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It has generally been thought that the vast majority of the DNA of living organisms (about 95%) was constituted of what is now called
non-coding DNA (NC-DNA). No mechanisms of the genetic expression were known for thisNC-DNA, as opposed to the protein expression
for coding DNA (C-DNA). SoNC-DNAwas traditionally assigned a role as a cover-up (with no biological function of its own) against the
random attack of mutagenic elements on theC-DNA. Nevertheless (and in some sense motivated by the discovery of the tertiary structure of
the genetic code), studies into the nature and biological function ofNC-DNAbegan. Some of the tools of multifractal theory and statistical
linguistics were recently applied to the analysis of coherence and correlation in non-coding DNA fragments. As a result, the presence of
long-range correlations, coherent patterns, and even some well defined structural features, showed up. This structure and correlation would
be impossible to find in a random nucleotide sequence (asNC-DNAwas originally thought to be constituted).
Keywords: DNA; genomics; statistical linguistics; fractal dimension.

Hasta hace poco tiempo existı́a la creencia general de que la gran mayorı́a del ADN de organismos vivos (alrededor de un 95%) estaba
constituido por lo que se ha dado en llamar ADN no codificante (NC-DNA, por sus siglas en inglés). No se conocen mecanismos de
expresíon para esteNC-DNA, en contraste con lo que sucede con la expresión en forma de proteı́nas que posee el ADN codificanteC-DNA.
Aśı las cosas, el papel tradicional que se asignaba alNC-DNAera el de una protección (sin funcíon biológica propia) contra el ataque aleatorio
de elementos mutagénicos sobre elC-DNA. Sin embargo, algunos estudios comenzaron a realizarse sobre la naturaleza y función biológica
del NC-DNA, estudios en cierto modo motivados por el descubrimiento de la estructura terciaria del código geńetico. Algunas herramientas
de la teoŕıa de multifractales y de la lingǘıstica estad́ıstica han sido aplicados recientemente al análisis de coherencia y correlación en
fragmentos de ADN no codificante. Como resultado, se ha mostrado la presencia de correlaciones de largo alcance, patrones coherentes y
aún ciertas caracterı́sticas estructurales. Tal estructura y correlación seŕıan imposibles de hallarse en la secuencia aleatoria de nucleótidos
que se pensaba, constituı́a elNC-DNA.
Descriptores: ADN; genomica; ling̈úıstica estad́ıstica; dimensíon fractal.

PACS: 87.10+e

1. Scope

In this work several statistical analysis were carried out
on DNA fragments (coding and non-coding) of some rep-
resentative species of animals (Felis catus, Drosophila
melanogaster), plants (Pinus thunbergii) and bacteria (My-
coplasma pneumoniae); we also analyzed a random gener-
atedgeneticsequence in order to highlight the common fea-
tures and main differences. We studied the probability dis-
tribution for the frequency ofgenetic words(i.e. permuta-
tions of nucleotides A, C, T and G) of a size up to five, in
order to construct the frequency vs rank plots also known as
Zipf plots. We also studied thetimeseries associated with the
position of each one of these bases. A renormalization pro-
cedure was carried out and the resulting renormalized time
series were studied as multifractals. The Hausdorff dimen-
sion and Shannon-Weaver entropy were calculated for these
sets. A quantitative measurement of the concentration of nu-
cleotide bases in NC-DNA was taken and compared with
a theoretical estimate for C-DNA (the so calledChargaff ’s
rules).

This paper is organized as follows, Sec. 2 is an intro-
duction to the statistical linguistic description of genomes

and the major achievements of this approach up to this day.
In Sec. 3 we review and describe some of the more com-
mon methods used in quantitative linguistics and statistical
physics that have proven to be useful in the description of
DNA sequences. Section 4 is devoted to giving some general
results for the cases studied; it must be stressed that we took
genomic fragments of very different living beings and, in the
case ofMycoplasma pneumoniae, the whole genome was an-
alyzed. In all cases the genomic sequences consisted of ap-
proximately one hundred thousand base pairs (100,000 bp).
The choice of genomes to be studied was made on the basis
of three fundamental criteria:

i) We wished to study the broadest possible variety of liv-
ing beings available (animals both vertebrate and in-
vertebrate, plants, microorganisms, etc.) since in this
case we looked foruniversal linguistic featuresin the
genomic texts.

ii) Our selection had to be included in the GenBank
database [1] since this one of the most reliable sources
for genomic data.

iii) As we said, the size of all genomic sequences is about
105 bp, that is, the size of the entire genome of theMy-
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coplasma pneumoniaebacterum, an organism which
at the same time is an alreadycomplexform of life
(from the metabolic and physiological point of view)
and possesses a genome which is of a manageable size.

The computational calculations and word countings were
made on a personal computer (single Intel Pentium V pro-
cessor), and only some very specific tasks required a unix
workstation (Alpha Twin Peaks running under RH Linux for
generating the nucleotide combinatorics for the word list and
the random generated sequence), and in no case did a sin-
gle calculation take more than a few hours, and usually just
a few minutes. These computer requirements are far, be-
low the usual computational genomic standards, which in this
case points to an optimized procedure. Section 5 includes an
abridged but systematic discussion of results, as well as some
conclusions and perspectives.

2. Introduction

We usually consider DNA molecules as the main mechanism
for the storage of information about any organism. DNA
molecules are long sequences (linear or even closed into a
loop) contained in every cell of an organism. DNA sequences
are represented by a string of four letters (A, C, G, T), each of
which corresponds to a definite type of nucleotides: adenine,
cytosine, guanine and thymine, respectively. These letters
can be cast into different combinations and hence form avo-
cabulary. Some combinations in DNA texts are deliberately
non-random. They should thus reflect the structure and func-
tion of DNA and proteins. From this the question then arises:
what kind of characteristic features of nucleotide sequences
correspond to known DNA properties? As we have stated
above, DNA molecules are usually separated into fragments
that are either catalysts for known protein reaction kinetics
(C-DNA) or not (NC-DNA).

For example, recent studies into the peculiarities of bac-
terial DNA revealed that the word ranked distributions are
quite well approximated by logarithmic law [2]. The re-
sults obtained then (in the so-calledabsent word investiga-
tion) showed the considerably nonrandom character of DNA
texts. Characteristic of the autocorrelation function behav-
ior of several genomes was the presence of period-3 oscilla-
tions. Short-range autocorrelations were shown to be present
in short (n = 3) words and practically absent in longer words.

One of the most interesting problems in DNA analysis is
to find principles for computational (automated) differentia-
tion between coding (exons) and non-coding (intergenomic
and intron) regions in DNA [3]. Now most of the compu-
tational approaches for identification of coding regions in
DNA have strong implementation limitations since they need
a training set of already known examples of coding and non-
coding regions. Limited by the lack of availability of data,
researchers work with a much shorter subsequence of DNA
rather than the whole sequence and they are hardly able to
recognize mainly protein coding regions. Some approaches

seemed to promise to be free of these limitations. Some of
these approaches may take advantage of the statistical lin-
guistic differences betweenNC-DNAandC-DNA in order to
improve the process oflearning.

A variety of methods has been used to statistically study
DNA sequences by means ofword counting. Here we will
use the combined approach of extended Zipf plots [4, 5] and
renormalized time series multifractal analysis [6, 35]. Fol-
lowing the pioneer work of Stanley, et al [9] we will analyze
statistical similarities between different resolution scanning
genomes and hence scaling properties. Scaling features rep-
resent some of the most outstandingemerging propertiesof
complex systemsi [13, 14]. Scale invariance in systems with
a vast amount of degrees of freedom is a signature of long-
range correlation between individual units [15,16].

By means of a scaling analysis, Stanleyet al. [9] found
evidence supporting the idea that the DNA sequence in genes
containing noncoding regions is correlated, and that the cor-
relation is remarkably long-range. Indeed, base pairs that
are thousands of base pairs distant are correlated. They did
not find this type of long-range correlation in the coding re-
gions of the gene, and quantified theredundancyof a linguis-
tic text in terms of a measurable Shannon-like entropy func-
tion [17], reporting that noncoding regions in eukaryotes dis-
play a larger redundancy than coding regions. It was shown
that the cytosine-guanine (CG) concentration does have a
strongbackgroundeffect on the redundancy structural fea-
ture also mentioned in connection with a melting temper-
ature signature by Resendis and Garcı́a-Coĺın [18, 19] (see
specially equation (20) of [18]). The relation between ther-
modynamic properties of DNA such as its melting temper-
ture and composition domains evidencing internal structure
has been also studied by means of the theory of stochas-
tic processes by Dagdug and coworkers [21, 22]. In these
cases, the fundamental linguistic (or structural) units under
study were divided into purines and pyrimidines, looking for
the behavior of clustering homopolimers and oligopolimers
among these classes. In a certain sense, this work is related
to our search for microsatellites or dimeric tandem repeats
(DTR). This search for recursion and clustering of units has
recently been reviewed by the group headed by Sun [23].

A related approach has been taken to look for the kinetic
behavior of these phase changes [24]. From the standpoint of
computational molecular biology, Collado-Vides, et al [25]
have developed some systematic ways of dealing with the re-
lation between linguistic optimality and biological function-
ality related to the denaturation process. With regard to (CG)-
content and physical properties of DNA, an interesting spec-
tral analysis of the PDF has been done recently by Li and
Holste [28].

This connecting effect between redundancy and thermal
stability may imply a strong connection between linguistic
optimality (via-long range correlations) and the tertiary (spa-
tial) structure of DNA incident on the melting temperature.
Ultimately, this optimality stage could be connected with em-
pirical rules regarding the average DNA concentration, such
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as Chargaff’s Rules. While studying the denaturation pro-
cess, Chargaff found out that the concentration of adenine[A]
was approximately equal to thymine concentration[T ] for
many organisms and the same occurred with the[C] and[G]
bases. A direct consequence of this observation is that the
ratios [G + A]/[C + T ] and [G + T ]/[A + C] are close to
unity [20]. Also related to CG concentration, Shannon’s re-
dundancy for the set of analyzed sequences in [9] was greatr
for noncoding regions than for coding regions.

Analytical DNA ultracentrifugation revealed that eukary-
otic genomes are mosaics of isochores: long DNA segments
(> 300 kb on average) relatively homogeneous in CG con-
centration [26]. Important genome features are dependent
on this isochore structure, since genes are found predomi-
nantly in the CG-richest isochore classes. The entropic seg-
mentation method is proven to be able to divide a DNA se-
quence into relatively homogeneous, statistically significant
domains.

Genomic sequences consist in several levels of informa-
tion. These include specifications for sequences responsible
for protein structure, identification of coding and non-coding
parts of the sequence, information necessary for the specifica-
tion of regulatory (promoter, enhancer) sequences, informa-
tion directing protein-nucleic acid interactions, and directions
for DNA folding and unfolding. A remarkable mechanism is
provided for the transformation of different information lev-
els (replication, decoding, etc.) that occurs over a short time
interval. The means of encoding some of this information
are understood, but for the vast majority of the layers of in-
formation encrypted in a DNA molecule, relatively little is
known [27]. As mentioned above, genomes of high eukary-
otic organisms have just a small portion of the total genome
used for protein coding.

The role of introns (continuous non-coding regions in
DNA) and intergenomic sequences (NC-DNA fragments in-
tertwined betweenC-DNA regions) constituting a large por-
tion of the genome thus remains largely unknown. Neverthe-
less, the presence of long-range correlations (as evidenced
by the scaling character ofNC-DNA sequences) points to
the presence of an underlying structural order in the intron
and intergenomic segments. As we already noted, the spa-
tial structure of DNA responsible for its thermal stability
has been related toglobal features, such as CG concentra-
tion [18]. Since this concentration depends not only on lo-
cal correlations (such as those present inC-DNA) but also
on long-range correlations due largely to introns and interge-
nomic fragments (with a larger concentration on the DNA
of living organisms),NC-DNAplays an important biological
role in the sense of stabilizing DNA. As is well known, the
process of meltingdenaturatesa protein (such as DNA), de-
priving it of its biological functions such as enzymatic cataly-
sis. A protection against mechanisms of thermal attack, such
as that associated with long range correlations inNC-DNA
will preserve biological functions of the protein.

On the other hand, many fruitful examples of the appli-
cation of Zipf’s law to DNA statistics are available [2, 5, 9].

Its practical importance for the biomedical sciences has been
recently stressed by Li [31], since a difference in the expres-
sion level of a gene for two different conditions/phenotypes,
such as cancerous versus non-cancerous, one subtype of can-
cer versus another, before versus after a drug treatment, is in-
dicative of the relevance of that gene to the difference of the
high-level phenotype. Each gene can be ranked by its ability
to distinguish between the two conditions. Li studied how
the single-gene classification ability decreases with its rank
(Zipf’s plot). A power-law distribution function in Zipf’s plot
was observed for several microarray data sets obtained from
actual cancer studies. The presence of this power-law behav-
ior turns out to be very important for deciding the number of
genes to be used for a discriminant microarray data analysisii,
and hence facilitates the microarray study.

3. Statistical analysis: word counting in DNA

DNA sequences have been studied by means of a variety of
word counting models that can basically be grouped into two
large categories. The first types are local analysis that take
into account the fact that DNA sequences are produced in
sequential order; hence neighboring base pairs will affect a
closely-attached base pair. This type of analysis, such as
typical Markov models, can indeed take into account some
short-range correlations observed in genomic sequences. The
second category of analysis is global in nature, and it con-
centrates on the presence of repeated patterns founded com-
monly in eukaryotic DNA.

3.1. Language generation and factorization

3.1.1. Definitions

Let us consider a finite alphabetΣ = {A,C, G, T}. We can
collect all possible text strings within this alphabet in an in-
finite setΣ∗; for completeness this setΣ∗ should include the
empty string (i.e. the chain with no letter). Any subsetL of
Σ∗ is called alanguageon Σ. In order to define the class of
language, we must give the generating rule:

1. If L is a finite subset, this can be done by enumerating
its elements.

2. It is possible to develop someproduction rulesand ap-
ply them systematically to some initial letters (called
breedersor generators) in order to develop the lan-
guage completely. This is the most important and
well-defiend procedure for language generation. If
these rules are applied on a sequential basis, they
lead to Chomsky’s generative grammar. When applied
in a parallel fashion, they lead to Lindenmayer sys-
tems [7,8].

3. For a special class of languages calledfactorizable lan-
guages, it is possible to define a language by indicating
a subset of forbidden words. This approach is usually
followed in DNA analyses.
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3.1.2. Segmental languages

A special class of factorizable languages (called segmental
languages) could be defined over a complete genome. Given
the complete genomeG of an organism, we cancut-outall
possible subsequences and form a languageL = sub(G).
This language should include the empty string or null-word.
This language is factorizable by definition (it was constructed
through its elementary segments) and it is, in principle, pos-
sible to construct a deterministic language from it [7].

The last paragraph implies that it is possible, at least in
principle, to construct the set ofwriting rules(in the simplest
case, the set of forbidden words, but also other more specific
linguistic features) for a given genome.

Now that we have seen that DNA forms a factorizable but
very large segmental language, the only reasonable approach
to constructing these writing rules is statistics. Nevertheless,
since we have recognized a linguistic structure in DNA, it
has become possible to apply linguistic characterization pro-
cedures to simplify the task of generating the writing rules.

3.2. Zipf plots

3.2.1. Zipf ’s law: Power laws and linguistics

A number of statistical relationships between frequency of
occurrence and rank in linguistics were noticed in the early
1930s by George Kingsley Zipf, who taught German at Har-
vard, and they are all aspects of what is now called Zipf’s
law [29],

fn = f1n
−α. (1)

In Eq. (1)fn is the frequency of the nth most frequent word,
f1 is the frequency of the most common word,n is the rank,
andα is a characteristic exponent. In the probability repre-
sentation,

pν = X−α (2)

pν is the probability of theν-th word andX is proportional
to the rankn (in factX = (p1)α n). This representation will
be useful later on and highlights the role ofX as a generator
for theextended momentsof the associated PDF.

For well structured languages, Zipf’s studies reveal|α|>1
and for low level languages (e.g. in children’s vocabulary)
|α| < 1. Zipf concluded that a larger value of|α| implie a
better structured, more coherent language [4].

A careful analysis of Eq. (1) reveals interesting statisti-
cal properties. Since frequency is proportional to probability,
Zipf’s law represents, indeed, a PDF in rank representation.
The functional form of a power law implies, then, the pres-
ence of statistical persistence. If we think of the DNA se-
quence as a Markov chain, a power law on its PDF means a
strong non-markovian character, whereas an exponential de-
cay would define a Markov process [30]. A larger exponent
value would expand the statistical correlation length within
the chain. In this sense, for a segmental language as DNA

is supposed to be, a non-markovian character in the PDF im-
plies linguistic coherence and structured information behav-
ior. It is in this sense that this work deals with linguistic prop-
erties in DNA.

3.3. Fractal methods: Hausdorff dimension and renor-
malized time series

3.3.1. Hausdorff dimension and scale invariance

Since we proposed the probability distribution functions
(PDF) for the frequency ofwords in DNA to be scale in-
variant, another method of characterizing genomic sequences
could be found in a fractal-like analysis of the self-similar set
associated with DNA’s scale invariance.

3.3.2. Definitions

Let A be a subset of metric spaceX. Then theHausdorff
dimensiondimH(A) of A is the infimum ofα ≥ 0 such that
theα-dimensionalHausdorff measureof A, mα(A) is 0, and

mα(A) = lim
r→0+

mα
r (A) (3)

where

mα
r (A) = inf

σ

{ ∞∑

k=1

(rk)α

}
.

The α-dimensional Hausdorff measure of A,mα(A), is the
infimum of positive numbersσ such that for everyr > 0,
A can be covered by a countable family of closed sets, each
of diameter less thanr, such that the sum of theαth powers
of their diameters is less thanσ. Note thatmα(A) may be
infinite, andα need not be an integer [34].

A quantity related with the Hausdorff dimension of a set
is called the Kolmogorov capacitydimK(A) of this set:

dimK(A) = lim
r→0

sup
log N(r,A)
log(1/r)

, (4)

whereN(r,A) is the number of open balls of up to radiusr
needed to cover the setA in the topological sense. There are
several conditions relating the Hausdorff dimension of a set
and its Kolmogorov capacity, namely:

dimH(A) ≤ dimH(B) if A ⊂ B (5)

dimH(A) ≤ dimK(A) (6)

It is also possible to write an expression fordimH(A)
simmilar to that of the Kolmogorov capacitydimK(A):

dimH(A) = lim
α→α0

log N(A,α)
log(1/r)

(7)

Eq. (7) could be inverted to give

N(A,α) = rdimH (8)
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Eq. (8) relates a measurable quantityN(A,α) with the Haus-
dorff dimension of a set. Based on similar considerations,
Procaccia and Grassberger [35] proposed a related algorithm
to calculate the fractal dimension of a chaotic signal given as
a time series. We shall use this Integral Correlation Function
(ICF) to calculate the fractal dimension for the time series for
each nucleotide base.

The ICF is given by:

C(r) =
1

N2

N∑

i=1

Θ(r − ‖Xi −Xj‖) , (9)

where N is the size of the set (number of points),Xi

are the binary-valued vectors for the time series for each
nucleotideiii andΘ is Heavyside’s unitary step function.

The afore-mentioned method makes it possible to con-
struct the plot ofC(r) vs r, which possesses a power law
representation. The power involved is a lower bound for the
Hausdorff dimension of the set given by a time series [35].

Less formally speaking, if a self-similar object with pa-
rametersN and s is described by a power law such as
N = sα, thenα is thedimensionof the scaling law and it
is known as theHausdorff dimension. Sometimes the Haus-
dorff dimension is also called thefractal dimension. These
two concepts are not really the same. Fractals are objects that
possess self-similarityon all scales. In the natural sciences,
however, the terms “fractal” and “self-similar object” are of-
ten used as synonyms.

DNA sequences have been handled using by fractal meth-
ods in the past, either by direct calculation or by means
of a random walkerdiffeomorphism [37, 38]. For exam-
ple Berthelsenet al. [38] used a pseudo-random walk rep-
resentation in a four-dimensional embedding to estimate the
global fractal dimension of164 GenBank sequences. In re-
cent times, a debate has risen whether long-range correlations
found in DNA are present inNC-DNA, C-DNAor both. For
an interesting review of the debate and a global fractal-like
analysis of some sequence see the work of Yuet al. [39]. In
any case, in this work we are more interested in characteriz-
ing NC-DNAand, as is shown in Buldyrevet al. [40] by us-
ing all the DNA sequences available, long-range correlations
appeared mainly in non-coding DNA. This being the case we
made a Hausdorff dimension analysis of genomes looking for
a NC-DNAsignature(i.e. we would try to relate a Hausdorff
dimension characteristic to a given sequence).

3.4. Shannon-Weaver entropy: information content at
the genetic level

In order to make quantitative statements regarding the infor-
mation content of a DNA segment, it is useful to apply the
algorithm developed by Shannon and Weaver to analyse the
information that could be transmitted in a message. The no-
tion of Shannon’s informationI is defined by:

I = −Ks

∑
ν

pν log pν , (10)

hereI is Shannon-Weaver’s information (SWI),Ks is a con-
stant andpν is the probability (frequency) for theν-th word.
In the case of NC-DNA analysis, we consider SWI to be the
better information measure since it has no adjustable param-
eters (a valuable characteristic if one has no previous knowl-
edge of the codification procedure) and the value of SWI is
a lower bound for information content, so any other measure
will be greater than SWI (i.e. we are studying NC-DNA in a
worst-case scenario).

In addition in the case of SWI, it is possible to prove that a
local maximum on the information is achieved if the PDF fol-
lows a power law,e.g. Zipf’s law behavior. The proof reads
as follows: Ifpν = X−α (Zipf’s law according to Eq. (2)),
then

dpν

dX
= −αX−α+1;

d2pν

dX2
= α(α + 1)X−α+2;

ln(pν) = −α ln X (11)

Maximization of SWI implies:

dI

dX
= 0;

d2I

dX2
< 0. (12)

In this particular case,

dI

dX
=

∑
ν

Ks (1− α ln X)(αX−α+1) (13)

which, combined with the first equation in (12) gives rice to
a condition relating the rankX and the exponentα for the
maximized case, namely(1− α ln X) = 0. Also,

d2I

dX2
= −

∑
ν

Ks

[
(1− α ln X)α(α + 1)X−α+2

+
1

X−α
(−αX−α+1)2

]
. (14)

After considering the condition betweenX andα given
by the first derivative and rearranging, we obtain

d2I

dX2
= −

∑
ν

Ks

(
α2 X−(α+2)

)
. (15)

SinceKs > 0, X > 0, α2 > 0 andX−(α+2) > 0, ∀α,
the second derivatived2I/dX2 is negative, indicating that
Zipf’s law implies a local (at least) maximum of information
content. If, on the other hand, we were to consider the ex-
ponential decay of the PDF, namelypν = e−βX (typical of
Markov statistics) it can be proved that a maximum of in-
formation content could not be reached, since this functional
form induces a saddle point atX = 1/β. Equation (15) also
shows that the peak in the maximum information content is
proportional toα2, so that a language with a larger value of
α will be able to carry more information. These facts will be
taken into account later on.
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4. Results

4.1. Shannon’s Information Analysis

When looking at a plot of accumulated Shannon entropy vs.
position in the renormalized time seriesiv (Fig. 1), it is pos-
sible to notice the significant contrast between the random
generator and other experimental subjects. In the case of the
DNA of living beings, the series plots all start with a high
(absolute) value of Shannon’s entropy (i.e. a low information
content) that gradually grows, thus enlarging the information
content of the chain. The presence of an almost continuous
curve is noticeable in the case of all living beings.

This fact contrasts with the presence of discontinuities in
the curve corresponding to the random-generated sequence
which exhibits four well-defined clusters in the form of
plateau. This behavior is due to the fact that our random
string of nucleotides is not absolutely lacking in informa-
tion but has some redundant information in its structural for-
mation, i.e. there are words of four different sizes plus the
overall count. It can be seen that the information content
of NC-DNA increases along the chain instead of decreasing,
as would be expected for random sequences. This fact is in
no way a violation of some form of the second law of ther-
modynamics since DNA codification is based on a series of
biochemical reactions with complex molecular behavior and
dynamics which obviously dissipate energy [12,26].

4.2. Probability distribution function (PDF) and Zipf’s
analysis

The results shown in Fig. 2 indicate the very low coherence
of the random generated sequence, as opposed to the coher-
ent character of the DNA of living beings. Since we have
already mentioned the relation between linguistic coherence
and the presence of long-range order as given for the tails of

FIGURE 1. Shannon-Weaver Informational entropy versus po-
sition in the time series for the complete set of genomic words up
to size 5 of all species plus the random generator. High absolute
values of entropy mean low information content.

the distribution in a frequency vs. rank plot, we may notice
a contrast between the long asymptotic tails of every curve
but the one corresponding to the generated sequence since
in this specific case the decay of the correlation occurs at a
very short distance, showing a functional behavior closer to
exponential decay than to the presence of a power law. As
we have seen, a power law in a frequency vs. rank plot in-
dicates coherence through its longtime tails. In fact, it is
possible to relate the presence of long tails in the PDF with
a non-markovian character of the transition probabilities be-
tween states (i.e. nucleotides in a genomic string) [10,12,14].
This feature could be derived from the fact that, as we have
already mentioned, a power law behavior such as the one in
the frequency vs. rank plots of NC-DNA implies, on one
hand, a coherent structure through Zipf’s linguistic analysis
as well as long-range order derived from its non-markovian
character, and on the other hand a local maximum on its in-
formation content, as seen from Shannon’s entropic analysis
given by Eq. (15) and the paragraph below. In the preceding
subsection, we also pointed out to the connection between
coherence, order, and information, as given by the power law
representation of the PDF of NC-DNA, with all features also
present in a linguistic (human produced) text. The next sub-
section will touch on another characteristic property of lan-
guage complexity. We address on the complexity issue by
considering a multifractal set representing the message [36]
in the DNA sequence and characterizing it by means of its
associated Hausdorff (or fractal) dimension as a measure of
complexity.

4.3. Hausdorff dimension

By observing the behavior of the Integral Correlation Func-
tion [Eq. (9)] as a function of the radius of the window used
to probe the time series (Fig. 3) one can see the presence of an
almost power law character in most cases; and since we made
this plot on a log-log basis, the slope of the graph corresponds
to the Hausdorff dimension of the associated sequence. In the
case of the random generated genome for Adenine, this slope

FIGURE 2. Global plot offrequency versus rank(Zipf plot ) for
the complete set of genomic words up to size 5 of all species plus
the random generator. A larger exponent implies greater coherence,
a closer correlation, and more structure.
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FIGURE 3. Logarithm of theIntegral Correlation Function of
Procaccia & Grassberger versus logarithm of the size of the obser-
vation window for the multifractal representing the renormalized
time series for Adenine of the genomes for all species studied plus
the random generator. Greater slopes imply a higher density of
phase space points, hence more complexity. Horizontal line be-
haviour implies trivial complexity.

is almost zero (0.17 to be precise), indicating low complexity
on its associated quasifractal in sharp contrast with the case of
real genomic fractions. It is also worth noticing that the slope
of the ICF plot was about the same for all the time series
associated, whereas in the case of living beings there were
higher slopes for Adenines and Thymines than for Citosines
and Guanines, a fact related with the higher [A+T] content as
related to the [G+C] content in DNA (some 60/40 percentage
of [A+T] with respect to [C+G]), a property that in the case
of S-DNA has been calledChargaff ’s Rule. We must also
stress the fact that the highest complexity was found in all
cases forMycoplasma pneumoniae, for in this case we used
the complete genome (about 100, 000 bp).

5. Conclusions

We could summarize our results for the statistical linguistic
analysis of DNA sequences in the following conclusions.

1. An information theoretical analysis showed a higher
information content in NC-DNA than in allother cases,

including random sequences and coding sequences
represented by genetic words of size three (codons).

2. The PDF of NC-DNA word countings on a frequency
vs. rank representation indicated a clear non-random
behavior; what is more, a highly coherent and struc-
tured linguistic character was devised.

3. Due to the long tails in the PDF’s of NC-DNA, it is
possible to talk about the presence of long-range cor-
relations as opposed to the medium to short-range in-
teraction of C-DNA [11], or to the exponential decay
of a random generated genomic sequence.

4. A multifractal analysis showed a highly complex land-
scape in the quasifractal sets related to nucleotide dis-
tribution, thus showing the non-trivial nature of the
coding [36].

5. The concentration of [A+T] content as related to the
[G+C] content in NC-DNA presented values of about
60/40 percentage of [A+T] with respect to [C+G], in
all genomes of living beings, whereas the random gen-
erated one presented equal parts (50 % approx.) as
should be obvious, given its homogeneous random dis-
tribution.

All these reasons lead us to conclude that “non-coding”
DNA contains a large quantity of information arranged in a
coherent, structured and complex manner whose linguistic
character (coding ?) lead us to think of some kind of bio-
logical function. Interesting advances, however, have been
made in understanding the possible function of NC-DNA re-
lating its presence with the synthesis of primordial ribosomal
RNA [41,42]. Nevertheless, a great deal of research must be
done in order to clarify the complex biochemical and genetic
mechanism present behind the statistical information and lin-
guistic character of NC-DNA as revealed through this and
similar studies.

∗. Corresponding author: enrique@eros.pquim.unam.mx.

i. A scale invariant functionf(x) has the remarkable property
that each timex is doubled, tripled, etc., the functionf(x)
changes by the same factor. There is thus no way to set a char-
acteristic scale for such a function. Stated mathematically, if the
variablex is increased by an arbitrary factorλ, then the func-
tion is changed by a factorλp which is independent of the value
of x, andf(λx) = λpf(x) for all λ. A functional equation
like this one, constrains the set of possible functional forms of

f(x): any functionf(x) satisfying this equation must possess
a power-law representation.

ii. The number ofrelevantgenes is related to the statistic correla-
tion lenght.

iii. In the associated time series a number one is assigned to every
position containing the given nucleotide base, a zero is assigned
otherwise.

iv. In order to work with time series of a more manageable size and
using the fact that DNA segments could be treated as multifrac-
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tals [10] we applied a fixed point renormalization approach to
the original genomic time series, the renormalized series have,
of course, the same properties (statistically talking) as the orig-
inals.
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