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The scalar normal modes and Green functions for the classical wave equation subject to Dirichlet and Neumann boundary conditions on
confocal hyperboloidal surfaces, which model the shapes of the electrodes in a scanning tunneling microscope or a conductor-insulator-
conductor junction, are explicitly constructed. These modes and functions are of interest as possible starting points for the study of the
Casimir effect between the electrodes of such devices.
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Se construyen explı́citamente los modos normales y las funciones de Green escalares para la ecuación de onda cĺasica sujetas a condiciones
de frontera de Dirichlet y de Neumann en superficies hiperboloidales confocales, las cuales modelan las formas de los electrodos en un
microscopio de tunelaje y barrido, y en juntas conductor-aislante-conductor. Estos modos y funciones son de interés como posibles puntos
de partida para el estudio del efecto Casimir entre los electrodos de tales dispositivos.

Descriptores:Ecuacíon de onda cĺasica; modos normales; funciones de Green; microscopı́a de barrido y tunelamiento; efecto Casimir.
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1. Introduction

The modeling of the tip and sample surfaces in scanning tun-
neling microscopy (STM) as confocal hyperboloids has been
used in the recent literature [1-3]. Such a modeling can also
be extended for conductor-insulator-conductor (CIC) junc-
tions [4,5]. The quantitative description of the electrostatic
potential, the electric intensity field and the electrostatic en-
ergy distribution between the electrodes in both devices, tak-
ing into account the applied bias voltage and the charges in-
duced in the electrodes while the tunneling electron is in tran-
sit between the latter, involves the solutions of the Laplace
equation and the Green function for the Poisson equation sub-
ject to Dirichlet boundary conditions [2,4,5].

Casimir analyzed the quantum electromagnetic vacuum
energy change in the presence and absence of one of two un-
charged parallel plane conductors, and concluded that there
should be a net attractive force between the latter [6]. Exper-
imental measurements have confirmed the existence of this
so-called Casimir effect [7]. The effect has also been inves-
tigated for other geometries of the electrodes [8]. Some of
the possible starting points for the analysis of the Casimir ef-
fect for electrodes of a given shape require the scalar normal

modes or the Green functions for the classical wave equation
subject to Dirichlet and Neumann boundary conditions at the
surface of the electrodes [9].

In this work, motivated by the interest in the study of the
Casimir effect for hyperboloidal electrodes, the correspond-
ing normal modes and Green functions are constructed using
prolate spheroidal coordinates. The task is accomplished in
two successive steps. In Sec. 2, the solutions of the homoge-
neous classical wave equation in those coordinates are identi-
fied in general, and selected according to Dirichlet and Neu-
mann boundary conditions in particular. The orthonormal
bases of these Dirichlet and Neumann solutions are used in
Sec. 3 to construct the respective Green functions, as the par-
ticular solutions of the inhomogeneous wave equation with a
point and instantaneous source. Section 4 presents a discus-
sion of the analogies and differences between the problem
and results of this paper and those of the electrostatic situ-
ation [5], and also the remaining and anticipated steps for
the quantum analysis of the Casimir effect for the STM and
CIC-junction geometries. In the Appendix some basic prop-
erties of the angular and radial spheroidal functions needed
in Secs. 2 and 3 are included.
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2. Solutions of the homogeneous wave equa-
tion in spheroidal coordinates

The prolate spheroidal coordinates (1≤η<∞,−1≤ξ≤1,
0≤ϕ≤2π) are defined by the transformation equations to
Cartesian coordinates,

x = f
√

(η2 − 1)(1− ξ2) cos ϕ,

y = f
√

(η2 − 1)(1− ξ2) sin ϕ,

z = fηξ, (1)

where 2f is the distance between the focii located at
(x=0, y=0, z= ± f). Constant values of the respective co-
ordinates correspond to confocal prolate spheroids with ec-
centricity1/η, confocal hyperboloids with eccentricity1/ξ,
and meridian half-planes making an angleϕ with the xz
plane[10, 11] . The respective scale factors

hη = f

√
η2 − ξ2

η2 − 1
,

hξ = f

√
η2 − ξ2

1− ξ2
,

hϕ = f
√

(η2 − 1)(1− ξ2), (2)

and the orthogonal unit vectors

η̂ =
(̂ı cosϕ + ̂ sin ϕ)η

√
1− ξ2 + k̂ξ

√
η2 − 1√

η2 − ξ2
,

ξ̂ =
−(̂ı cosϕ + ̂ sin ϕ)ξ

√
1− η2 + k̂η

√
1− ξ2

√
η2 − ξ2

,

ϕ̂ = −ı̂ sin ϕ + ̂ cosϕ, (3)

follow from the evaluation of the differential displacement
vector. Then, the homogeneous wave equation in these coor-
dinates has the form
{

1
f2(η2−ξ2)

[
∂

∂η
(η2−1)

∂

∂η
+

∂

∂ξ
(1−ξ2)

∂

∂ξ

]

+
1

f2(η2−1)(1−ξ2)
∂2

∂ϕ2
− 1

c2

∂2

∂t2

}
ψ(η, ξ, ϕ, t)=0. (4)

It clearly admits separable solutions

ψ(η, ξ, ϕ, t) = H(η)Ξ(ξ)Φ(ϕ)T (t) (5)

in which each factor satisfies the respective differential equa-
tions:

[
d

dη
(η2−1)

d

dη
− m2

η2−1
+

ω2f2

c2
η2

]
H(η)=λH(η), (6)

[
d

dξ
(1−ξ2)

d

dξ
− m2

1−ξ2
−ω2f2

c2
ξ2

]
Ξ(ξ)=−λΞ(ξ), (7)

d2Φ
dϕ2

= −m2Φ, (8)

d2T

dt2
= −ω2T, (9)

whereω2, m2 andλ are the successive separation constants.
The time dependent solution is chosen to vary harmonically
with frequencyω, T = e−iωt. The periodicity condition on
the azimuth angle dependent function,Φ(ϕ + 2π) = Φ(ϕ),
determines the integer values of the separation constant,
m = 0,±1,±2, . . ., as well as the form of the function itself,
eimϕ or its alternativescos(mϕ) andsin(mϕ). The combi-
nationω/c = k is identified as the wave number.

Equations (6) and (7) have the same form, but their so-
lutions are defined in the respective domains,1 ≤ η < ∞
and−1 ≤ ξ ≤ 1, and correspond to the radial and angu-
lar spheroidal functions [11, 12]. When both domains are
entirely available, the respective spheroidal functions can be
written as series of Bessel functions and associated Legen-
dre functions of integer orders, involving the same expansion
coefficients and the same characteristic values of the separa-
tion constantλ. The latter can be calculated via the orthodox
continued fraction equation method [11], or by an equivalent
matrix method [12].

The normal mode solutions of the homogeneous wave
equation, Eq. (4), to be selected are the one subjected to the
Dirichlet boundary conditions of vanishing at the surfaces of
the two hyperboloidal electrodes considered in this work,

ψD(η, ξ = ξ1, ϕ, t) = 0, ψD(η, ξ = ξ2, ϕ, t) = 0, (10)

and to the Neumann boundary conditions of vanishing nor-
mal derivatives on the same surfaces,

∂ψN (η, ξ, ϕ, t)
∂ξ

∣∣∣∣
ξ=ξ1

=0,
∂ψN (η, ξ, ϕ, t)

∂ξ

∣∣∣∣
ξ=ξ2

=0. (11)

The separable solutions of Eq.(5) and the boundary condi-
tions of Eqs. (10) and (11) lead to the restrictions on the
respective solutions of Eq. (7):

ΞD(ξ = ξ1) = 0, ΞD(ξ = ξ2) = 0, (12)

and

Ξ′N (ξ = ξ1) = 0, Ξ′N (ξ = ξ2) = 0, (13)

where the prime denotes the derivative with respect toξ.
In order to construct these functions, let us consider the gen-
eral solutions of Eq. (7), for chosen values ofm, kf andλ.
They are simply the superpositions of the angular spheroidal
functions of the first and second kinds [11],

Ξb
mn(ξ) = Ab

mnS(1)
mn(kf, ξ) + Bb

mnS(2)
mn(kf, ξ), (14)

given by Eq. (A.1) and (A.2). Forb = D, Eqs. (12) become

AD
mnS(1)

mn(kf, ξ1) + BD
mnS(2)

mn(kf, ξ1) = 0,

AD
mnS(1)

mn(kf, ξ2) + BD
mnS(2)

mn(kf, ξ2) = 0, (15)
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a set of two linear homogeneous algebraic equations for the
unknown coefficientsAD

mn y BD
mn. The latter may be differ-

ent from zero only if the determinant of Eqs.(15) vanishes

S(1)
mn(kf, ξ1)S(2)

mn(kf, ξ2)

−S(2)
mn(kf, ξ1)S(1)

mn(kf, ξ2) = 0, (16)

which will happen only for an infinite set of discrete wave
numberskD

mns, s = 1, 2, 3, . . . , with corresponding frequen-

ciesωD
mns = kD

mnsc, and eigenvaluesλD
mn(kD

mnsf). For each
eigenfrequency, Eqs. (15) and (16) determine the ratios of the
coefficients in the solution of Eq.(14):

AD
mn

BD
mn

= −S
(2)
mn(kD

mnsf, ξ1)

S
(1)
mn(kD

mnsf, ξ1)
= −S

(2)
mn(kD

mnsf, ξ2)

S
(1)
mn(kD

mnsf, ξ2)
. (17)

Then, the Dirichlet angular spheroidal functions can be writ-
ten in two alternative forms

ΞD
mns(kf, ξ) = ND

mns

[
S(2)

mn(kD
mnsf, ξ2)S(1)

mn(kD
mnsf, ξ)− S(1)

mn(kD
mnsf, ξ2)S(2)

mn(kD
mnsf, ξ)

]

= N̄D
mns

[
S(1)

mn(kD
mnsf, ξ1)S(2)

mn(kD
mnsf, ξ)− S(2)

mn(kD
mnsf, ξ1)S(1)

mn(kD
mnsf, ξ)

]
(18)

exhibiting that they are solutions of Eq.(7) and satisfy both
boundary conditions of Eqs.(12). The eigenvalue nature of
the problem defined by these equations guarantees that the
basis of the functions of Eq.(18) is orthogonal and complete.
The normalization constants can be chosen so that

ξ2∫

ξ1

dξΞD
nms(k

D
mnsf, ξ)ΞD

n′ms′(k
D
mns′f, ξ)=δnn′δss′ , (19)

∑
n

∑
s

ΞD
nms(k

D
mnsf, ξ)ΞD

nms(k
D
mnsf, ξ′)=δ(ξ−ξ′). (20)

Similarly, for b = N , Eqs.(13) take the forms

AN
mnS(1)′

mn (kf, ξ1) + BN
mnS(2)′

mn (kf, ξ1) = 0,

AN
mnS(1)′

mn (kf, ξ2) + BN
mnS(2)′

mn (kf, ξ2) = 0. (21)

The coefficientsAN
mn andBN

mn have nontrivial and nonvan-
ishing values only for

S(1)′
mn (kf, ξ1)S(2)′

mn (kf, ξ2)

−S(2)′
mn (kf, ξ1)S(1)′

mn (kf, ξ2) = 0, (22)

corresponding to discrete sets of values for the wave num-
berkN

mns, s = 1, 2, 3, . . . , frequenciesωN
mns = kN

mnsc, and
eigenvaluesλN

nm(kN
mnsf).

Now the ratio of the coefficients in the solution of Eq.(14)
are

AN
mn

BN
mn

= −S
(2)′
mn (kN

mnsf, ξ1)

S
(1)′
mn (kN

mnsf, ξ1)
= −S

(2)′
mn (kN

mnsf, ξ2)

S
(1)′
mn (kN

mnsf, ξ2)
, (23)

and the Neumann orthonormal angular spheroidal functions
take the alternative forms

ΞN
mns(ξ) = NN

mns

[
S(2)′

mn (kN
mnsf, ξ2)S(1)

mn(kN
mnsf, ξ)− S(1)′

mn (kN
mnsf, ξ2)S(2)

mn(kN
mnsf, ξ)

]

= N̄N
mns

[
S(1)′

mn (kN
mnsf, ξ1)S(2)

mn(kN
mnsf, ξ)− S(2)′

mn (kN
s f, ξ1)S(2)

mn(kN
mnsf, ξ)

]
. (24)

The counterparts of Eqs.(19) and (20) expressing the or-
thonormality and the completeness of the Neumann basis are
obtained by the replacementD → N .

The radial spheroidal functionsR(p)
mn(kf, η) of Eq. (6),

to be used in Eq. (5), are given by Eqs.(A.5-8), as superpo-
sitions of spherical Bessel functions of kindp = 1, 2, 3, 4,
involving the same coefficients and eigenvalues appearing in
the angular spheroidal functions.

In conclusion, two infinite discrete sets of separable solu-
tions of the wave equation, of the form of Eq.(5), have been
identified in this section:

ψD(η, ξ, ϕ, t)=R(1)
mn(kD

mnsf, η)ΞD
mns(ξ)

×eimϕe−iwD
mnst, (25)

ψN (η, ξ, ϕ, t)=R(1)
mn(kN

mnsf, η)ΞN
mns(ξ)

×eimϕe−iwN
mnst, (26)

for b = D andN boundary conditions. Here the radial mode
with p = 1, involving the regular spherical Bessel functions,
is chosen to represent stationary spheroidal waves between
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the hyperboloidal electrodes. Other choices are possible de-
pending on the situation at hand.

3. Construction of the Green functions

The Green functions are solutions of the inhomogeneous
wave equation with a unit, point and instantaneous source,
(
∇2− 1

c2

∂2

∂t2

)
Gi(~r, t;~r ′, t′)=−4πδ(~r−~r′)δ(t−t′), (27)

and are subjected to the respective Dirichlet and Neumann
boundary conditions

GD(~r, t;~r′, t′)|~r′εS = 0, (28)

∂GN

∂n′
(~r, t;~r′, t′)|~r′εS = 0, (29)

on the surface of the electrodes. Next, the construction of
these Green functions is implemented for the hyperboloidal
geometry.

Since the right hand side of Eq.(27) is zero at all points
of space and instants of time, except at the point~r = ~r′ and
instantt = t′ in which the source is present, the Green func-
tions can be constructed using the known solutions of the ho-
mogeneous Eq.(4). The space dependent Dirac-delta function
in spheroidal coordinates has the form

δ(~r − ~r′) =
δ(η − η′)δ(ξ − ξ′)δ(ϕ− ϕ′)

hηhξhϕ
. (30)

The complete orthonormal sets of eigenfunctions in the
hyperboloidal, azimuthal and time independent variables, so-
lutions of Eqs.(7), (8) and (9), studied in the previous section,
allow the representations

δ(ξ − ξ′)δ(ϕ− ϕ′)δ(t− t′) =
∑
m

∑
n

∑
s

Ξb
mns(ξ)

×Ξb
mns(ξ

′)
eim(ϕ−ϕ′)

2π

e−iωb
mns(t−t′)

2π
, (31)

for b = D andN .
The same functions are used in the expansions of the

Green functions

Gb(η, ξ, ϕ, t; η′, ξ′, ϕ′, t′) =
∑
m

∑
n

∑
s

gb
mns(η, η′)

×Ξb
mns(ξ)Ξ

b
mns(ξ

′)
eim(ϕ−ϕ′)

2π

e−iωb
mns(t−t′)

2π
(32)

ensuring that the boundary conditions of Eqs. (28) and (29)
are satisfied because the hyperboloidal coordinate dependent
functions satisfy Eqs.(12) and (13), respectively.

The substitution of Eqs.(30),(31) and (32) in Eq.(27) us-
ing the differential wave operator of Eq.(4), leads to the ordi-
nary differential equation for theη dependent expansion “co-
efficients” of Eq.(32):

[
d

dη
(η2−1)

d

dη
− m2

η2−1
+kb 2

mnsf
2η2−λb

mn(kb
mnsf)

]

×gb
mns(η, η′)=−4πδ(η−η′) (33)

which is the inhomogeneous version of the radial Eq.(6). Its
solutions are constructed from the appropriate combinations
of radial spheroidal functionsR(p)

mn(kb
mnsf, η), Eqs.(A.5-8).

It is necessary to distinguish betweenη < η′ andη > η′,
and to use the symmetry of the Green functions under the ex-
change of the field and source positions and times, and their
continuity at~r = ~r′, t = t′. These conditions lead to the
choices

gb(−)
mns(η≤η′)=Cb

mnsR
(3)
mn(kb

mnsf, η′)R(1)
mn(kb

mnsf, η) (34)

gb(+)
mns(η≥η′)=Cb

mnsR
(1)
mn(kb

mnsf, η′)R(3)
mn(kb

mnsf, η) (35)

involving the regular(p = 1) and the outgoing(p = 3)
spheroidal radial functions Eqs. (A.5,6,7).

Integration of Eq.(33) aroundη = η′ allows us to recog-
nize the discontinuity of the derivative of its solution at that
position,

(η2−1)
dgb

mns(η, η′)
dη

∣∣∣∣
η=η′+

−(η2−1)
dgb

mns(η, η′)
dη

∣∣∣∣
η=η′+

=−4π (36)

Substitution of Eqs.(34) and (35) in Eq.(36) leads to the de-
termination of the coefficientsCb

mns:

Cb
mns(η

2 − 1)
[
R(1)

mn(kb
mnsf, η′)R(3)′

mn (kb
mnsf, η′)

−R(3)
mn(kb

mnsf, η′)R(1)′
mn (kb

mnsf, η′)
]

= −4π (37)

The quantity inside the brackets is identified as the Wron-
skian of the radial functions of the first and third kinds. Its
value follows from Eqs. (A.11,12) and leads to the coeffi-
cients

Cb
mms = 4πi/kb

mnsf. (38)

The final form of the Green functions of Eq. (32) follows
from Eqs. (34), (35) and (38):

Gb(η, ξ, ϕ, t; η′, ξ′, ϕ′, t′) =
4πi

f

∑
m

∑
n

∑
s

1
kb

mns

jemn(kb
mnsf, η<)he(1)

mn(kb
mnsf, η>)

Ξb
mn(kb

mnsf, ξ)Ξb
mn(kb

mnsf, ξ′)
eim(ϕ−ϕ′

2π

e−iωb
mns(t−t′)

2π
, (39)
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using the Morse and Feschbach convention for the radial spheroidal wave functions, and the hyperboloidal wave functions of
Eqs. (18) and (22) forb = D andN .

Their time Fourier transforms can be evaluated in a straightforward way:

Gb(η, ξ, ϕ; η′, ξ′, ϕ′; ω) =

∞∫

−∞
Gb(η, ξ, ϕ, t; η′, ξ′, ϕ′, t, )eiω(t−t′)d(t− t′) =

4πi

fc

×
∑
m

∑
n

∑
s

jemn(kb
mnsf, η<)he(1)

mn(kb
mnsf, η>)Ξb

mn(kb
mnsf, ξ)Ξb

mn(kb
mnsf, ξ′)

eim(ϕ−ϕ′)

2π

δ(ω − ωb
mns)

ωb
mns

, (40)

exhibiting the discretization of the frequency spectra.

4. Discussion

The scalar normal modes and Green functions for the classi-
cal wave equation between confocal hyperboloidal electrodes
have been constructed in Secs. 2 and 3. The discussion of this
section is focussed on three specific points: the general re-
sults of this work and their concrete applications to the cases
of two symmetric hyperboloidal and one plane and one hy-
perboloidal electrodes, which are geometries of special inter-
est in CIC-junction and STM devices. It is also instructive to
compare the electrostatic and electromagnetic situations for
the latter, recognizing the analogies and differences in their
equations and solutions. Finally, the results of Secs. 2 and 3
which serve as input data for the analysis of the Casimir ef-
fect, in the respective mode summation and Green function
methods, are identified.

The scalar normal modes constructed in Sec. 2 for Dirich-
let and Neumann boundary conditions are represented by
Eqs. (25) and (26), respectively. The explicit forms of the hy-
perboloidal wavefunctions are given by Eqs. (18) and (24),
and the corresponding characteristic frequencies and eigen-
values are evaluated via Eqs. (16) and (22).

In the specific case of symmetric hyperboloidal elec-
trodes, for whichξ2 = −ξ1, the hyperboloidal wavefunc-
tions have a definite parity and reduce to eitherS

(1)
mn(kf, ξ)

or S
(2)
mn(kf, ξ) in Eq.(14), with the consequent particulariza-

tions in the subsequent equations. Similarly, in the case of a
plane electrodeξ2 = 0 and a hyperboloidal one0 < ξ1 < 1,
the hyperboloidal wavefunctions in Eq.(14) reduce to either
S

(1)
mn(kf, ξ) or S

(2)
mn(kf, ξ), and additionally only odd (even)

or even (odd) values ofr in Eqs. (A.1) or (A.2) need to be
included for Dirichlet (Neumann) boundary conditions, re-
spectively. In both cases Eqs.(16) and (22) are simplified.

The Dirichlet and Neumann Green functions were explic-
itly constructed in Sec. 3 using the respective normal mode
bases, with the result of Eq. (39). Their spectral representa-
tion of Eq. (40) was also obtained.

Both this work and Ref. 5 deal with hypeboloidal elec-
trodes, using prolate spheroidal coordinates to describe their
shapes and fields. The electromagnetic and electrostatic sit-
uations, studied in each case, are based on the homogeneous
and inhomogeneous wave equations, and the Laplace and

Poisson equations, respectively. The normal modes and
Green functions in this work are constructed using spheroidal
functions, Eqs.(25) and (26), while the harmonic functions in
Ref. 5 are simply and directly associated Legendre functions
of the first and second kinds. Both situations involve simpler
solutions for the CIC-junction and STM geometries.

Casimir evaluated the change of the quantum electromag-
netic vacuum energy,

1
2

( ∑
~ω

)

I

− 1
2

( ∑
~ω

)

II

, (41)

for plane electrodes at I) a finite separation and II) an in-
finite separation, where the first term includes the discrete
summation over the characteristic frequencies for the paral-
lel neighboring electrodes, and the second term becomes and
integral over the continuum of frequencies associated with II.
He introduced a cut-off function and used the Euler-Mclaurin
formula to implement the summation over both terms [6].
For the hyperboloidal electrodes, the characteristic frequen-
ciesωb

mns for both the Dirichlet, Eq. (16), and Neumann,
Eq. (22), modes, have to be included in the I-term.

The sum of the zero-point energies of the modes can also
be rewritten as a space and frequency integral of the spectral
Green function, Eq. (40),

1
2

∑
a

~ωb
ae−iωaτ

∣∣∣∣
τ→0

=
~
i

∫
d3x

×
∫

dω

2π
ω2Gb(~r, ~r ′;ω)e−iω(t−t′)

∣∣∣∣
~r→~r ′,t→t′

(42)

using the regularization techniques [9]. For additional QED
techniques and their applications to the analysis of the
Casimir effect, the reader is referred to Refs. 8 and 9.

A Appendix

The properties and representations of the angular and radial
spheroidal functions, presented here for completeness sake,
can also be found in [11-14]. The angular spheroidal func-
tions of the first and second kinds are the linearly independent
solutions of Eq.(7), expressed as linear combinations of as-
sociated Legendre polynomialsPm

m+r, and functionsQm
m+r

of the second kind, respectively, with common coefficients
and eigenvalues evaluated by matrix methods described in the
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same references:

S(1)
mn(kf, ξ) =

∞∑
r=0 or 1

dmn
r (kf)Pm

m+r(ξ), (A.1)

S(2)
mn(kf, ξ) =

∞∑
r=−∞

dmn
r (kf)Qm

m+r(ξ), (A.2)

and are associated with the successive eigenvalues of the sep-
aration constant,λmn(kf).

The radial spheroidal functionsR(p)
mn(kf, η) of the

p-kind, p = 1, 2, are proportional to those of Eqs.(A.1)
and (A.2), respectively, with the replacement of the angular
variableξ by the radial variableη. The joining of the angular
and radial functions is given by

S(1)
mn(kf, η) = κ(1)

mnR(1)
mn(kf, η), (A.3)

S(2)
mn(kf, η) = κ(2)

mnR(2)
mn(kf, η), (A.4)

including the explicit forms of the joining factorsκ(p)
mn in the

Flammer convention [11,13].
While the convergence of Eqs. (A.1) and (A.2) is assured

for −1 ≤ ξ ≤ 1, the same does not hold forη > 1. A better
representation is a series of spherical Bessel functions:

R(p)
mn(kf, η)=

{ ∞∑
r=0,1

(2m+r)!
r!

dmn
r

}−1(
η2−1
η2

)m
2

∞∑
r=0,1

ir+m−n (2m + r)!
r!

dmn
r (kf)z(p)

m+r(kfη), (A.5)

where

z
(1)
l (x) = jl(x), z

(2)
l (x) = yl(x) (A.6)

There are also radial spheroidal functions of thep = 3 and 4
kinds involving the corresponding outgoing and incoming
spherical Hankel functions:

z
(3)
l (x) = h

(1)
l (x) = jl(x) + i nl(x), (A.7)

z
(4)
l (x) = h

(2)
l (x) = jl(x)− i nl(x). (A.8)

Equation (6) can be written explicitly for the radial spheroidal
wave functions of the first and second kinds, in order to eval-
uate its Wronskian:

[
d

dη
(η2 − 1)

d

dη
− m2

η2 − 1
− k2f2η2 − λ

]

×R(1)
mn(kf, η) = 0, (A.9)

[
d

dη
(η2 − 1)

d

dη
− m2

η2 − 1
− k2f2η2 − λ

]

×R(2)
mn(kf, η) = 0. (A.10)

By multiplying Eq.(A.9) byR
(2)
mn(kf, η) and Eq.(A.10) by

R
(1)
mn(kf, η), substracting them and integrating in the vicin-

ity of η, the result is

(η2 − 1)
[
R(2)

mn(kf, η)
dR

(1)
mn(kf, η)

dη

−R(1)
mn(kf, η)

dR
(2)
mn(kf, η)

dη

]
= constant (A.11)

The net result is that the Wronskian of the radial spheroidal
wavefunctions is inversely proportional to(η2−1). The value
of the proportionality constant depends on the normalization
convention for the radial functions themselves.
In the Morse and Feschbach convention and notation [14]:

jemn(kf, η)
dnemn(kf, η)

dη

−djemn(kf, η)
dη

nemn(kf, η) =
1

kf(η2 − 1)
(A.12)
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60 N. AQUINO, E. CASTAÑO, E. LEY-KOO, AND S.E. ULLOA
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