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ABSTRACT

Experience is understood as a sequence of events that occurred 
in the past, while memory allows recalling the information de-
rived from such experience to face similar events in the present. 
Currently, great efforts are being made to classify the differ-
ent expressions of memory. Simultaneously, new animal 
models are continuously being proposed to explore the 
complex learning-memory. One of the main factors modifying 
learning and memory consolidation are the ovarian hormones 
estradiol and progesterone. This document offers a general 
memory classification together with a brief review of the 
recent literature about the role of these hormones on 
cognition. (Rev Mex Endocrinol Metab Nutr. 2015;2:80-4)
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RESUMEN

La experiencia es entendida como la secuencia de eventos 
que ocurrieron en el pasado, mientras que la memoria per-
mite recobrar la información, derivada de esa experiencia, 
para encarar eventos similares en el presente. Actualmente, 
se están haciendo grandes esfuerzos para clasificar las dife-
rentes expresiones de la memoria. Simultáneamente, se pro-
ponen nuevos modelos animales para explorar el complejo 
aprendizaje-memoria. Uno de los principales factores que mo-
difican la consolidación de la memoria lo constituyen las hor-
monas ováricas estradiol y progesterona. Este escrito ofrece 
una clasificación general de la memoria junto con una breve 
revisión de la literatura reciente en relación al papel de estas 
hormonas sobre la cognición. 
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DEFINING MEMORY

Basically, memory, used here as synonymous with 
cognitive function, is defined as the ability to learn, 
retain, save, and recall information resulting from 
exposure to new experiences. This information im-
plies new physical and psychological skills to face 
similar environmental conditions to those giving rise 
to such knowledge. Thus, learning the sequential 
order of events that are commonly encountered al-
lows us to form predictions about the impending 
future and plan upcoming actions accordingly.

Some attempts to classify memory involve two ma-
jor systems: declarative and non-declarative mem-
ory. Although only the first type remains available 
to multiple response systems and is responsible for 
learning and remembering of events, facts, and ex-
periences1, both types of memory are considered as 
long-term memory. Declarative memory allows re-
membered material to be compared and contrasted 
and therefore is a representational entity, which is 
generally classified as episodic and semantic mem-
ory2. While episodic memory involves information 
consolidated or learnt under specific contextual con-
ditions and has to be evoked when similar circum-
stances are faced3, semantic memory is available all 
the time and includes all information that an individ-
ual possesses regarding their internal and external 
environment4. Nevertheless, episodic memory even-
tually can be translated into semantic memory due 
to the repetition of evocation5. In general, it is well 
accepted that the hippocampal region together with 
adjacent structures constituting the medial tempo-
ral lobe are responsible for regulating declarative 
memory6. Both spatial memory and the novel ob-
ject recognition test are two animal models broadly 
used to explore this kind of memory.

On the other hand, non-declarative memory involves 
the ability to gradually extract the common elements 
from a series of separate events, evoking multiple 
sensory systems that regulate distinct functions. This 
kind of memory includes motor skills and develop-
ment of habits, specific emotional and reflex responses 
in whose regulation several neural regions partici-
pate (Fig. 1). Non-declarative memory also can be 

divided in associative (classical conditioning and 
instrumental conditioning) and non-associative (ha-
bituation, motor, and skill learning) memory. Animal 
models used for studying the associated memory 
include fear conditioning, conditioned taste aversion, 
Skinner box, etc., while non-associative memory can be 
explored by means of rotarod apparatus, beam walk-
ing devices, water mazes, and the start reflex test7.

OVARIAN HORMONES AND MEMORY

Overall, natural or surgical menopause induced by 
oophorectomy results in a reduction of both 17β-es-
tradiol (E2) and progesterone (P) secretion because 
of the failing of ovarian function8. These hormones 
modulate neural plasticity in the hippocampus, the 
amygdala, and the prefrontal cortex, which are in-
volved in both declarative and non-declarative mem-
ory. Absence of ovarian hormones is accompanied 
by a major incidence of stroke, hot flashes, anxiety, 
osteoporosis, depression, and cognitive deteriora-
tion, etc.9-12. Regarding the latter, some basic stud-
ies have found that removal of ovaries in rodents 
alters one of the main neurotransmitters involved in 
learning and memory, decreasing high-affinity cho-
line uptake, choline acetyltransferase (ChAT) activi-
ty, and ChAT mRNA levels13. It is also known that E2 
is closely related with both the nerve growth factor 
and the brain-derived neurotrophic factor mRNA 
expression, since ovariectomy (OVX) reduces its lev-
els14. Interestingly, the majority of these effects are 
reversible with appropriate hormone-replacement 
therapy15-18. For instance, early studies show that E2 
replacement increases the expression of both nerve 
growth factor and brain-derived neurotrophic fac-
tor in cortex and hippocampus19-21, while the ace-
tylcholine synthesis is improved after the chronic 
treatment with E2 in OVX rats due to the increase 
in ChAT activity13. 

It is well known that E2 is also a potent regulator of 
cellular events at hippocampus, since in this brain 
region, E2 increases the expression of synaptic pro-
teins such as synaptophysin, spinophilin, and syntax-
in22-24, activates the extracellular signal-regulated ki-
nase/mitogen-activated protein kinase (ERK/MAPK) 
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Figure 1. Classification of the long-term memory according to Squire2 with a simplistic relation of the main brain structures regulating each 
form of memory.
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signaling pathway25, as well as promoting epigenetic 
processes necessary for declarative memory consol-
idation25-27. In line with this, two of the most import-
ant animal models used for exploring the cognitive 
actions of E2 on declarative memory have been the 
novel object recognition and several tests of spatial 
memory28. Accordingly, several clinical reports show 
beneficial effects of E2 administration on cognitive 
performance in women with Alzheimer’s disease, 
specifically in the verbalization field29-31 and several 
of these estrogenic actions have been related with 
an increase of the basal forebrain cholinergic func-
tion18. Thus, surgical menopausal women treated 
with E2 after oophorectomy and receiving placebo 
showed postoperative declines on tests of short-
term and long-term verbal memory and logical rea-
soning, whereas performance was maintained in 
women who received hormone treatment32. More 
recently, Hampson and Morley33 found in cycling 
women that high E2 levels were correlated with 
fewer errors on a spatial working memory task. Con-
trarily, other authors reported no changes in several 
types of working memory across the menstrual cy-
cle34. Furthermore, some randomized clinical trials 
failed to find, in both surgically and naturally 
menopausal women, any beneficial effects of E2 
on tests of attention, working memory, and visual 

memory35-37. Taken together, this evidence shows 
that the effects of estrogens in humans are less 
consistent than those observed in animals.

The role of progesterone on both cognition and neu-
roprotection is more controversial in comparison to 
E2. Progesterone seems to share neuroprotective 
properties with E2 since it counteracts the excito-
toxicity induced by glutamatergic hyperactivity38,39, 
inhibits the amyloid beta (25-35)-induced cell toxic-
ity40, blocks apoptosis41, and enhances spatial learn-
ing in the water maze test42,43. However, other au-
thors have found that instead of protecting neural 
tissues, P4 seems to attenuate the cognitive bene-
fits derived from E2. For instance, OVX rats treated 
with a high dose of E2 for two weeks and tested in 
an autoshaping learning task (Skinner test) display 
more conditioned responses than those without 
hormonal treatment, but when the combination E2 
plus progesterone is assayed, the pro-cognitive actions 
of E2 are diminished (J. Espinosa-Raya et al. 2011). 
Some of these progestagenic effects have been ex-
plained by a reduction in brain-derived neurotrophic 
factor protein levels, together with the inactivation 
of its receptor tropomyosin kinase B44-46 and are in 
agreement with the finding that the continuous ad-
ministration of E2 plus P4 has a negative effect on 
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high-affinity choline uptake and ChAT and acetylcho-
linesterase mRNA expression in the basal forebrain13,17 
(J. Espinosa-Raya et al. 2011). In the same line, allo-
pregnanolone, the reduced metabolite of proges-
terone, produces a well-characterized impairment 
in hippocampal-dependent memory, specifically 
when rodents are evaluated in the Morris water 
maze test47 and in the novel object recognition48.

THE CRITICAL PERIOD HYPOTHESIS

Some of the contradictory results regarding procogni-
tive actions of E2 have led to the formulation of the 
critical period hypothesis, which holds that E2 replace-
ment therapy confers optimal benefits on cognition 
only when initiated closely in time to the meno-
pausal transition (for a review, see Sherwin49). In line 
with this, several authors have found that impair-
ment of cognitive abilities produced by OVX can be 
overcome by chronic estrogenic treatment initiated 
immediately after surgery50, a phenomenon that has 
been observed by using working memory and spa-
tial memory tests51,52. Contrarily, an E2 treatment ini-
tiated several months after OVX does not enhance 
acquisition of aged rats tested on a T-maze spatial 
memory task17,53. This phenomenon can even be 
observed in OVX younger rats, with hormonal depri-
vation for four months after surgery, and then treat-
ed for one week with E2. Under this schedule, rats 
show fewer conditioned responses in the Skinner 
test than the corresponding controls only injected 
with vehicle54. Clinical data also support the idea 
that there is a critical period in which estrogen re-
placement therapy should be initiated to remain 
beneficial for cognition. For instance, surgically in-
duced menopause decreases the cognitive perfor-
mance after surgery, but it is maintained at pre-sur-
gery assessment level if women start E2 therapy 
immediately after oophorectomy55. The most im-
portant beneficial actions of E2 treatment were 
associated with better verbal memory, working 
memory, and visuospatial function, but these re-
sults were found particularly among women who 
had initiated treatment during, or soon after, the 
menopause (see Frick56 for review).

Another study evaluated women who had under-
gone bilateral oophorectomy prior to the onset of 
natural menopause and had either used or never 
used E2 replacement. This study found that the group 
without E2 had an increased risk of cognitive im-
pairment 30 years later in comparison to women 
who initiated treatment immediately after surgery57.

To summarize, current data about the actions of 
ovarian hormones on neural tissue highlight the ne-
cessity for developing novel strategies for hormon-
al replacement treatments based on identifying the 
molecular mechanisms underlying steroidal modu-
lation of memory, which could lead to better treat-
ments for reducing age-related memory decline.
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