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High frequency currents harmonically distributed around the surface of infinitely long circular cylinders, in the directions of the generatrices
and of the circles, are identified, and their associated electromagnetic fields are constructed. The latter are obtained as exact traveling wave
solutions of Maxwell equations in differential and boundary condition forms. The study of these systems is appropriate for Electromagnetic
Theory courses.
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Se identifican corrientes de alta frecuencia distribuidas alrededor de la superficie de cilindros circulares infinitamente largos, en las di-
recciones de las generatrices y de los cı́rculos, y se construyen sus campos electromagnéticos asociados. Lośultimos se obtienen como
soluciones exactas de ondas viajantes de las ecuaciones de Maxwell en sus formas diferenciales y de condiciones a la frontera. El estudio de
estos sistemas es apropiado para cursos de teorı́a electromagńetica.
Descriptores: Ecuaciones de Maxwell; soluciones exactas; radiación; antenas cilı́ndricas.

PACS: 41.20.Jb; 41.20.-q

1. Introduction

The electrostatic field of a straight line or a circular cylin-
der with uniform distributions of charge, and the magneto-
static fields of circular cylinders with uniform distributions
of electric current in the directions of the generatrices or of
the circles, are studied in the introductory course of Electric-
ity and Magnetism [1,2]. These fields can be directly evalu-
ated via Gauss’s law and Ampère’s law, respectively. Some
natural extensions of these familiar results have been studied
as two-dimensional harmonic expansions of electrostatic and
magnetostatic fields for conical cylindrical geometries [3],
appropriate for the level of Electromagnetic Theory courses.
Another work for this level has recently covered the study
of electrostatic, magnetostatic and electromagnetic fields for
harmonically distributed sources on infinite planes [4].

On the other hand, the number of examples of radiat-
ing systems studied in the Electromagnetic Theory courses is
quite limited, including the electric and magnetic oscillating
dipoles and the oscillating current uniformly distributed on an
infinite plane [5,6]. Reference [4] and the present article are
written to provide additional examples of types of radiating
systems with exact solutions and accessible to the intermedi-
ate and advanced undergraduate level students. The rest of
this work is organized in the following way: Sec. 2 contains
the formulation of the problem of constructing the electro-
magnetic fields produced by the high frequency currents dis-
tributed on the surface of infinitely long circular cylinders;
Subsec. 2A covers the cases of currents in the direction of
the generatrices with the harmonic distributions around the
cylinder; Subsec. 2B corresponds to the cases of currents in

the direction of the circles with harmonic distributions around
the cylinder. In Sec. 3, the Poynting vector, angular dis-
tribution and power associated with the electromagnetic ra-
diation emitted by the respective source cylinders are evalu-
ated. Section 4 consists of a didactic discussion of the spe-
cific results of Secs. 2 and 3 and some of their extensions and
limit situations, which may be helpful to teachers and stu-
dents interested in radiating systems. The Appendix contains
mathematical results connecting Maxwell equations and the
Helmholtz equation, and their solutions in circular cylindrical
coordinates, which are used in Sec. 2.

2. Radiation fields from high frequency cur-
rents distributed on infinitely long circular
cylinders

Maxwell equations are the mathematical expression of the
laws of Electromagnetism, which connect the space and
time variations of the electric intensity and magnetic induc-
tion fields with the electric charges and currents as their
sources. Here, the equations are written in their differential
and boundary condition form, for sources and fields with a
time harmonic variatione−iωtof frequencyω:

∇ · ~E = 4πρ ( ~E2 − ~E1) · n̂ = 4πσ (1a,b)

∇× ~B =
4π

c
~J − iω

c
~E ( ~B2 − ~B1)× n̂ =

4π

c
~K (2a,b)

∇× ~E =
iω

c
~B ( ~E2 − ~E1)× n̂ = 0 (3a,b)

∇ · ~B = 0 (B̂2 − B̂1) · n̂ = 0 (4a,b)
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They correspond successively to: 1) Gauss’s law, stat-
ing that electrical charges are sources of electric flux; and
that the normal components of the electric intensity field at
a boundary surface have a discontinuity proportional to the
surface charge density. 2) Ampère – Maxwell law identi-
fying two sources of magnetic circulation, electric currents
and time rate of change of electric flux (Maxwell displace-
ment current); and that the tangential component of the mag-
netic induction field at a boundary surface have a disconti-
nuity proportional to the perpendicular surface linear current
density. 3) Faraday’s law, which recognizes that the time rate
of change of the magnetic flux is a source of electric circula-
tion; and that the tangential components of the electric field
at a boundary surface are continuous. 4) Gauss’s law stating
the nonexistence of magnetic monopoles; and the continuity
of the normal components of the magnetic induction field at
a boundary surface.

For the problems studied in this work, the currents are
distributed on the surface of cylinders, and consequently the
volume charge densityρ and the current density~J vanish at
all points inside and outside the cylinders. Therefore, both
the electric intensity and the magnetic induction fields must
be divergenceless, Eqs. (1a) and (4a),~E is proportional to the
curl of ~B, Eq. (2a), and~B is proportional to the curl of~E,
Eq. (3a). These four equations are shown in the Appendix to
be equivalent to the Helmholtz equation, Eqs. (A3) and (A6).
In conclusion, both fields are constructed as solutions of the
Helmholtz equation with vanishing divergences, and one be-
ing the curl of the other and vice versa; and, additionally, they
must satisfy the boundary conditions of Eqs. (1b) – (4b).

2.1. Currents along generatrices and harmonically dis-
tributed around cylinders

The geometry of the surfaces where the currents are dis-
tributed suggests the use of circular cylindrical coordinates
to describe the sources and fields. In terms of such coordi-
nates(ρ =

√
x2 + y2, ϕ = tan−1 y/x, z)and its associated

unit vectors

ρ̂ = î cosϕ + ĵ sin ϕ, ϕ̂ = −î sin ϕ + ĵ cos ϕ, k̂ (5)

the linear current density is restricted to the surface of a cylin-
der of radiusρ = a, in the k̂ direction, and has a cosine or
sine distribution

~Kc(ρ = a, ϕ, z) = k̂K0 cosmϕ (6)

~Ks(ρ = a, ϕ, z) = k̂K0 sin mϕ. (7)

Since the sources are invariant under translations in thez
direction the electric and magnetic fields depend only on the
circular coordinatesρ andϕ. It is necessary to distinguish
between the solutions of Maxwell Eqs. (1a) – (4a) and the
Helmholtz Eq. (A8) inside and outside the source cylinder.

In particular, we start by proposing

~Bc(ρ ≤ a, ϕ) = ρ̂Bc<
0ρ (ρ) sin mϕ + ϕ̂Bc<

0ϕ (ρ) cos mϕ (8)

~Bc(ρ ≥ a, ϕ) = ρ̂Bc>
0ρ (ρ) sin mϕ + ϕ̂Bc>

0ϕ (ρ) cos mϕ (9)

for the case of the source of Eq. (6). The radial functions
Bc<(ρ) must be connected with the regular Bessel functions
in Eq. (A9), andBc>(ρ) must be connected with outgoing
waves of Eq. (A11) withn = 1. The connections can be
identified through the condition that the fields of Eqs. (8) and
(9) must be divergenceless, Eq. (4a):

Since

∇ · ~B =
1
ρ

∂

∂ρ

(
ρBc

0ρ(ρ) sin mϕ
)

+
1
ρ

∂

∂ϕ

(
Bc

0ϕ(ρ) cos mϕ
)

=
1
ρ

sin mϕ

[
∂

∂ρ

(
ρBc

0ρ(ρ)
)−mBc

0ϕ(ρ)
]

(10)

must vanish, the radial functions inside and outside of the
source cylinder are chosen, respectively, as

Bc<
0ρ (ρ) = Bc<

0 m
Jm(kρ)

ρ
Bc<

0ϕ (ρ) = Bc<
0

d

dρ
Jm(kρ)

(11)

and

Bc>
0ρ (ρ) = Bc>

0 m
H

(1)
m (kρ)

ρ
Bc>

0ϕ (ρ) = Bc>
0

d

dρ
H(1)

m (kρ).

(12)

The coefficientsBc<
0 andBc>

0 will be determined by the
boundary conditions of Eqs. (4b) and (2b), that the normal
component at the boundary must be continuous,

Bc<
0mm

Jm(ka)
a

= Bc>
0mm

H
(1)
m (ka)

a
(13)

and the tangential components have a discontinuity propor-
tional to the linear current density

[
Bc>

0

dH
(1)
m (kρ)
dρ

−Bc<
0

dJm(kρ)
dρ

]

ρ=a

=
4π

c
K0. (14)

The coefficients in Eq. (13) can be written as

Bc<
0 = Bc

0H
(1)
m (ka), Bc>

0 = Bc
0Jm(ka)

and Eq. (14) determines the value of the remaining unknown
coefficient,

kBc
0

[
Jm(ka)

dH
(1)
m (ka)

d(ka)
−H(1)

m (ka)
dJm(ka)
d(ka)

]

=
4π

c
K0. (15)

The bracket in this equation is identified as the Wronskian
of Eq. (A23), so that

Bc
0 =

4π

ck
K0

πka

2i
= −2π

c
K0iπa (16)
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Thus, the magnetic induction fields of Eqs. (8) and (9)
take their final forms:

~Bc(ρ ≤ a, ϕ) = −2π

c
K0iπaH(1)

m (ka)

×
[
ρ̂m

Jm(kρ)
ρ

sin mϕ + ϕ̂
dJm(kρ)

dρ
cos mϕ

]
(17)

~Bc(ρ ≥ a, ϕ) = −2π

c
K0iπaJm(ka)

×
[
ρ̂m

H
(1)
m (kρ)

ρ
sin mϕ + ϕ̂

dH
(1)
m (kρ)
dρ

cos mϕ

]
(18)

The curls of these magnetic fields lead to the companion
electric fields inside and outside the source cylinder, via

Eq. (2a),

~Ec(ρ≤a, ϕ)=−2π

c
K0πkaH(1)

m (ka)k̂Jm(kρ) cos mϕ (19)

~Ec(ρ≥a, ϕ)=−2π

c
K0πkaJm(ka)k̂H(1)

m (kρ)cos mϕ. (20)

Notice the continuity of the tangential components at the
source cylinder. The reader can also check that the curls of
Eqs. (19) and (20) lead back to Eqs. (17) and (18), via Fara-
day’s law, Eq. (3a).

For the source of Eq. (7), the same procedure can be
followed replacing the sine distribution for the cosine dis-
tribution in Eq. (6), and performing the exchange of the
trigonometric functions in Eqs. (8) and (9). For the sake
of brevity, here we give the resulting electromagnetic fields,
counterparts of Eqs. (17) – (20):

~Bs(ρ ≤ a, ϕ) = −2π

c
K0iπaH(1)

m (ka)
[
−ρ̂m

Jm(kρ)
ρ

cosmϕ + ϕ̂
dJm(kρ)

dρ
sin mϕ

]
(21)

~Bs(ρ ≥ a, ϕ) = −2π

c
K0iπaJm(ka)

[
−ρ̂m

H
(1)
m (kρ)

ρ
cos mϕ + ϕ̂

dH
(1)
m (kρ)
dρ

sin mϕ

]
(22)

~Es(ρ ≤ a, ϕ) = −2π

c
K0πkaH(1)

m (ka)k̂Jm(kρ) sin mϕ (23)

~Es(ρ ≥ a, ϕ) = −2π

c
K0πkaJm(ka)k̂H(1)

m (kρ) sin mϕ. (24)

The continuity of the normal components of~B, the dis-
continuity of its tangential components at the source cylinder
in Eqs. (21) and (22), and the corresponding continuity of
components of~E in Eqs. (23) and (24) can be directly ascer-
tained.

2.2. Currents along circles and harmonically dis-
tributed around cylinders

The currents in this subsection share the same location and
the same harmonic distributions as those in the previous sec-
tion, but differ in their direction of motion which is now cir-
cular:

~Kc(ρ = a, ϕ, z) = ϕ̂K0 cos mϕ (25)

~Ks(ρ = a, ϕ, z) = ϕ̂K0 sin mϕ. (26)

The difference leads to recognize the presence of surface
charge densities on the cylinders, as determined by the conti-
nuity equation,

∇ · ~K +
∂σ

∂t
= 0.

In fact, the respective surface charge densities are imme-
diately evaluated to be

σc(ρ = a, ϕ, z, t) =
i

ωa
K0m sinmϕe−iωt (27)

σs(ρ = a, ϕ, z, t) = − i

ωa
K0m cos mϕe−iωt (28)

where the complementary harmonicities of charges and cur-
rents should be noticed.

In the case of the sources of Eqs. (25) and (27) we con-
struct first the electric intensity fields inside and outside of
the source cylinder:

~Ec(ρ ≤ a, ϕ)=ρ̂Ec<
0ρ (ρ) sin mϕ + ϕ̂Ec<

0ϕ (ρ) cos mϕ (29)

~Ec(ρ ≥ a, ϕ)=ρ̂Ec>
0ρ (ρ) sin mϕ + ϕ̂Ec>

0ϕ (ρ) cos mϕ. (30)

The condition that their divergences must vanish

∇ · ~E =
1
ρ

d

dρ

(
ρEc

0ρ(ρ)
)
sin mϕ

+Ec
0ϕ(ρ)

1
ρ

d

dϕ
(cos mϕ) = 0. (31)
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can be assured by the choices

Ec<
0ρ (ρ) = Ec<

0 m
Jm(kρ)

ρ

Ec<
0ϕ (ρ) = Ec<

0

d

dρ
Jm(kρ) (32)

and

Ec>
0ρ (ρ) = Ec>

0 m
H

(1)
m (kρ)

ρ

Ec>
0ϕ (ρ) = Ec>

0

d

dρ
H(1)

m (kρ). (33)

Then, the coefficientsEc<
0 andEc>

0 are connected and
determined through the successive use of Faraday’s law,
Eq. (3b):

Ec<
0

dJm(ka)
da

= Ec>
0

dH
(1)
m (ka)
da

(34)

implying

Ec<
0 = Ec

0

dH
(1)
m (ka)
da

, Ec>
0 = Ec

0

dJm(ka)
da

; (35)

and Gauss’s law, Eq. (1b):

Ec
0

m

a

[
dJm(ka)

da
H(1)

m (ka)− dH
(1)
m (ka)
da

Jm(ka)

]

= 4πσc =
4πiK0m

ωa
(36)

where, in the last step, the surface charge amplitude of
Eq. (27) is used. The quantity inside the brackets is identi-
fied as the Wronskian of Eq. (A23) leading to the value of
the coefficient

Ec
0 = −4πiK0

ω

πa

2i
. (37)

Thus, Eqs. (29) and (30) finally become

~Ec(ρ ≤ a, ϕ) = −2π

ω
K0πa

dH
(1)
m (ka)
da

×
[
ρ̂m

Jm(kρ)
ρ

sin mϕ + ϕ̂
dJm(kρ)

dρ
cos mϕ

]
(38)

~Ec(ρ ≥ a, ϕ) = −2π

ω
K0πa

dJm(ka)
da

×
[
ρ̂m

H
(1)
m (kρ)

ρ
sinmϕ + ϕ̂

dH
(1)
m (kρ)
dρ

cos mϕ

]
(39)

The curls of Eqs. (38) and (39) lead to the companion
magnetic induction fields, via Eq. (3a):

~Bc(ρ ≤ a, ϕ) = − i2π

c
K0πa

dH
(1)
m (ka)
da

k̂Jm(kρ) cos mϕ (40)

~Bc(ρ ≥ a, ϕ) = − i2π

c
K0πa

dJm(ka)
da

k̂H(1)
m (kρ) cos mϕ. (41)

Notice that their normal components vanish, thus sat-
isfying Eq. (4b), and their tangential components at the
source cylinder are discontinuous reproducing the linear cur-
rent density of Eq. (25), via Eq. (2b). They are also di-
vergenceless, Eq. (4a), and their curls reproduce Eqs. (38)
and (39), via (2a).

For the sources of Eqs. (26) and (28), the corresponding
electromagnetic fields are simply given in their final forms:

~Bs(ρ ≤ a, ϕ) =
i2π

c
K0πa

dH
(1)
m (ka)
da

k̂Jm(kρ) sin mϕ (42)

~Bs(ρ ≥ a, ϕ) =
i2π

c
K0πa

dJm(ka)
da

k̂H(1)
m (kρ) sin mϕ (43)

~Es(ρ ≤ a, ϕ) =
2π

ω
K0πa

dH
(1)
m (ka)
da

[
ρ̂m

Jm(kρ)
ρ

cos mϕ− ϕ̂
dJm(kρ)

dρ
sin mϕ

]
(44)

~Es(ρ ≥ a, ϕ) =
2π

ω
K0πa

dJm(ka)
da

[
ρ̂m

H
(1)
m (kρ)

ρ
cosmϕ− ϕ̂

dH
(1)
m (kρ)
dρ

sin mϕ

]
. (45)

The reader can check that these fields satisfy Eqs. (1)–(4) in their differential and boundary condition forms.

3. Poynting vector, angular distribution and
power of the electromagnetic radiation

In this section, the successive evaluations of the energy den-
sity flux, angular distribution, and the total power radiated
per unit length by the antennas are presented in detail for the

electromagnetic fields of Eqs. (18)–(20). The correspond-
ing results for the electromagnetic fields of Eqs. (22)–(24),
(39)–(41) and (43)–(45) are also described, compared and
commented upon.
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The Poynting vector,

~S =
c ~E × ~B

8π
, (46)

represents the energy per unit area per unit time associated
with the electric and magnetic fields in each point in space
and instant of time [5]. For the electromagnetic fields of our
interest the time average of such an energy density flux is
evaluated as

〈
~S
〉

=
c ~E∗ × ~B

8π
. (47)

In the specific case of the electromagnetic fields described
by Eqs. (18) and (20), the result for any position(ρ, ϕ) is

〈
~S
〉

=
c

8π

[
2π

c
K0πkaJm(ka)

]2

H(1)∗
m (kρ) cos mϕ

×
[
ϕ̂

im

kρ
H(1)

m (kρ) sin mϕ− ρ̂i
dH

(1)
m (kρ)

d(kρ)
cos mϕ

]
(48)

For the far zone, wherekρ → ∞, the asymptotic form
of the Hankel functions is given by Eq. (A17), and the time-
averaged Poynting vector takes the form:

〈
~S
〉

=
c

8π

[
2π

c
K0πkaJm(ka)

]2 2
πkρ

[
ϕ̂

im

kρ
sin mϕ cos mϕ + ρ̂ cos2 mϕ

]
, (49)

Where only the dominant terms are kept, including the
derivative of the exponential factor in Eq. (A17). It is clear
that the azimuthal component will become negligible com-
pared with the radial component, so that the radiation propa-
gates radially away from the antenna. The azimuthal compo-
nent is associated with the electromagnetic induction of the
fields.

The angular distribution of the radiated field at a large dis-
tance from the antenna is obtained by evaluating the energy
crossing the area element∆~a = ρ̂ρdϕ∆z per unit time:

dP =
〈

~S
〉
· d~a =

c

8π

[
2π

c
K0πkaJm(ka)

]2

2
πk

cos2 mϕdϕ∆z. (50)

Correspondingly, the total radiated average power is ob-
tained by integration over all the azimuthal directions with
the final result

P =
c

8π

[
2π

c
K0πkaJm(ka)

]2 ∆z

πk

=
1
2

k

c
[Jm(ka)]2 [K0πka]2 ∆z =

1
2
Rrad∆zI2

0 , (51)

whereK0πa is identified as the amplitude currentI0 (in stat
Amperes) around the circular cylinder, and

Rrad =
k

c
[Jm(ka)]2 (52)

is the radiative resistance per unit length of the antenna in
stat ohms/cm [5].

The longitudinal currents of Eqs. (6) and (7) produce the
longitudinal electric fields of Eqs. (19)–(20) and (23)–(24),
respectively. The respective radiation fields described by
Eqs. (20) and (24) are correspondingly linearly polarized
in the longitudinal direction. The sources and electric
fields under discussion differ in their respectivecosmϕ and
sin mϕ dependences, leading to the corresponding differ-
ences in the associated magnetic induction fields contained
in Eqs. (17)–(18) and (21)–(22), and in the counterparts of
Eqs. (48)–(50). The latter exhibit the difference between the
cos2 mϕ andsin2 mϕ angular distributions, which have the
same shape with different orientations. On the other hand,
Eqs. (51) and (52) are valid for both situations.

When we go from the longitudinal currents, Eqs. (6)
and (7), to the solenoidal currents, Eqs. (25) and (26),
we notice the same space dependence of the electric fields,
Eqs. (19)–(20) and Eqs. (23)–(24), and of the magnetic fields,
Eqs. (40)–(41) and Eqs. (42)–(43); and also of the magnetic
fields, Eqs. (17)–(18) and (21)–(22), and of the electric fields,
Eqs. (38)–(39) and (44)–(45). The differences reside in the
normalization factors, with the substitution ofkZm(ka) by
idZm(ka)/da. Consequently, the radiation fields due to the
solenoidal currents are linearly polarized in theϕ̂ direction
and showcos2 mϕ andsin2 mϕ angular distributions. Their
common radiation resistance per unit length of the antenna is

Rrad =
k

c

∣∣∣∣∣
dH

(1)
m (ka)

d(ka)

∣∣∣∣∣

2

4. Discussion

The exact solutions of Maxwell’s equations (1)–(4), for
the axial currents of Eqs. (6)–(7) and the solenoidal cur-
rents of Eqs. (25)–(26), have been explicitly constructed in
Sec. 2. The respective electromagnetic fields are given by
Eqs. (17)–(20), (21)–(24), (38)–(41) and (40)–(45), respec-
tively. They are solenoidal fields, satisfying the Helmholtz
equation, as well as Maxwell’s and Faraday’s laws, inside
and outside the source cylinders. Notice that the inside so-
lutions depend on the ordinary Bessel functions, while the
outside solutions correspond to Hankel functions of the first
order. The latter describe asymptotically the outgoing circu-
lar cylindrical waves of the electromagnetic radiation emitted
by the respective antenna, which additionally are linearly po-
larized in the direction of the respective source current. The
angular distributions, powers and radiation resistances are de-
termined by the harmonicity of the source current, as evalu-
ated and discussed in Sec. 3. The inside solutions and the
quasistatic solutions near the source cylinders are obtained
by taking the long wavelength limit,kρ → 0, of the exact
solutions via Eqs. (A12)–(A14).

Rev. Mex. F́ıs. 50 (2) (2004) 140–146



ELECTROMAGNETIC FIELDS FROM HIGH FREQUENCY CURRENTS HARMONICALLY DISTRIBUTED. . . 145

The static limit corresponds toω = 0, k = 0, with the
surviving radial dependences of Eqs. (A12)–(A14). For the
stationary currents along the generatrices, Eqs. (6)–(7), only
the magnetostatic fields persist, and the electric fields van-
ish. On the other hand, the circular currents, withm 6= 0
of Eqs. (25)–(26) cannot be stationary, but the static charge
densities of Eqs. (27) and (28) are well defined in the limit
K0 = 0, such thatiK0m/ωa = σ0, in which cases the elec-
trostatic fields persist, and the magnetic fields vanish. For
the uniformly distributed current of Eq. (25) withm = 0,
the uniform magnetic induction field in the axial direction in-
side the cylinder is recovered from Eq. (40). Likewise, for
the uniformly distributed charge of Eq. (28) withm = 0,
the radial electric intensity field, inversely proportional to the
radial distance, outside the cylinder follows from Eq. (45).

A APPENDIX

Maxwell Eqs. (1a)–(4a) are coupled first order partial differ-
ential equations. They can be decoupled by taking the curls
of Eqs. (2a) and (2b), respectively, and using the equations
themselves as needed:

∇× (∇× ~B) =
4π

c
∇× ~J − iω

c
∇× ~E (A.1)

∇(∇ · ~B)−∇2 ~B =
4π

c
∇× ~J +

ω2

c2
~B (A.2)

∴
(
∇2 +

ω2

c2

)
~B =

4π

c
∇× ~J (A.3)

∇× (∇× ~E)=∇(∇· ~E)−∇2 ~E=
iω

c
∇× ~B (A.4)

4π∇ρ−∇2 ~E =
ω2

c2
~E +

4πiω

c2
~J (A.5)

∴
(
∇2 +

ω2

c2

)
~E = 4π∇ρ− 4πiω

c2
~J. (A.6)

From Eq. (A1) to (A2), Eq. (3a) has been used, and
in the next step, Eq. (4a) is also used. Correspondingly, in
the next set of equations use is made of Eqs. (1a) and (2a).
Equations (A3) and (A6) are the inhomogeneous Helmholtz
equations for the respective fields.

For the sources distributed on the surface of the cylinders,
ρ = 0 andJ = 0 for points inside and outside the cylinders,
and each of the components of the fields in Eqs. (A3) and
(A6) must satisfy the homogeneous Helmholtz equation(

∇2 +
ω2

c2

)
f(~r) = 0. (A.7)

For a given solution of this equation in Cartesian coor-
dinatesf(x, y, z) it is recognized that its partial derivatives
with respect tox, y andz are also solutions of the same equa-
tion.

For the sources of Sec. 2, which are independent of the
z coordinate, the electromagnetic fields inherit the same in-
dependence, and only depend on theρ and ϕ coordinates.
Correspondingly, we concentrate on the solutions of the
Helmholtz equation (A7) in circular coordinates:

(
1
ρ

∂

∂ρ
ρ

∂

∂ρ
+

1
ρ2

∂2

∂ϕ2
+ k2

)
f(ρ, ϕ) = 0 (A.8)

wherek = ω/c is the wave number. The solutions are sepa-
rable as products of radial Bessel functions and sine or cosine
functions of integer multiples of the angular coordinate [7,8]:

f(ρ, ϕ) = [AmJm(kρ) + BmYm(kρ)]

×(Cm cos mϕ + Dm sin mϕ), m = 0, 1, 2, . . . (A.9)

Here, Jm(kρ) is the ordinary regular Bessel function,
Ym(kρ) is the Bessel function of the second kind, or Neu-
mann function, singular atρ = 0. Instead of the trigonomet-
ric functions in the angular coordinate, their complex combi-
nations

cos mϕ± i sin mϕ = e±imϕ (A.10)

representing rotating waves can be used. Similarly, the com-
plex combinations of the stationary Bessel functions,

Jm(kρ)± iYm(kρ) = H(n)
m (kρ), n = 1, 2 (A.11)

which are Bessel functions of the third and fourth kind, or
Hankel functions of the first and second kind, represent cir-
cular cylindrical outgoing and incoming waves, respectively.

It is important to be familiar with the behavior of the
Bessel functions close to the origin,z → 0,

Jν(z) ∼ (z/2)ν

Γ(ν + 1)
, ν 6= −1,−1,−3, . . . (A.12)

Yν(z) ∼ −iH(1)
ν (z) ∼ iH(2)

ν (z) ∼ −Γ(ν)
π

(z

2

)−ν

,

Reν > 0 (A.13)

Y0(z) ∼ iH
(1)
0 (z) ∼ iH

(2)
0 (z) ∼ 2

π
ln z, (A.14)

and asymptotically,z →∞,

Jν(z) →
√

2
πz

cos
(
z − νπ

2
− π

4

)
(A.15)

Yν(z) →
√

2
πz

sin
(
z − νπ

2
− π

4

)
(A.16)

H(n)
ν (z) →

√
2
πz

e±i(z− νπ
2 −π

4 ), n = 1, 2. (A.17)

They also satisfy recurrence relations

Zν−1(z) + Zν+1(z) =
2ν

z
Zν(z) (A.18)

Zν−1(z)− Zν+1(z) = 2Z ′ν(z) (A.19)

Z ′ν(z) = Zν−1(z)− ν

z
Zν(z) (A.20)

Z ′ν(z) = −Zν+1(z) +
ν

z
Zν(z) (A.21)
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whereZν(z) is any of the four kinds of Bessel functions. Some of their Wronskians are:

W {Jν(z), Yν(z)} = Jν(z)Y ′
ν(z)− J ′ν(z)Yν(z) =

2
πz

(22)

W
{

Jν(z), H(1)
ν (z)

}
= Jν(z)H(1)

ν
′(z)− J ′ν(z)H(1)

ν (z) =
2i

πz
(23)
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