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The confined two-dimensional hydrogen atom in the linear variational approach
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In this work we analyze the problem of a two-dimensional hydrogen atom confined in a circular region of impenetrable walls. We study the
size effect on the energy eigenvalues as a function of the radius of the circleρ0. We used the linear variational method with the basis set
of a free particle in a circle. We compare our results with those obtained by perturbation theory and the Rayleigh-Ritz variational method
reported previously.
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En este trabajo analizamos el problema de unátomo de hidŕogeno bidimensional confinado al interior de una región circular de paredes
impenetrables. Estudiamos los efectos de tamaño sobre los valores propios de la energı́a como funcíon del radio del ćırculo. Usamos el
método variacional lineal con la base de la partı́cula libre en un ćırculo. Comparamos nuestros resultados con los obtenidos mediante la
teoŕıa de perturbaciones y el método Rayleigh-Ritz que habı́an sido reportados previamente.

Descriptores:Átomo de hidŕogeno; confinamiento cuántico; sistemas bidimensionales.
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1. Introduction

Many pages of some journals have been devoted to dis-
cussing the problem of free one–dimensional (1D) and two–
dimensional (2D) hydrogen atoms [1-18]. For the particu-
lar case of 2D hydrogen atom, some authors have used the
coulombian potential in two dimensions as the interaction
potential between the electron and the nucleus [8-13,16-17],
whereas others have used a logarithmic potential [14-15].
These kinds of systems are of much interest in the field of
quantum confined systems at the mesoscopic level, in Con-
densed Matter and Solid State Physics and also in Atomic
and Molecular Physics. One of its first applications was
developed by Khon and Luttinger [18] 50 years ago, when
they studied the 2D hydrogen atom as a limit case of an
anisotropic crystal impurity. Recently, the interest in this
system has been renewed due mainly to applications, as
for example, the study of H-like atoms subject to high
magnetic fields [19], very intense and high frequency laser
fields [20], quantum wells and superlatice systems [21], ther-
mal compression of 2D atomic hydrogen gas [22], interac-
tion of atomic hydrogen withAg surface phase [23], proton-
hydrogen collisions in 2D Cartesian space [24], among oth-
ers.

In this paper we discuss the problem of a 2D hydro-
gen atom confined in a circular region of impenetrable
walls [25-26],i.e. a hydrogen twice confined. First, we con-
sider that both the nucleus and the electron are restricted to
move in the same bidimensional plane, and second, the elec-
tron motion is confined to the interior of a circular region that
is centered around the nucleus. We take the interaction be-
tween charges as the coulombian potential. Some authors
argue [15,17] that this potential is not physical because it
does not obey the Gauss Law in two-dimensions and, instead
of this, we must use a logarithmic potential. Certainly, the

coulombian potential does not satisfy the Gauss law in two-
dimensions, but for our purpose it is not relevant, because we
are going to be dealing with a tridimensional system whose
dynamics are restricted to bidimensional planar regions.

The Hamiltonian of the 2D confined hydrogen atom
is [25]

H ′ =
p′2

2m0
− Ze2

ρ′
+ V (ρ′). (1)

where the potentialV (ρ′) is given by

V (ρ′) =
{

0, 0 ≤ ρ′ < ρ′0,
+∞, ρ′ ≥ ρ′0,

(2)

whereρ′ is the distance from the nucleus to the electron,m0

is the electron mass andZe is the nuclear charge. The prime ’
indicates variables with dimensions.
The first approximate solution to this problem was given by
Aquino and Castãno [25] using first order perturbation the-
ory (PT) to compute the energy for ground state and the two
first excited states. The expressions obtained with this ap-
proximation are:

E10(ρ) =
2.8916

ρ2
0

− 3.5135
ρ0

,

E20(ρ) =
15.2356

ρ2
0

− 4.3576
ρ0

,

E21(ρ) =
7.3010

ρ2
0

− 2.0540
ρ0

, (3)

where the variables without ’ are dimensionless variables
given by ρ′ = aBρ, in which aB is the Bohr radius, and
the energy is given in hartrees.

These formulas produce good results [25] only for small
radii less than 2 au, whereas for radii greater than 2.0 au it
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is necessary to use a different approach. An alternative treat-
ment was applied through the Rayleigh-Ritz method. Aquino
and Castãno [25] used the following trial functions for the
ground state, and the first two excited states:

R10(ρ) = e−α1ρ(ρ0 − ρ),

R20(ρ) = e−α2ρ[ρ1(α2)− ρ](ρ0 − ρ),

R21(ρ) = ρe−α3ρ(ρ0 − ρ), (4)

where,α1, α2 andα3 are variational parameters andρ1(α2)
is the node of the radial functionR20 that is determined by
the orthogonality condition〈R10|R20〉 = 0.

It is well known that the linear variational method is more
accurate than PT and Rayleigh-Ritz methods, when the basis
set used to diagonalize the Hamiltonian is large. In this work
we are going to use the linear variational method with the free
particle in a circle basis set to find the energy eigenvalues and
eigenfuctions of the 2D confined hydrogen atom.

The rest of this work is organized as follows: In Sec. 2,
we apply the linear variational method to the 2D confined
hydrogen atom problem. In Sec. 3, we compare the results
obtained in this work with those obtained by perturbation the-
ory and the Rayleigh-Ritz method. Finally, in Sec. 4, we give
our conclusions.

2. The method

The Schr̈odinger equation to solve is

H ′Ψ′ = E′Ψ′, (5)

whereH ′ is the Hamiltonian of Eq. (1), and the wavefunction
Ψ′ is subjected to the following boundary condition

Ψ′(ρ′ = ρ′0, φ) = 0. (6)

It is convenient to introduce a change of variable

ρ′ = aBρ, (7)

whereρ is a dimensionless variable andaB = ~2/m0e
2 is

the Bohr radius. Substituting (7) in (1) we found that

H ′ = ε0H, (8)

where the new HamiltonianH is given as

H =
p2

2
− Z

ρ
+ V (ρ). (9)

This is the Hamiltonian (1) written in natural or atomic units,
where~ = m = e = 1, and from Eq. (5)

E′ = ε0 E, (10)

whereE are the eigenvalues ofH and

ε0 =
m0e

4

~2
= 1 hartree,

is the energy unit.

Before applying the linear variational method, it is con-
venient to write the Hamiltonian (9) as follows

H = H0 − Z

ρ
. (11)

In this equationH0 represents the Hamiltonian of a free
particle inside a circle with an impenetrable wall whose en-
ergy eigenvalues (in atomic units) and eigenfunctions are
well known [19-20].

E
(0)
nk =

(xn|k|)2

2ρ2
0

, n=1, 2, . . . , k=0,±1,±2, . . . (12)

wheren is the quantum radial number, whereask is the angu-
lar quantum number. We must note that fork 6= 0 the system
is two fold degenerate with eigenfunctions given by

ψnk(ρ, φ) =
Cnk√

2π
Jk(xnk ρ/ρ0) e(ikφ), (13)

whereJk is the Bessel function of first kind of orderk, xnk

is thenth zero ofJk, and the normalization constant is given
by

C2
nk =

2
ρ2
0J

2
|k|+1(xnk)

. (14)

The basis set{ψnk} is a complete orthonormal set,

〈ψnk|ψn′k′〉 = δn′nδk′k, (15)

whereδj′j is the Kronecker delta.
The eigenstatesΨ of Eq. (5) have definitek, so we may

expand them in terms of the free particle basis setψnk.

Ψ =
∑

n

an|ψkn〉 =
∑

n

an|nk〉. (16)

For the variational method of the energy, we must minimize
the energy

∫
Ψ∗HΨdv

subject to the constraint
∫

Ψ∗Ψdv = 1,

i.e.

δ

[∫
Ψ∗HΨdv − λ

∫
Ψ∗Ψdv

]
= 0, (17)

As Ψ is linear in the coefficientsan, this procedure is equiv-
alent to diagonalising the matrix||〈nk|H|n′k〉|| for a fixed
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TABLE I. Energy eigenvalues for a few values of the radiiρ0 of the box and the numberN of basis functions.

ρ = 0.5 ρ = 1.0

N E10 (1s) E20 (2s) E30 (3s) N E10 (1s) E20 (2s) E30 (3s)

10 3.919636 52.090189 140.101033 10 -1.328687 10.782790 32.601253

20 3.910523 52.074532 140.077439 20 -1.344187 10.764625 32.575216

30 3.908761 52.071553 140.073078 30 -1.347249 10.761099 32.570303

40 3.908135 52.070498 140.071543 40 -1.348345 10.759841 32.568562

80 3.907524 52.069470 140.070052 80 -1.349420 10.758611 32.566864

100 3.907450 52.069346 140.069872 100 -1.349552 10.758462 32.566658

120 3.907410 52.069278 140.069775 120 -1.349623 10.758381 32.566546

exact[26] 3.907318 52.069124 140.069551 exact[26] -1.349786 10.758194 32.566289

ρ = 5 ρ = 10

N E10 (1s) E20 (2s) E30 (3s) N E10 (1s) E20 (2s) E30 (3s)

10 -1.755094 -0.130389 0.627801 10 -1.412892 -0.192307 0.003258

20 -1.919101 -0.144237 0.603013 20 -1.750244 -0.210962 -0.011991

30 -1.960842 -0.147357 0.597554 30 -1.866727 -0.216165 -0.015782

40 -1.977082 -0.148532 0.595510 40 -1.918177 -0.218297 -0.017284

80 -1.993950 -0.149731 0.593431 80 -1.976944 -0.220620 -0.018888

100 -1.996090 -0.149881 0.593171 100 -1.984925 -0.220927 -0.019098

120 -1.997267 -0.149964 0.593028 120 -1.989388 -0.221097 -0.019214

exact[26] -1.999999 -0.150155 0.592697 exact[26] -2.000000 -0.221500 -0.019488

TABLE II. Energy eigenvalues for few values of the radiiρ0 of the box and the numberN of basis functions.

ρ = 0.5 ρ = 1.0

N E21 (2p) E31 (3p) E41 (4p) N E21 (2p) E31 (3p) E41 (4p)

10 25.213233 93.158157 201.004620 10 5.242815 21.956264 48.743429

20 25.213213 93.158039 201.004254 20 5.242790 21.956128 48.743023

30 25.213211 93.158032 201.004233 30 5.242789 21.956111 48.742999

40 25.213211 93.158030 201.004229 40 5.242788 21.956118 48.742995

50 25.213211 93.158030 201.004229 50 5.242788 21.956118 48.742994

exact[26] 25.213211 93.158030 201.004228 exact[26] 5.242788 21.956118 48.742994

ρ = 5 ρ = 10

N E21 (2p) E31 (3p) E41 (4p) N E21 (2p) E31 (3p) E41 (4p)

10 -0.177109 0.435156 1.456649 10 -0.220363 -0.030396 0.208619

20 -0.177277 0.434764 1.455784 20 -0.221666 -0.031314 0.206902

30 -0.177288 0.434739 1.455730 30 -0.221766 -0.031383 0.206778

40 -0.177291 0.434734 1.455720 40 -0.221784 -0.031395 0.206755

50 -0.177291 0.434733 1.455717 50 -0.221790 -0.031399 0.206749

exact[26] -0.177291 0.434732 1.455715 exact[26] -0.221794 -0.031402 0.206744

value of angular momentumk. SubstitutingΨ Eq. (16)
into (11), we obtain straightforwardly the following matrix
elements:

〈n′k|H|nk〉 = E
(0)
nk δn′n − Z〈nk|1/ρ|n′k〉. (18)

where

〈nk|1/ρ|n′k〉

= CnkCn′k ρ0

1∫

0

Jk(xnku)Jk(xn′ku)du, (19)

with the integration variableu defined asu = ρ/ρ0.
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TABLE III. Energy eigenvalues for few values of the radiiρ0 of the box and the numberN of basis functions.

ρ = 0.5 ρ = 1.0

N E32 (3d) E42 (4d) E52 (5d) N E32 (3d) E42 (4d) E52 (5d)

10 49.291771 137.353919 265.089327 10 11.452383 33.246787 65.030182

20 49.291771 137.353915 265.089307 20 11.452383 33.246783 65.030160

30 49.291771 137.353915 265.089306 30 11.452383 33.246783 65.030160

40 49.291771 137.353915 265.089306 40 11.452383 33.246783 65.030160

exact[18] 49.291771 137.353915 265.089306 exact[18] 11.452383 33.246783 65.030160

ρ = 5 ρ = 10

N E32 (3d) E42 (4d) E52 (5d) N E32 (3d) E42 (4d) E52 (5d)

10 0.168965 0.972907 2.197867 10 -0.057438 0.127074 0.420069

20 0.168964 0.972897 2.197824 20 -0.057444 0.127046 0.419978

30 0.168964 0.972897 2.197824 30 -0.057445 0.127045 0.419976

40 0.168963 0.972897 2.197824 40 -0.057445 0.127045 0.419976

exact[18] 0.168964 0.972897 2.197824 exact[18] -0.057444 0.127045 0.419976

FIGURE 1. Spectrum of the confined 2D hydrogen atom as a func-
tion of the Box radiusρ0. The energy increases very fast as the box
radius diminishes.

Unfortunately, the matrix elements〈nk|1/ρ|n′k〉 are not
analytical; however they can be easily computed by means a
computer program such as Mathematica, Maple, Derive, etc.
These kinds of programs have several tools to perform inte-
grations, matrix manipulations and have special built-in func-
tions. We have implemented the above procedure in Mathe-
matica 4.0.

3. Energy eigenvalues and eigenfunctions

In order to calculate the energies of different states, we use
the size convergence criteria: for a fixed value of the con-
finement radiusρ0, and for a given value of the angular mo-
mentumk, we increase the number of wave functions in the
expansion (16), until the computed energies converge to cer-
tain definite values with the desired accuracy.

In general, it is necessary to use a larger number of func-
tions to obtain convergence for the states withl = 0 than for
states withl ≥ 1, as we can see from Tables I-III. As the
radius grows, the size of the basis set increases also. It is
necessary to use 120, 50, and 40 functions to assure the con-
vergence of energy eigenvalues for states withl = 0, l = 1
andl = 2, respectively, forρ0 = 10 au as we can see from
Tables I-III.

When the box’s radius is reduced, the energy of each level
increases quickly, as is shown in Fig. 1. An other important
fact is that the energy degeneration in the angular momentum
is partially broken by the confinement of the system, as it is
easy to see from Fig. 1, in which the energy curves for the
statesE20 (2s) andE21 (2p) separe asρ0 diminishes.

In Table IV, we compare the energy eigenvalues obtained
by the Rayleigh-Ritz method with those obtained by the lin-
ear variational method for the ground state and the first two
excited states. As we can see, the energy values for the
ground state obtained by the present method are lower than
those obtained by the Rayleigh-Ritz method for boxes with
ρ0 < 4, but this situation is reversed forρ0 > 4, showing that
it is necessary to increase the number of functions in the ba-
sis set to obtain good convergence in the energy values. For
the excited statesE20 and E21 the energy values obtained
by the present method are lower than those obtained by the
Rayleigh-Ritz method. This is a remarkable fact, because in
this problem the energy for the excited states converge before
the energy of the ground state.

In Fig. 2a we show the approximate wave function of the
ground state forρ0 = 0.5 au takingN = 1, 5, 10, and20
base functions in its expansion Eq. (16). Upon increasing the
number of the basis set functions in the wave function expan-
sion, the obtained energies approach the exact value, and the
wave function also approaches the exact one. Forn = 10 and
20, the graphics of the approximate wave function are
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TABLE IV. Energy eigenvaluesE10, E20 andE21, obtained by present method and those of Ref. 25 as a function of the radiiρ0 of the box.

ρ E10 (1s) E20 (2s) E21 (2p)

Eqs. (4) present Eqs. (4) present Eqs. (4) present

0.10 260.0222 253.4580 1479.8064 723.4568 713.5168

0.15 106.6756 104.5180 647.9130 316.3071 312.5308

0.20 55.0090 54.1406 358.9271 175.2189 173.2127

0.25 32.0045 31.6218 226.1667 110.4481 109.1977

0.30 20.0015 19.8193 169.1783 154.5892 75.5229 74.6776

0.40 8.7320 8.6741 90.9425 84.1643 41.1536 40.7037

0.50 3.9259 3.9074 56.0313 52.0693 25.4852 25.2132

0.60 1.5308 1.5264 37.3782 34.9073 17.1033 16.9253

0.70 0.2136 0.2133 26.3286 24.7240 12.1270 12.0040

0.80 -0.5613 -0.5615 19.3153 18.2223 8.9476 8.8592

1.0 -1.3460 -1.3496 11.3233 10.7585 5.2922 5.2428

1.2 -1.6824 -1.6895 7.1696 6.8475 3.3711 3.3414

1.4 -1.8383 -1.8475 4.7695 4.5786 2.2514 2.2328

1.6 -1.9144 -1.9240 3.2814 3.1658 1.5497 1.5377

1.8 -1.9529 -1.9618 2.3103 2.2396 1.0856 1.0778

2.0 -1.9732 -1.9805 1.6515 1.6081 0.7659 0.7608

2.2 -1.9841 -1.9901 1.1907 1.1641 0.5382 0.5349

2.4 -1.9902 -1.9947 0.8603 0.8441 0.3719 0.3697

2.6 -1.9938 -1.9970 0.6184 0.6088 0.2476 0.2463

2.8 -1.9959 -1.9980 0.4381 0.4326 0.1531 0.1523

3.0 -1.9972 -1.9985 0.3018 0.2987 0.0802 0.0798

3.4 -1.9986 -1.9986 0.1160 0.1154 -0.0218 -0.0219

3.8 -1.9992 -1.9983 0.0018 0.0022 -0.0867 -0.0867

4.0 -1.9994 -1.9975 -0.0384 -0.0379 -0.1101 -0.1101

FIGURE 2. Ground state wavefunction of confined 2D hydrogen atom forρ0 = 0.5 au andρ0 = 3.0 au. See the text for an explanation.
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superposed almost entirely. This behavior is maintained for a
number greater than20 base functions, indicating that there is
a good convergence of the ground state wavefunction for this
radius. In Fig. 2b shows the approximate ground state wave
function forρ0 = 3 au, taking1, 10, 20, and30 functions in
its expansion Eq. (16). The above comments also apply in
this case but, as we can see whenρ0 grows, it is necessary to
take a greater number of basis set functions in the expansion
Eq. (16) to guarantee its convergence.

As we mentioned above, the calculations were carried out
on an IBM PC with a processor of 900 MHz and using Math-
ematica 4.0. The greatest amount of time is consumed in the
computation of the matrix elements, with the diagonalising of
the Hamiltonian matrix and the output of the eigenvalues be-
ing very fast. An interesting fact we could mention is that for
l = 0 states atρ0 = 10 au, using N=120 basis set functions,
the computation took about 2 hours.

4. Conclusions

In this work, we showed a systematic way to obtain the en-
ergy eigenvalues of the 2D confined hydrogen atom by di-
agonalising the Hamiltonian matrix in the free particle basis
set, which is a complete and orthogonal basis set. The values
obtained by this procedure are more accurate than those ob-
tained by the Rayleigh-Ritz method for boxes with radii less
than4 au. The present method is numerically stable for all

values ofρ0, but the Rayleigh-Ritz method becomes numer-
ically unstable for the2s state forρ0 < 1 au, and it is nec-
essary to make an approximation of the wave function before
it is possible to compute the energy values. As the box ra-
diusρ0 grows, it is necessary to use many wave functions of
the basis set to assure the convergence of the energy eigen-
values and eigenfunctions of the 2D confined hydrogen atom.
For this reason for a largerρ0, it is more efficient to use the
Rayleigh-Ritz method. In addition, the trial functions (Eq. 4)
tend asymptotically to the exact wavefunctions of the free 2D
hydrogen atom.

However, the interesting behaviour of this system is pre-
cisely in the regionρ0 ≤ 5 au. We also showed that the states
with angular momentuml 6= 0 converge faster than those
with l = 0.

The confinement breaks the degeneracy between states
with the samen but differentl. This implies that new transi-
tions between states can appear, as for example the transitions
2s ←→ 2p, 3s ←→ 3p , 3p ←→ 3d, etc. at small values of
ρ0(≤ 2). The computation of these kinds of transitions is
now being carried out.
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