 0.419978
30 0.168964 0.972897 2.197824 30 -0.057445 0.127045 0.419976
40 0.168963 0.972897 2.197824 40 -0.057445 0.127045 0.419976
exact[18] 0.168964 0.972897 2.197824 exact[18] -0.057444 0.127045 0.419976
40 FEUSAE A In general, it is necessary to use a larger number of func-
v \. ] tions to obtain convergence for the states with 0 than for
—_. \"‘ _;’_E;g ] states with! > 1, as we can see from Tables I-lll. As the
: Vi aemm | | radius grows, the size of the basis set increases also. It is
Sl e E30 necessary to use 120, 50, and 40 functions to assure the con-
= 20 R B \";i —— E31 vergence of energy eigenvalues for states With 0, [ = 1
8 j,f 2\ --a--E32 and/ = 2, respectively, fopyg = 10 au as we can see from
L ' \\k Tables I-lII.
10 F \ ﬁ\“ . ] When the box’s radius is reduced, the energy of each level
!\Q . ~ \:\ ] incre_ases quickly, as is shown ir_1 Fig. 1. An other important
X%::j‘;i‘féi':? e fact is j[hat the energy degener_anon in the angular momer_m_Jm
0r i e S is partially broken by the confinement of the system, as it is
L L easy to see from Fig. 1, in which the energy curves for the
; ) ) . . statesFy (2s) and B (2p) separe ag, diminishes.
In Table IV, we compare the energy eigenvalues obtained
P, (au) by the Rayleigh-Ritz method with those obtained by the lin-

FIGURE 1. Spectrum of the confined 2D hydrogen atom as a func- ear_variational method for the ground state and the first two
tion of the Box radius. The energy increases very fast as the box €xcited states. As we can see, the energy values for the
radius diminishes. ground state obtained by the present method are lower than
those obtained by the Rayleigh-Ritz method for boxes with
Unfortunately, the matrix elementak|1/p|n'k) are not  py < 4, but this situation is reversed fpy > 4, showing that

analytical; however they can be easily computed by means iais necessary to increase the number of functions in the ba-
computer program such as Mathematica, Maple, Derive, etais set to obtain good convergence in the energy values. For
These kinds of programs have several tools to perform intethe excited state&s, and F»; the energy values obtained

grations, matrix manipulations and have special built-in funcby the present method are lower than those obtained by the
tions. We have implemented the above procedure in MatheRayleigh-Ritz method. This is a remarkable fact, because in
matica 4.0. this problem the energy for the excited states converge before

. . : th fth d state.
3. Energy eigenvalues and eigenfunctions © energy orihe ground siate

In Fig. 2a we show the approximate wave function of the
In order to calculate the energies of different states, we usground state fop, = 0.5 au takingN = 1,5,10, and20
the size convergence criteria: for a fixed value of the conbase functions in its expansion Eq. (16). Upon increasing the
finement radiug,, and for a given value of the angular mo- number of the basis set functions in the wave function expan-
mentumk, we increase the number of wave functions in thesion, the obtained energies approach the exact value, and the
expansion (16), until the computed energies converge to cewave function also approaches the exact onenFer10 and
tain definite values with the desired accuracy. 20, the graphics of the approximate wave function are
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TABLE IV. Energy eigenvalueB+o, E20 andE>;, obtained by present method and those of Ref. 25 as a function of thegadithe box.

p E1o (1s) Eso (2s) E>1 (2p)
Egs. (4) present Eqgs. (4) present Eqgs. (4) present
0.10 260.0222 253.4580 1479.8064 723.4568 713.5168
0.15 106.6756 104.5180 647.9130 316.3071 312.5308
0.20 55.0090 54.1406 358.9271 175.2189 173.2127
0.25 32.0045 31.6218 226.1667 110.4481 109.1977
0.30 20.0015 19.8193 169.1783 154.5892 75.5229 74.6776
0.40 8.7320 8.6741 90.9425 84.1643 41.1536 40.7037
0.50 3.9259 3.9074 56.0313 52.0693 25.4852 25.2132
0.60 1.5308 1.5264 37.3782 34.9073 17.1033 16.9253
0.70 0.2136 0.2133 26.3286 24.7240 12.1270 12.0040
0.80 -0.5613 -0.5615 19.3153 18.2223 8.9476 8.8592
1.0 -1.3460 -1.3496 11.3233 10.7585 5.2922 5.2428
1.2 -1.6824 -1.6895 7.1696 6.8475 3.3711 3.3414
14 -1.8383 -1.8475 4.7695 4.5786 2.2514 2.2328
1.6 -1.9144 -1.9240 3.2814 3.1658 1.5497 1.5377
1.8 -1.9529 -1.9618 2.3103 2.2396 1.0856 1.0778
2.0 -1.9732 -1.9805 1.6515 1.6081 0.7659 0.7608
2.2 -1.9841 -1.9901 1.1907 1.1641 0.5382 0.5349
24 -1.9902 -1.9947 0.8603 0.8441 0.3719 0.3697
2.6 -1.9938 -1.9970 0.6184 0.6088 0.2476 0.2463
2.8 -1.9959 -1.9980 0.4381 0.4326 0.1531 0.1523
3.0 -1.9972 -1.9985 0.3018 0.2987 0.0802 0.0798
3.4 -1.9986 -1.9986 0.1160 0.1154 -0.0218 -0.0219
3.8 -1.9992 -1.9983 0.0018 0.0022 -0.0867 -0.0867
4.0 -1.9994 -1.9975 -0.0384 -0.0379 -0.1101 -0.1101
p0=3 .0
T 4 r T T j
: [ : : =10
: 5 =T
i = 20
: 3 F =30
5| 1% T T N N T ;
.| . DR N N T . E
; P . AU RN SO SO S ]
: N T L TR A SN TEEpa. e ]
U SN W ot T .
L PRI | i ] 1% g L ie ]
0 0.1 0.2 0.3 0.4 0.5 0 3
pO po

FIGURE 2. Ground state wavefunction of confined 2D hydrogen atonpfor= 0.5 au andp, = 3.0 au. See the text for an explanation.
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superposed almost entirely. This behavior is maintained for &alues ofpg, but the Rayleigh-Ritz method becomes numer-
number greater tha base functions, indicating that there is ically unstable for th&s state forp, < 1 au, and it is nec-
a good convergence of the ground state wavefunction for thisssary to make an approximation of the wave function before
radius. In Fig. 2b shows the approximate ground state wavi is possible to compute the energy values. As the box ra-
function forpy, = 3 au, takingl, 10, 20, and30 functions in  dius pg grows, it is necessary to use many wave functions of
its expansion Eq. (16). The above comments also apply ithe basis set to assure the convergence of the energy eigen-
this case but, as we can see whgrgrows, it is necessary to values and eigenfunctions of the 2D confined hydrogen atom.
take a greater number of basis set functions in the expansidror this reason for a larger, it is more efficient to use the
Eq. (16) to guarantee its convergence. Rayleigh-Ritz method. In addition, the trial functions (Eq. 4)
As we mentioned above, the calculations were carried outend asymptotically to the exact wavefunctions of the free 2D
on an IBM PC with a processor of 900 MHz and using Math-hydrogen atom.
ematica 4.0. The greatest amount of time is consumed in the However, the interesting behaviour of this system is pre-
computation of the matrix elements, with the diagonalising ofcisely in the regiomp, < 5 au. We also showed that the states
the Hamiltonian matrix and the output of the eigenvalues bewith angular momentund # 0 converge faster than those
ing very fast. An interesting fact we could mention is that forwith I = 0.

| = 0 states apy = 10 au, using N=120 basis set functions,  The confinement breaks the degeneracy between states

the computation took about 2 hours. with the samer but differentl. This implies that new transi-
tions between states can appear, as for example the transitions
4. Conclusions 2s «— 2p, 3s «—— 3p, 3p «—— 3d, etc. at small values of

po(< 2). The computation of these kinds of transitions is
In this work, we showed a systematic way to obtain the ennow being carried out.
ergy eigenvalues of the 2D confined hydrogen atom by di-
agonalising the Hamiltonian matrix in the free particle basis
set, which is a complete and orthogonal basis set. The valugdcknowledgments
obtained by this procedure are more accurate than those ob-
tained by the Rayleigh-Ritz method for boxes with radii lessThanks to E. Ley—Koo and an anonymous referee for their
than4 au. The present method is numerically stable for allcomments.
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