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Non-endoreversible Carnot refrigerator at maximum cooling power
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Within the context of the so-called finite time thermodynamics a Carnot’s refrigerator is studied. It is used the non-endoreversibility concept
and it is found an expression for the coefficient of performance,w, that permits to obtain values near to the experimental values reported in
the literature.
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Se estudia el refrigerador de Carnot en el contexto de la termodinámica de tiempo finito, utilizando el concepto de no-endorreversibilidad, y
se encuentra una expresión del rendimiento,w, que permite calcular valores deél más cercanos a los valores reales reportados en la literatura.

Descriptores:Refrigerador de Carnot; rendimiento; termodinámica de tiempos finitos.
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1. Introduction

All transformations of energy occurring in nature are irre-
versible processes. Some of these irreversibilities must be
included in a realistic description of such processes. Endore-
versible thermodynamics is a non-equilibrium approach to
these irreversible processes by taking a network of internally
reversible subsystems exchanging energy in an irreversible
fashion. An endoreversible system consists of a number of
subsystems which interact with each other and with the sur-
roundings. The subsystems can be chosen to insure that
each one undergoes only reversible processes. The whole
irreversibility of the processes is confined to the interaction
between the subsystems and the surroundings. An endore-
versible system is thus defined by the properties of its subsys-
tems and of its interactions. The processes of such systems
are called endoreversible processes.

As unlike classical equilibrium thermodynamics, these
processes are considered reversible. Classical equilibrium
thermodynamics has been very important in the study of ther-
mal engines, and its main role in thermal engine analysis
has consisted in providing upper bounds for variables of pro-
cesses, such as efficiency, work, heat and others. However,
the classical equilibrium thermodynamics bounds are usually
far from typical real values. Moreover, the problem of leav-
ing a system from a given initial state to a given final state,
while producing a minimum of entropy or a minimum loss
of availability leads, to reversible processes. These processes
are equivalent and have zero value both entropy and loss of
availability, but need infinitely long process time.

From the Novikov [1] and Curzon and Ahlborn [2] results
many other results have been published in “finite time” ther-
modynamics, or endoreversible thermodynamics. Finite time
thermodynamics can be considered an extension of classical
equilibrium thermodynamics for thermal engines that include
time dependence of the interaction processes with the ex-
ternal sources while excluding irreversible effects within the

working substance. The exclusion of intrinsic irreversible ef-
fects in the substance, knowing as the endoreversibility hy-
pothesis, is considered for cases in which the internal re-
laxation times of the working substance are negligibly short
compared to the total time of the cycle. The Curzon and
Alhborn-Novikov engine is a Carnot-type cycle, in which
there is no thermal equilibrium between the working fluid and
the reservoirs at the isothermal branches of the cycle and in
which the adiabatic branches are taken as instantaneous pro-
cesses.

In the context of finite time thermodynamics it can be
built, theoretical cycles with non null power output by using
the Newton heat transfer law. Particularly by the named eco-
logical optimization it is qualify the performance of the Cur-
zon and Ahlborn-Novikov engine[3,4]; endoreversible ther-
modynamic potentials can be built to obtain the efficiency of
the Curzon and Ahlborn-Novikov engine[5]; and Diesel cycle
has been studied at finite time of exchanging heat[6]. Using a
non linear heat transfer law it is possible to make an analysis
of the Curzon and Ahlborn-Novikov engine by maximization
of power output [7] like it is in references [3,4]. Moreover,
Curzon and Ahlborn-Novikov engine can be analyzed by tak-
ing a van der Waals gas as working substance [8].

Finite time thermodynamics also permits to model a re-
frigeration system as an endoreversible refrigerator driven
by an endoreversible heat engine, so that some authors have
studied the performance of the irreversible Carnot refrigera-
tion cycle. Particularly Agrawal and Menon [9] applied the
Curzon and Ahlborn [2] method to calculate the yield of a
refrigerator, and they shown that it is necesary to modify the
time of the adiabatic branches to take a model of thermal en-
gine with values of yield near to the real values of the experi-
mental engines. This idea leads to the functiona = QH/QC ,
whereQH andQC are the heat to the hot reservoir and the
heat from the cool reservoir, respectively, that permits to ob-
tain values of the yield coeficientw near to the experimental
values. The total entropy production is considered only asso-
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ciated to the irreversible part. It is necesary to find a form to
include the effect of the internal entropy production. Ozkay-
naket al. [10] and Chen [11] proposed an alternative method
to approximate a refrigerator to a non-endoreversible engine
operating at finite time; even more, they proposed [10,12] the
parameter

r =
∣∣∣∣
∆S1w

∆S2w

∣∣∣∣ , (1)

whose values are in the interval0 < r ≤ 1. ∆S1w is the
change of entropy in the hot isothermal branch and∆S2w is
the change of entropy in the cool isothermal branch. The re-
sults obtained in Refs. 10 and 12 reduce to the Curzon and
Ahlborn results whenr = 1[2].

On the other hand, the optimal performance in a class
of heat-driven pumps affected by some irreversibilities, such
as finite-rate heat transfer between the working fluid and the
external heat reservoirs [13], and the optimal performance re-
lated to energy of a Carnot refrigerator under the influence of
thermal resistances [14] had also been investigated.

As one can see, because it exists a relationship between
refrigeration systems and pollution, the analisys on the per-
formance of refrigerator engines is important. In the present
work, we propose a modified model of the endoreversibil-
ity hypothesis [15] which permits to consider a thermal irre-
versible engine, taking into account to sides of the question:
an internal cycle with entropy production and an external irre-
versible one that includes the environments surrounding and
the coupling with the working substance (heat flows). We
also write the coefficientw of a finite time Carnot refriger-
ator in terms of a parameter, as Ozkaynaket al. [10] has
propose, which includes internal irreversibilities of the en-
gine. As a result obtain values of the yield coefficient,w, that
improve the one obtained by Agrawal and Menon[9] for the
same refrigerator.

2. Endoreversible Carnot refrigerator

Carnot’s refrigerator had been analyzed in the context of fi-
nite time thermodynamics [16]. Particularly, Agrawal and
Menon[9] use the cooling powerP , definite byP = Q3/τ ,
whereQ3 is the heat from the cool reservoir to the refrigera-
tor at working temperatureT3 − y, andτ is the total time of
the cycle performance, as it is shown in Fig. 1.

Let us take the Clausius inequality,

∆S1w + ∆S3w ≤ 0, (2)

where∆S1w and ∆S3w are the increase of entropy in the
heat transfer processes between the reservoirs and the engine.
Now, in a reversible engine we have,

Q1

T1w
=

Q3

T3w
, (3)

and, from the Newton cooling law, we have

dQ1

dt
= α(T1w − T1),

dQ3

dt
= β(T3 − T3w), (4)

FIGURE 1. Inverse Carnot cycle like a refrigerator engine working
at cool temperatureT3 − y and hot temperatureT1 + x.

whereα andβ are the thermal conductances. So that, taking
T1w − T1 = x andT3 − T3w = y, Eq. (3) can be writen in
such a way that permits to define the parametera, as

Q1

Q3
=

T1w

T3w
=

T1 + x

T3 − y
= a . (5)

Transfer of heat from the cool reservoir to the hot reservoir
by the engine,Q1 andQ3, become

Q1 = αxt1, Q3 = βyt3. (6)

It could be assumed that there is a piston with a certain
velocity, u, (change of volume per time) into a cylinder as
the engine. Without into account aceleration at last of mo-
tion, we have, by definition, the time for each process as

t1 =
Q1

αx
=

V2 − V1

u
, t4 =

V4 − V1

u
,

t3 =
Q3

βy
=

V3 − V4

u
, t2 =

V3 − V2

u
, (7)

whereVj , j = 1, 2, 3, 4, are the volumes in Fig. 1. Equa-
tions (5) and (7) permit to take

V3

V2
=

V4

V1
=

[
T1 + x

T3 − y

]C

, (8)

whereC = Cv/Rg, with the molar heater capacityCv at v
constant and the universal constant of gasesRg, and the total
time of cycle, definite as

τ = t1 + t2 + t3 + t4, (9)

can be writen as

τ =
2Q3

(
1− V1

V2
a−C

)

βy
(
1− V1

V2

) , (10)
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where

y =
T3 − T1

a

1 + βaC

α

. (11)

Then, the cooling power expresion is

P =
α

(
1− V1

V2

) (
T3 − T1

a

)

2
[
aC − V1

V2
+ α

β − αV1
βV2

a−C
] . (12)

The maximization of Eq. (12) gives a function fora,

f(a) =
T1

a2

[
aC − V1

V2
+

α

β
− αV1

βV2
a−C

]

−C(T3 − T1

a
)
[
aC−1 +

αV1

βV2
a−C−1

]
, (13)

wheref(a) = 0 makes it posible to obtain certain values for
a. Now, the yield of engine[17],w = Q1/(Q3 − Q1), by
Eq. (5), leads to

w =
1

a− 1
. (14)

Equation (14) givesw through the obtained values ofa,
from (13). Figure 2 shows the behavior ofP as a convex
curve with a unique maximum value, to plottingP/α, for the
variablea.

3. Non-Endoreversible Carnot refrigerator

Now, the Agrawal and Menon results[9] can be used to mod-
ify the endoreversibility hypothesis. Let us Clausius inequal-
ity given by Eq. (2). Parameterr definite in Eq. (1) permits
change the Clausius inequality by

Q1

T1w
= r

Q3

T3w
, (15)

and with the Ozkaynak et al criterium [10], we obtain equiv-
alent equations like founded equations in Sec. 2,

FIGURE 2. Performance of cooling powerP (a)/α whena →∞.

Q1

Q3
=

T1 + x

T3 − y
= ra (16)

and

V3

V2
=

V4

V1
=

[
T1 + x

T3 − y

]C

= (ra)C , (17)

where C is the same as in Sec. 2. Also the period of cycle is
modified as

τ =
2Q3

βy

1−
(

V1
V2

)
(ra)−C

1−
(

V1
V2

) , (18)

with y = [T3 − T1/(ra)]/[1 + β(ra)C/α].
Finally we obtain the cooling power for the parameterr

as

P =
Q1

τ
=

α
(
1− V1

V2

) (
T3 − T1

ra

)

2
[
(ra)C − V1

V2
+ α

β − αV1
βV2

(ra)−C
] . (19)

Now we deriveP respecta for givenα, β, T3, T1, r, C.
Optimization condition,∂P/∂a = 0, gives a funcion for the
argumentra,

f(ra) =
[
(ra)C − V1

V2
+

α

β
− αV1

βV2(ra)C

]

− C

(
T3

T1
ra2 − a

)[
(ra)C−1 +

α

β
− αV1

βV2(ra)C+1

]
. (20)

Equation (20) reduces to the Agrawal and Menon result[9]
whenr = 1. The yield coeficient is written now as

w =
1

ra− 1
. (21)

4. Numerical results

Now we can calculate the yield coeficiente by Eq. (21) in the
Carnot cycle, taking a cooler gas which was not condensed
during the processes. The best example is air [18], accord-
ing to the literature. This cooler gas was used approximate
by 100 years ago, with a yield of0.75. At present, due to ad-
vanced technics approx in the Carnot cycle values of the yield
near to1.75 [19] had been obtained. Agrawal and Menon, us-
ing T1 = 316 K, T3 = 275 K, C = 2.558, V1/V2 = 1/16
andα/β = 2, obtainw = 1.27, anda = 1.79. These val-
ues are acceptable compared with the experimental values of
w, which are in the interval(0.75, 1.75) [9]. Table I (a and
b) shows the rank of variation ofw andra, according to the
proposal values ofr. Figures 3 and 4 show the behavior of
cooling powerP (ra), to plottingP (ra)/α, and the behav-
ior of functionf(ra), with r = 0.9, whena → ∞. Finaly,
Fig. 5 shows a comparison betweenp(a) andP (ra), to plot-
ting P (a)/α andP (ra)/α together, withr = 0.9.
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TABLE I. Numerical values obtained forra andw, according to
given values ofr. V1/V2 = 1/16 andα/β = 2, at givenT1 and
T3 temperarures. a)T1 = 316K andT3 = 275K; b) T1 = 298K
andT3 = 233K.

a) b)
r ra ω r ra ω

1.00 1.79 1.27 1.00 1.95 1.05
0.98 1.77 1.28 0.98 1.93 1.07
0.96 1.76 1.31 0.96 1.91 1.09
0.94 1.74 1.34 0.94 1.89 1.11
0.92 1.72 1.37 0.92 1.87 1.14
0.90 1.71 1.40 0.90 1.85 1.16
0.88 1.69 1.44 0.88 1.78 1.28

FIGURE 3. Performance of cooling powerP (ra)/α whena →∞
andr = 0.9.

FIGURE 4. Performance of cooling powerf(ra) whena → ∞
andr = 0.9. The value ofa whenf(ra) = 0 is the same as the
correspondig value at maximum of cooling power.

FIGURE 5. Comparison ofP (a)/α andP (ra)/α atr = 0.9 when
a →∞.

5. Conclusions

Finite time thermodynamics has shown to be an appropri-
ate extension of classical equilibrium termodynamics for the
treatment of processes in which changes in important quan-
tities of the system are taken into account, respect to time.
For a refrigerator, as it is shown, the obtained results lead to
values of yield coefficient,w, which are near to experimen-
tal values. The model used here also gives convex curves
with a unique maximum for the cooling power, too. With
the endoreversible model of Agrawal and Menon, it values
of w has been obtained with in the rank of the experimen-
tal values. It has been an improve over the reversible Carnot
refrigerator, whose values ofw were far away from real val-
ues. Agrawal and Menon model, gives only a unique value
of w for known temperatures of the reservoirs. The proposed
model here, taks into account internal irreversibilities trough
the paramenterr, leading to a set of values ofw (knowing
the reservoirs temperatures), which are also near to the ex-
perimental values. So we conclude that our model is less
restrictive than the Agrawal and Menon one.
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