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Abstract

This article examined the tradeoff between data 
analysis and simulations in the learning of sta-
tistics. In order to do this, the article compared 
two different interventions aimed at teaching 
statistics. One intervention used data analysis 
tools and focused on examples and long exerci-
ses that required students to interpret data. The 
other intervention used simulations and focused 
on formal aspects of probability related to sta-
tistical inference. Then, both perspectives were 
contrasted in their effectiveness to teach ANOVA. 
The intervention that used simulations improved 
students’ knowledge about probability, sampling 
and sample size effects. The intervention that 
used data analysis tools showed no significant 
effects on students’ data analysis knowledge. 
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Resumen

En este estudio se examinaron los costos y bene-
ficios interrelacionados que tiene el aprendizaje 
de estadística mediante el análisis de datos en 
situaciones auténticas y el uso de simulaciones 
que permiten la práctica repetida; para tal fin se 
compararon dos intervenciones dirigidas a ense-
ñar dicho tema y a desarrollar el razonamiento 
estadístico. En la enseñanza sobre ANOVA, una 
intervención empleó herramientas de análisis de 
datos, mientras que la otra se enfocó en aspectos 
formales de la probabilidad, explicados a través 
de simulaciones. Los resultados mostraron que la 
intervención con simulaciones fue efectiva para 
enseñar conceptos de probabilidad, muestreo y 
tamaño muestral, mientras que la intervención 
enfocada en el análisis de datos no tuvo efectos 
significativos en el desarrollo de dicha habilidad. 

Palabras clave: razonamiento estadístico, aná-
lisis de datos, simulaciones, recursos virtuales, 
TICs.

Resumo

Neste estudo, examinaram-se os custos e bene-
fícios inter-relacionados que a aprendizagem 
de estatística tem mediante a análise de dados 
em situações autênticas e o uso de simulações 
que permitem a prática repetida; para isso, 
compararam-se duas intervenções dirigidas a 
ensinar o tema e a desenvolver o racionamento 
estatístico. No ensino sobre a ANOVA, uma in-
tervenção empregou ferramentas de análise de 
dados, enquanto a outra se enfocou em aspectos 
formais da probabilidade, explicados por meio 
de simulações. Os resultados mostraram que a 
intervenção com simulações foi efetiva para en-
sinar conceitos de probabilidade, amostragem e 
tamanho amostral, enquanto a intervenção en-
focada na análise de dados não teve efeitos signi-
ficativos no desenvolvimento de dita habilidade.

Palavras-chave: racionamento estatístico, análi-
se de dados, simulações, recursos virtuais, TICs.
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This study explores the relationship 
between the pedagogical perspectives of sta-
tistical education entailed in computer-based 
instruction; the amount of activity possible in 
each perspective, measured as the number and 
type of exercises; and the resulting learning of 
statistical inference. In particular, this study fo-
cuses on two different interventions aimed at 
teaching statistical inference in the context of 
group mean differences. The first intervention, 
called the sampling condition, requires students 
to use simulations in order to learn about ANO-
VA. The second intervention, called the data 
analysis condition, asks the students to engage 
in data analysis exercises in order to learn about 
the same content. The comparison between the-
se two interventions is an opportunity to un-
derstand how different online tools facilitate the 
learning of statistics and how those effects relate 
to common flaws in statistical reasoning.

Why is Learning statistics Difficult?
People have three basic difficulties in learn-

ing statistics. Each one related to the basic spaces 
of statistical practice. First, people have prob-
lems understanding the concepts of probabil-
ity and sampling. Second, people have trouble 
with the representation and analysis of data in 
the presence of variability. Finally, people seem 
to produce causal inferences in a way that is not 
consistent with inferential statistics. 

sampling. The first type of difficulty is 
related to problems to understand sampling 
and sample size effects. People use heuristics 
that do not follow probabilistic algorithms to 
calculate payoffs and likelihoods (Kahneman 
& Tversky, 1972; Tversky & Kahneman, 1974). 
The use of heuristics produces misconceptions 
about probability that are highly resistant to 
change (Chance, DelMas, & Garfield, 2004; Ko-
nold, 1995; Konold, Pollatsek, Well, Lohmeier, 
& Lipson, 1993). For example, people tend to 
ignore population base rates when judging the 

probability of a sample with certain characteris-
tics. Instead, people evaluate the representative-
ness of the sample characteristics according to 
their beliefs (Tversky & Kahneman, 1974).

Additionally, students consider samples 
simply as arbitrary subsets of populations, and 
they do not consider variability due to sampling 
effects. This erroneous conception of samples 
leads students to reason in flawed ways about 
statistical inference (Saldanha & Thompson, 
2003). Students tend to think that all samples 
resemble the population from which they were 
obtained regardless of the sample size. Finally, 
people have an intuitive model of chance in 
which probability values represent single event 
outcomes instead of tendencies in a series of 
events (Garfield, 2002; Konold, 1989). When 
told, for instance, that there is an 80% chance of 
having a sunny day, people assume that there is 
going to be a sunny day (Konold, 1995). 

Data analysis. The second difficulty in 
learning statistics comes from people’s tendency 
to make incomplete use of data when building 
representations, and to ignore variability in the 
interpretation of data sets. Several problems 
with data interpretation have been identified in 
the literature. Ben-Zvi and Arcavi (2001) elabo-
rated the distinction between local and global 
views of data. Local views of data focus on indi-
vidual values or small subsets of data instead of 
building an interpretation of all the available in-
formation. Global views, by contrast, are inter-
pretations that identify patterns in the complete 
data set. Experts in statistics combine local and 
global views of data when building interpreta-
tions, whereas novices focus exclusively on local 
views. This difference comes from the fact that 
statistics experts think in terms of propensities, 
that is, in terms of properties of non-homoge-
nous data aggregates (Konold, Pollatsek, & Well, 
1997), while novices do not. 

Another possible extension of flawed sta-
tistical reasoning is people’s tendency to prefer 
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concrete representations of data when carrying 
out statistical analysis. Konold (1995) reported 
that students had a strong preference for two-
way tables and absolute frequencies with precise 
values over other types of representations such 
as histograms and boxplots. It is possible that 
learners stick with concrete representations due 
to problems with considering permutations in 
data representations. These permutations, called 
transnumerations by Wild and Pfannkuch (1999), 
are an important part of statistical thinking. The 
ability to work with multiple representations is 
central to the understanding of mathematics in 
general (Dreyfus & Eisenberg, 1996; Leinhardt, 
Zaslavsky, & Stein, 1990) and statistics in particu-
lar (Burgess, 2002; Cai & Gorowara, 2002). In the 
case of statistics, representational permutations 
permit learners to generate different intercon-
nected data representations in order to attain a 
deeper understanding of the statistical situation 
(Ben-Zvi, 2002; Burgess, 2002).

Concrete representations mask the ex-
istence of variability in data sets. Frequency 
counts and central tendency indicators by them-
selves cannot represent the variability that sur-
rounds them. People’s preference for this type of 
representations is problematic because statisti-
cal reasoning requires acknowledging variability 
as a central feature of data and reality (Garfield 
& Ben-Zvi, 2005). Variability is what creates 
uncertainty in the conclusions and, therefore, 
it is what gives statistical character to descrip-
tions and comparison with multi-case datasets 
(Konold et al., 1997). Ignoring variability as well 
as focusing exclusively on concrete values when 
conducting data analysis are problems that have 
a common root: the lack of conceptual under-
standing of statistics’ goals and tools caused, 
in part, by traditional teaching that is focused 
mainly on algorithms (Cai & Gorowara, 2002). 
Students accustomed to mechanical calculations 
are unable to give conceptual meaning to differ-
ent types of statistics (e.g., mean, standard devi-
ation, etc.), even when they know the algorithms 

necessary to determine numerical values for 
these statistics (Batanero, Godino, Vallecillos, 
Green, & Holmes, 1994). It has been shown also 
that the use of statistics (e.g., regression, ANO-
VA, etc.) does not happen spontaneously, even 
when the students have the procedural knowl-
edge necessary to conduct the calculations (Ben-
Zvi, 2002; Gal, Rothschild, & Wagner, 1990). 
Among the causes for this situation are an in-
complete or non-existent understanding of the 
need for global views of data (Ben-Zvi & Arcavi, 
2001), limited experience with the conditions of 
use of statistical indicators (e.g., mean vs. medi-
an in the presence of outliers), and the inability 
to find adequate representations of the meaning 
of the statistical indicators both in graphical and 
numerical form (Watson & Moritz, 1999).

inference. A third type of difficulty for the 
learning of statistics comes from the fact that 
people do not produce causal inferences using 
standard statistical procedures. Literature in 
causal inference states that people’s behavior 
can be described by models that are no con-
sistent with parametric inferential procedures. 
Models of causal inference assume that people 
behave rationally in the sense that they evaluate 
causal relationships by updating beliefs in con-
cordance with bayes theorem (Buehner, Cheng, 
& Clifford, 2003; Cheng, 1997; Griffiths & Te-
nenbaum, 2005). The basic idea behind the di-
fferent models in this paradigm (e.g., Power PC 
and ∆p) is that people evaluate causal strength 
by conducting calculations based on bayesian 
models over the contingency distributions of 
cause and effect variables. While bayesian mo-
dels are based on probabilistic theory, they are 
not consistent with statistical inference, parti-
cularly, with the parametric models for eva-
luating group-mean differences. For example, 
it is common in causal inference experiments 
to ask participants to evaluate the strength of 
the relationship between two dichotomous va-
riables presented in a contingency table. The 
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model assumes that the strength perceived by 
learners will be consistent with calculations 
that use the posterior probability of a bayesian 
model applied to the data. It is not clear, howe-
ver, whether learners understand the sampling 
effects derived from the posterior probability in 
which the causal power is calculated. There is 
no evidence supporting the idea that learners 
understand that in different possible worlds, di-
fferent actual frequencies would appear, due to 
sampling distribution effects. Learners are also 
unable to evaluate the effects of inner group va-
riance in the evaluation of causal strength when 
presented with problems that include conti-
nuous variables (Cordoba, 2007).

In addition to bayesian-based reasoning, 
research in causal inference has identified heu-
ristic strategies that are not consistent with pure 
rational models. Research has shown that people 
take into account temporal information —the 
fact that the cause precedes the effect— when 
making causal inferences, even when comparing 
models that are normatively equivalent (Greville 
& Buehner, 2007). In the same line, research 
on heuristic judgment shows that prior knowl-
edge (Griffiths, Sobel, Tenenbaum, & Gopnik, 
2011), the need for theory-based explanations 
and causal mechanisms (Griffiths & Tenen-
baum, 2009), and the superficial matching in 
the characteristics of causes and effects play an 
important role in the attribution of causal ef-
fects (LeBoeuf & Norton, 2012). Additionally, 
there has been shown that causal strength is in-
fluenced by asymmetries in the distribution of 
values among variables (Cheng, Novick, Lilje-
holm, & Ford, 2007), and that learners conduct 
local computations over a limited number of 
relationships when faced with several possible 
causes (Fernbach & Sloman, 2009). Finally, re-
search suggest that people are influenced by 
non-normative tendencies like being sensible to 
the probability of the outcome even when it does 
not affect the contingency or the causal power 
of the independent variable when calculated 

by bayesian-based models (Vallée-Tourangeau, 
Murphy, & Baker, 2005).  

Both bayesian methods and non-bayesian 
heuristics for causal inference work different 
than parametric methods of statistical inference. 
This fact makes difficult for people to learn sta-
tistics because they need to change the way they 
produce inferences naturally and understand 
the way in which statistics produce inductive 
arguments by comparing patterns in data with 
expectations in probability theory. 

How can the Affordances of computer-based 
tools support the Learning of statistics?

The interventions used in this study em-
ployed simulations and statistical packages for 
data analysis. The affordances of these tools sup-
port the development of statistical reasoning 
by addressing the main difficulties in statistical 
learning; these difficulties are related to the un-
derstanding of probability and sampling, as well 
as the development of skills to use data and rep-
resent variability. The next section explains how 
computers can help to solve common flaws in 
statistical reasoning.

simulations. The origin of probabilis-
tic misconceptions relates to problems in the 
comprehension of mathematical ideas based on 
mathematical proofs. However, using proofs in 
statistical teaching requires sophisticated prior 
knowledge and mathematical skills from stu-
dents, knowledge and skills that many students 
lack or that they do not consider an important 
part of their statistical training (particularly in 
social sciences). Computers may in fact fulfill a 
role once reserved for the mathematical proof 
(Blejec, 2002). With simulations, it is possible 
to create dynamic representations in which stu-
dents interact with the properties of mathemati-
cal objects. In the case of probability, simulations 
help learners to observe random behavior that 
is only visible when events are aggregated over 
several trials. 
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In the past, random behavior was repre-
sented through formal proofs or explained by 
physical simulations of random processes (e.g., 
tossing coins) (see, for example, Schwarz & 
Sutherland, 1997). Recently, however multime-
dia computational technology made it possible 
to show how events aggregated over several oc-
casions create tendencies (Cramer & Neslehova, 
2003). Now, with computer-supported tools, it 
is possible to simulate random processes, con-
dense events over time, and see how tendencies 
change as a function of different parameters.

Knowledge and recognition of random 
situations does not emerge spontaneously 
(Chance et al., 2004; Konold, 1995; Konold et 
al., 1993) but grows from contact with random 
mechanisms (Nisbett, Krantz, & Jepson, 1993). 
Interventions using simulations provide stu-
dents with an understanding of the random 
process involved in statistical inference because 
they make visible those random mechanisms. 
In a typical simulation, for example, students 
can change the parameters of the simulation to 
produce changes in different graphical and nu-
merical indicators that represent stochastic dis-
tributions (Batanero et al., 1994; West & Ogden, 
1998). In this way, they can see and operate on 
the results of random processes.

Data analysis software. The capacity of 
computers to generate representations of data 
can help learners to operate beyond concrete 
representations of data (e.g., frequency counts) 
and to create several representations of statistical 
concepts or situations. In this sense, computers 
provide visual representations that can be used as 
analytical tools (Garfield, 1995). Additionally, sta-
tistical packages permit one to conduct authentic 
research in classroom settings. That is, computers 
permit students to access large data sets collec-
ted from real situations and to explore those sets 
without the huge computational costs that existed 
before (Finzer & Erickson, 2005). At a cognitive 
level, conducting data analysis through statistical 

packages requires learners to define several as-
pects of the task. These types of tools permit lear-
ners to oscillate among different representations 
of statistical situations and, in this way, these tools 
help to develop statistical reasoning skills. Visua-
lizations and data exploration through computers 
help students to see statistical problems from mul-
tiple perspectives, as well as to learn how to make 
informed decisions among different representa-
tions and numerical summaries (Ben-Zvi, 2000; 
Biehler, 1995; Garfield, 1995). When computers 
work as graphical devices, it is easy to switch from 
one representation to a different one and to en-
hance the use of multiple representations without 
a large workload being required to produce them 
(DelMas, Garfield, & Chance, 1999; Snir, Smith, 
& Grosslight, 1995). In this sense, computers not 
only provide computational and representational 
power but also change the structure of the ins-
tructional task (Ben-Zvi, 2000): The task is no 
longer to calculate a statistic or construct a graph; 
the task is to make adequate decisions on how to 
organize, represent, and interpret data.

This type of intervention normally requires 
participants to use statistical packages to analyze 
data sets coming from authentic or simulated data 
(Connor, 2002; Conti & Lombardo, 2002; Hoop-
er, 2002; McClain, 2002; Wilensky & Stroup, 
1999). This experience helps learners to develop 
the ability to organize data complexity in patterns 
that isolate signal from noise (Biehler, 1995). Ad-
ditionally, the authenticity of data analysis tasks 
requires students to learn how to build represen-
tations in order to make sense of the actions and 
results during the statistical process (Burgess, 
2002; Lehrer & Schauble, 2007), and to deal with 
variability in the data (Kazak & Confrey, 2004; 
Petrosino, Lehrer, & Schauble, 2003). Experience 
with data analysis situations should push learners 
to develop the skill to conduct representational 
permutations (Wild & Pafnnkuch, 1999), to build 
global views of data (Ben-Zvi & Arcavi, 2001), 
and to develop a deeper understanding of the 
statistical situation (Ben-Zvi, 2002). 
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interventions to teach statistical inference. 
The advantages of computers for the teaching 
of inference come from the above-mentioned 
affordances for the teaching of sampling and 
data analysis. It is not possible to teach statisti-
cal inference directly. Therefore, the sequence 
and combination of tools devoted for these two 
spaces is what defines the potential of online re-
sources to impact the understanding of statisti-
cal inference. The case of statistical inference is 
especially interesting because there is a tradeoff 
between the authenticity of the tasks and the 
number of simulations or examinations that can 
be conducted. The effects of this tradeoff need to 
be explored carefully because statistical inference 
is at the intersection of data analysis and proba-
bility theory. Therefore, understanding it grows 
from experiencing both data analysis in authen-
tic contexts and repeated simulation in random 
environments. If the instructional situation fa-
vors data analysis in comparison to probabilistic 
training, students can underestimate the effects 
of probability on their conclusions. If the instruc-
tional situation focuses on fostering probabilistic 
understanding but ignores the data analysis as-
pects of inference, students lose perspective on 
the applied underpinnings of the discipline.

For this reason, it is difficult to cover both 
spaces (data analysis and sampling) in the same 
detail. Because of time constraints, either prob-
ability or data analysis has to be sacrificed. Both 
knowledge bases compete. If the decision is to 
teach probability in depth, then the time for au-
thentic data analysis exercises is reduced. If the 
focus is on data analysis, students have to discov-
er how to construct and test their own hypoth-
eses, but all of the supporting content, including 
the probabilistic content, needs to be presented 
as text due to the time that it takes to conduct 
an authentic data analysis task. The compari-
son conducted in this study is imperfect, in the 
sense that students in both conditions receive 
the same general ideas, but the amounts of text, 
examples and exercises vary between them. This 

imperfection was created on purpose to repli-
cate the tradeoff that statistical educators have to 
face in real teaching situations. 

In general, the predictions of the study are 
that the amount of activity, not text or examples, 
devoted to each space will determine the dif-
ferences in learning. These differences are spe-
cific to the statistical space where the activity is 
placed; that is, higher levels of learning will be 
found in spaces where the students have more 
opportunities to get feedback, but not in those 
spaces where they have more text or examples 
that do not imply active engagement and feed-
back. The reason for this prediction is that ac-
tive engagement allows learners, on one hand, 
to observe the nature of statistical phenomena 
over several trials and understand the effects of 
sampling effects on observable outcomes. Active 
engagement, on the other hand, allows students 
to explore the representational possibilities of 
data analysis, and control the different tools 
available to them. These effects, however, can-
not be achieved through isolated exercises but 
they require repeated activity in sampling, data 
analysis or statistical inference. Additionally, it is 
expected that the change in statistical inference 
scores will be determined by the combined ef-
fects of the change in sampling and data analysis.

Method

Participants
This study was conducted with 85 students 

from an upper-middle class university in Latin 
America. All participants were native Spanish 
speakers with high computer proficiency. Stu-
dents were part of three middle-level statistics 
courses for social sciences majors. All courses 
covered topics from basic descriptive statistics to 
basic inferential methods including ANOVA and 
regression. All three courses had focused on ex-
ploratory data analysis (EDA) and students were 
accustomed to work with computer packages for 
data analysis.



291

revista colombiana De psicología  vol.  21   no.  2   July-December 2012   issn 0121-5469   bogotá  colombia -  pp.  285-302 

an imperfect comparison

instruments
Initially, students solved a question-

naire that evaluated their ability to coordinate 
three processes: the comparison of distribu-
tion graphs, the interpretation of statistical test 
results (ANOVA tables), and the generation of 
conclusions in context (see Corredor, 2008, for 
examples of the items). These three processes are 
basic for the understanding of statistics (Ben-
Zvi, 2004; Lehrer & Shauble, 2007; Saldanha 
& Thompson, 2003; Watson, 2002; Watson & 
Moritz, 1999). In the second section of the pre 
and posttest, students responded to a question-
naire devoted to aspects of group comparison 
and sampling that affected the significance of 
mean differences (e.g., variance, sample size). In 
the third section, they engaged in a data analysis 
task. Finally, students were asked to solve a se-
lection of items from the Advanced Placement 
Exam (College Board, 2006) and the Com-
prehensive Assessment of Outcomes in a First 

Statistics Course (CAOS 4) test (DelMas, Gar-
field, Ooms, & Chance, 2007).

From all of these measures, it was devel-
oped a main questionnaire that is the source 
of all the findings reported in this study. In this 
main questionnaire, eight items were designed 
specifically for this study and eight items were 
taken either from the AP exam or the CAOS test. 
Significant correlations between both types of 
items were found in the pretest (r=.59, p<.01). 
Items were aligned with the content of the in-
terventions through a coding process in which 
interventions’ information and activities, and 
pre and posttest questions were classified in each 
of the statistical spaces (data analysis, sampling 
and inference). Reliability analyses were con-
ducted on the instruments and they produced 
acceptable results given the low number of items 
(α=.76). A factor analysis confirmed that the 
items were assigned correctly to each statistical 
space (see Corredor, 2008, p. 85).

Table 1 
Classification of Items Characteristics by Goal, Input Information and Statistical Spaces

Item Goal Accounting for Space

1 Identify the more significant difference Different central values Data

2 Identify the more significant difference Different spreads Data

3 Produce a conclusion Different spreads Data

4 Produce a conclusion in context Different central values Data

5 Evaluate a conclusion Different central values Data

6 Evaluate a conclusion Different central values Data

7 Evaluate a conclusion Different central values Data

8 Produce a conclusion Different p-values Inference

9 Interpret a significant result Sample size Inference

10 Interpret a significant result Different central values Inference

11 Produce a conclusion Different sample size Sampling

12 Connect population and sample characteristics. Sample size Sampling

13 Connect population and sample characteristics Different spreads Sampling

14 Connect population and sample characteristics Sample size Sampling

15 Identify the more significant difference Different sample size Sampling

16 Different sampling distribution and data distribution Different spreads Sampling
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Items were classified as data analysis, sam-
pling or inference items (Table 1). Data analy-
sis items required participants to compare two 
or more distributions represented in different 
ways; sampling items required students to un-
derstand the relationship between population 
and sample characteristics; and inference items 
required participants to interpret ANOVA re-
sults in real situations. This classification was 
produced by comparing the goal of the exercise, 
the elements of the problem that needed to be 
accounted for, and the input information in 
each exercise. Items evaluating the same dimen-
sion were grouped and three general scores were 
computed: one for data analysis, one for sam-
pling, and one for inference.

Procedure
The study was a randomized design with 

two conditions: a data analysis condition and a 
sampling condition. It was conducted in Latin 
America with three groups of bilingual college 
students taking inferential statistics courses. The 
study was conducted between the 12th and the 
14th week of instruction. Students engaged in 
a pretest task, after which they were assigned 
randomly within each group/class to one of two 
interventions aimed at teaching ANOVA. After 
they completed the intervention, they were eval-
uated again with a set of activities equivalent to 
those used before the intervention. The items in 
the posttest were almost identical to the items in 
the pretest. The pre and posttest questionnaires 
had the same structure varying only in the cover 
stories and in the absolute numerical values of 
the parameters. The relationship among vari-
ables in the questionnaire items was the same 
for both versions of the test.

interventions
Students were exposed to one of two in-

terventions: data analysis or sampling. In the 
data analysis condition, students were asked to 
go through the sampling distribution and the 

ANOVA sections of the statistics course of the 
Open Learning Initiative (OLI) (Open Learn-
ing Initiative, 2005). The OLI course was pro-
duced by a group of specialists in statistics and 
online learning, and for this reason, the course 
is a valid source of disciplinary content (Meyer 
& Thille, 2006). The course explains the con-
cept of ANOVA by placing it within the broader 
range of activities that test hypotheses for rela-
tionships. In particular, the OLI course explains 
that the mechanism by which ANOVA compares 
means is the contrast between explained and un-
explained variances. The course provides several 
occasions for data analysis in which students are 
given data sets and asked to conduct statistical 
analysis using either Minitab or Excel. Feedback 
and assessment opportunities provided by the 
OLI course were disabled in order to increase the 
comparability between conditions. In the sam-
pling condition, students were asked to read a 
study guide that follows similar steps to those in 
the OLI course, but instead of using data analysis, 
students were asked to pull random samples us-
ing several simulation applets. The instructional 
time for both interventions was approximately 
three hours, including the reading of the text and 
the completion of the exercises. 

Data analysis. The data analysis condition 
required students to go through an instructional 
experience that combined the sampling distri-
bution and ANOVA sections of the OLI cour-
se (Open Learning Initiative). The OLI course 
shows the “big picture” of statistics, that is the 
relationship among exploratory data analysis 
(EDA), probability, and statistical inference. The 
OLI course provides students with several op-
portunities to explore data sets using computer 
packages. Both the use of the programs and the 
interpretation of the results are modeled in the 
course through several examples. 

In the first pages of the sampling distri-
bution section of the OLI course included in 
this intervention, students learn the concept of 
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sampling distribution and explore the relation-
ship between sample and population in an au-
thentic example. After that, students go through 
the ANOVA section of the OLI course. This sec-
tion explains ANOVA’s logic and how this proce-
dure allows researchers to test hypothesis. The 
first page presents the introduction to ANOVA. 
In this introduction, ANOVA is regarded as a 
procedure to evaluate the relationship between 
a categorical independent variable with two 
or more groups and a dependent continuous 
variable. This introduction indicates also that 
evaluating this relationship implies compar-
ing the group means of the categories defined 
by the independent variable. Included in the 
introduction is an example that organizes the 
explanation across the chapter; the example is 
a study of the relationship between academic 
major and frustration scores. The second page 
explains that ANOVA’s F-test works in a differ-
ent way than other inferential tests because the 
hypothesis used in ANOVA is not directional. 
The third page explains the “idea behind the 
ANOVA F-test” using two pseudo-authentic 
scenarios (that is, two possible configurations 
of data for the example mentioned above). The 
idea of ANOVA, according to this text, is that it 
compares within- and between- group varianc-
es to draw conclusions about the sample mean 
differences  (e.g., “when the variation within 
group is large (like in scenario #1), the variation 
(differences) among the sample means could 
become negligible and the data have very little 
evidence against Ho”). On the fourth page, the 
same idea is restated and a short quiz is given. 
After that, the text continues with an explana-
tion of how the degrees of freedom affect the 
interpretation of ANOVA results. Alongside this 
text, the assumptions of ANOVA are presented 
and instantiated in an example. On the fifth 
page, the meaning and location of the p-value 
are explained. Finally, the text provides a very 
short explanation about how p-values can be 
interpreted in context. The sixth page presents 

a worked-out example of ANOVA,s use; this ex-
ample presents a research question that delves 
into the relationship between the educational 
level of a journal and the number of words in 
its ads. Included in this page is a “learning by 
doing” exercise that asks students to conduct a 
complete ANOVA analysis using Excel. This ex-
ercise is highly ill-defined. Students are given a 
set of data, and they have to build an interpre-
tation of it, without much guidance. This fact 
requires students to make representational de-
cisions and to organize the different steps of the 
data analysis. The seventh page presents some 
final comments on the interpretation of the re-
sults of ANOVA.

sampling. In this condition, students 
went through an instructional experience built 
on the same ideas of the OLI course. This inter-
vention asked students to use simulations ins-
tead of data analysis to learn ANOVA. Initially,  
students were asked to use a random-sampling 
simulator available at http://statweb.calpoly.
edu/chance/applets/Shopping/Shopping.html. 
This random-sampling applet allowed them 
to draw samples from a population while con-
trolling the sample mean and the standard 
deviation. In order to explain why ANOVA is 
necessary to evaluate mean differences, stu-
dents were asked to draw several samples from 
the population and to write down the means 
of the obtained samples. Then read an expla-
nation explaining that drawing a sample is 
equivalent to collecting data on a given pheno-
menon. The instruction provided in this part of 
the intervention suggested that it is impossible 
to observe all the possible instances of a given 
phenomenon, and that therefore sampling is 
a necessary part of scientific research. At this 
point, the students solve exercises related to the 
variability of the samples. After that, students 
were asked basically to think why samples ob-
tained from the same population have diffe-
rent sample means, and then they were asked 
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to consider how researchers can be sure of the 
accuracy of their research conclusions. The ins-
truction then suggested that sampling creates 
variability but that sampling variability is not 
unpredictable. Samples vary within certain 
ranges that depend on the parameters of the 
population. To prove that, students were asked 
to draw a large number of samples (n=40) and 
use a sample counter —available in the same 
applet— to quantify the number of samples un-
der or below certain limits. The next step was to 
extend these conclusions to the case of two po-
pulations with different means. Students sam-
pled from each population and had to find out 
how many sample means fell within a common 
range for both groups. They, then, repeated 
the same exercise but this time they sampled 
from the same population. At this point stu-
dents were asked to compare the means from 
the one-population sampling and the means 
from the two-population sampling. Then, stu-
dents repeated the same exercises but they 
played with different parameters (sample size 
and standard deviation) to establish how those 
parameters affect the confidence in the obser-
ved mean difference. Finally, there was an ex-
planation about how ANOVA helps researchers 
to identify whether a difference is the result of 
either systematic effects or random sampling.

At this point, the intervention explained 
that the idea behind ANOVA is the comparison 
of within- and between- group variability. To 
explain this idea, the intervention used two 
new applets. One of these applets visualized 
the relationship between explained and unex-
plained variance in a pie diagram (http://www.
ruf.rice.edu/~lane/stat_sim/one_way/index.
html). In the right half of the applet, three ver-
tical lines represented three different groups 
in an ANOVA. In each line, black dots repre-
sented the data points (individual scores) and 
a red line represented the mean of the group. 
Students had seven data sets to work with. 
Once the data set was uploaded, students could 

move the points (black slots) in each line. The 
applet automatically modified the numerical 
indicators presented in an ANOVA table in the 
lower part of the diagram, and also modified 
the relationship between explained and unex-
plained variance depicted in the pie diagram. 
This part of this intervention asked students to 
use this applet to visualize the relationship be-
tween explained and unexplained variance in a 
small data set. Students were asked to move the 
points in the graph to obtain different amounts 
of explained variability. They had to find out 
which data configuration produced larger ex-
plained variance results.

The other applet permitted students to sam-
ple from three groups while controlling popula-
tion and sample parameters (available at http://
www.rossmanchance.com/applets/Anova/ 
Anova.html). Students controlled the means of 
the three populations, and the size and stan-
dard deviation of the samples. The results for 
each group could be displayed as histograms 
(dotplots) or as boxplots (see Figure 1). Nu-
merical results were presented as an ANOVA 
table in the bottom of the applet. The prob-
ability of obtaining each sample was displayed 
as a red band in an ANOVA distribution graph. 
Sampling results were not accumulated in any 
graph of this applet.

Using this applet, students were asked to 
draw 10 samples from a situation where the pop-
ulations had small mean differences. Then, they 
had to draw 10 samples from a situation where 
the populations had large mean differences. Par-
ticipants should explore the difference between 
the configurations of data in those two situations 
and find out that large mean differences pro-
duced higher levels of explained variance in the 
applet. The next step asked students to play with 
sample size and variability (standard deviation) 
to see how those parameters affected the ob-
tained samples. The final question in this exercise 
was about the meaning of the p-value in this con-
text according to the result of the simulations.
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coding of the interventions
Interventions were coded in terms of idea 

units to specify the type of information and the 
type of activity students were receiving in each 
condition. Idea units were defined as a non-re-
dundant proposition (subject plus predicate) that 
were propositionally independent from each oth-
er (Chafe, 1985). The codification showed that stu-
dents received the same content, but the amount 
of text, examples and exercises varied among the 
different interventions (Figure 2). This difference 
was created in part by the different constraints 
and affordances of simulations and data analysis 
tools (for a more detailed cognitive analysis of the 
interventions, for examples of the interventions 
and for a description of the segmentation and 
coding of the idea units, see Corredor, 2008). 

The amount of activity in each statistical 
space was coded in order to make visible the 
differences in the intensity of the students’ activ-
ity. Since the construction of the idea units map 
showed that both interventions covered the same 
content (Corredor, 2008), the differences in stu-
dents’ learning must have been due to differences 
in the amount of activity in each intervention. 
The sampling intervention employed simulations 

Figure 1. Snapshot of the third anova applet.
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that permitted students to solve a large number 
of short, well-defined exercises. The data analysis 
intervention, on the other hand, used an ill-de-
fined exercise that required students to conduct a 
data analysis task, similar to the tasks of authen-
tic statistical practice. This exercise however was 
long and time consuming, and therefore only 
one exercise fitted within the instructional time. 
For this reason, this intervention had few oppor-
tunities for activity and feedback. This difference 
poses a critical point in understanding students’ 
learning gains during the study. 

The results in Table 2 show the data analy-
sis intervention had more text and examples in 
any space than the sampling intervention, and 
the sampling intervention had more exercises 
devoted to sampling than the data analysis in-
tervention. This asymmetry has important con-
sequences for the evaluation of students’ gains; 
students in the data analysis condition read sig-
nificantly more text and explored more exam-
ples in any statistical space than students in the 
sampling condition. On the other hand, students 
in the sampling condition had higher levels of 
activity in the sampling space than students in 
the data analysis condition. 
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The intervention effects were analyzed us-
ing a mixed ANOVA model in which the treat-
ment was assigned as the between subjects 
factor, the pre, posttest change was assigned as 
the within subject factor, and group —the course 
of the students— as a nested factor within in-
tervention. These analyses indicated that both 
the pre-posttest variable and the interaction be-
tween the pre-posttest variable and the interven-
tion had significant effects on the global scores. 
In other words, the results showed that there was 
a significant change in the global scores from the 
pretest to the posttest (F(1,78)=25.78, p<.01), and 
that the trajectories of change were different for 
participants in different treatment conditions 
(F(1,78)=7.71, p<.01) (Figure 3). Group effects, 
that are the differences between the courses par-
ticipating in this study, were not significant. 

Table 2 
Ratios between the Number of Questions and Idea Units in Each Intervention 

General text Examples Exercises

Sam/Dat Sam/Dat Sam/Dat

Data analysis .47 .00 1.28

Inference .42 .02 1.19 

Sampling .55 .11 2.50

Total .48 .04 1.64

Figure 2. Amount of exercises, examples and text in each space by intervention. Tradeoffs 
between authenticity and repeated activity.
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Results

Effects of Data Analysis and simulations 
on the Learning of statistics

In general terms, the students in the sam-
pling condition performed better than the 
students in the data analysis condition. The 
change in the sampling scores was greater 
than the change in the data analysis scores for 
both groups. It is important to note that the 
data analysis scores were higher than the sam-
pling scores in the pretest for both groups. The 
change in the inference scores was somewhere 
between the change in data analysis knowl-
edge and the change in sampling knowledge. 
No significant differences between the aver-
ages of both conditions were found in the pre-
test scores. 
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Figure 3. Change in global scores by intervention.

However, when pre and posttest scores were 
disaggregated into the sampling, data analysis, 
and inference parts of the test, it was clear that 
the change from pretest to posttest was produced 
mainly by gains in the sampling knowledge (Fig-
ure 4). When a mixed ANOVA was calculated for 
the sampling scores, the pre-posttest change 
continued being significant (F(1, 78)=40.52, 
p<.01), as well as the interaction between pre-
posttest change and intervention (F(1,78)=8.47, 
p<.01). No group effects were found. The situ-
ation was different for the data analysis scores. 
The mixed ANOVA results indicated that neither 
the change in time (F(1, 78)=2.26, p>.05), nor the 
interaction between time and intervention (F(1, 
78)=2.01, p>.05) were significant. 

With respect to the inference scores, the 
mixed ANOVA results indicated that there is 
a strong change from pretest to posttest (F(1, 
78)=18.03, p<.01), and a moderate interaction 
between pre-posttest change and intervention 
(F(1, 78)=3.71, p<.10). The change is stronger for 
participants in the sampling intervention (from 
.36 to .61) than for the participants in the data 
analysis condition (from .35 to .43). There is a 
moderate effect of group —the course of stu-
dents— in the change in inference scores (F(4, 
78)=2.62, p<.05). An explanation for this result 

Figure 4. Changes in data analysis, sampling scores 
and inference scores.

is that change in the inference scores was related 
to gains in sampling knowledge produced by the 
interventions, but it was not related to gains in 
the inference knowledge itself; this possibility 
will be explored later.
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All of the analyses presented in this sec-
tion were double-checked using adjusted 
ANCOVAs on posttest scores, controlling for 
pretest scores and using the intervention as the 
between-subjects factor. This analysis revealed 
the same picture regarding the changes in the 
participants during the study: strong effects for 
sampling knowledge, moderate effects for infer-
ence knowledge, and no effects for data analysis 
knowledge. The effect sizes of condition for this 
analysis as reported by the η2 values in the ad-
justed ANCOVAs are .10 for the global scores, .11 
for the sampling scores, .03 for the data analysis 
scores, and .07 for the inference scores. 

The question that needs to be solved at this 
point is why the data analysis intervention did 
not produce gains in data analysis knowledge. It 

is not a ceiling effects because the pretest scores 
in the data analysis condition are in the mid-
dle of the scale (around 50%). The explanation 
has to do with the levels of activity available in 
each condition. The data analysis condition has 
a reduced number of exercises in data analysis 
because each exercise takes a long time. As ex-
plained, exercises in this condition are designed 
to resemble authentic data analysis situations, 
students have to build the analysis from scratch, 
from organizing the data to running the statis-
tical programs and interpreting the results. On 
the other hand, the sampling intervention pro-
vides students with more exercises because the 
exercises in this condition are short. This effect 
of the amount of activity on learning happens in 
all conditions and statistical spaces (Figure 5).

Figure 5. Amount of activity and learning gains in data analysis knowledge (dak), sampling knowledge (sk) 
and inference knowledge (ik) for the data analysis condition (dac) and the sampling condition (sc).
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interaction between sampling, Data 
Analysis and inference Knowledge Bases

As pointed out in the theoretical review, 
statistical inference is, from a cognitive point 
of view, the product of combining data analy-
sis and sampling knowledge bases. Therefore, 
it is expected that there is a strong relationship 
between changes in data analysis and sampling 
knowledge with the gains in the ability to solve 
inference problems. This hypothesis was tested 
by building a mixed linear model with a vari-
ance components (VC) covariance structure that 
specified pre-posttest change in inference scores 
as the dependent variable, change in sampling 
and data analysis scores as covariates, and the 
intervention as between subjects factor.

The results of this analysis, displayed in 
Table 3, show clearly that change in data analy-
sis and sampling scores predicts the change in 
students’ inference scores. The results of this 
analysis indicate also that intervention plays 
a role in this process. The broader picture de-
picted by the holistic models presented in 
this article shows that changes produced by 
the intervention were significant for sampling 
knowledge. The inference scores, although af-
fected moderately by the interventions, were 
related to small changes in students’ data anal-
ysis knowledge and to strong changes in stu-
dents sampling knowledge. 

Table 3 
Holistic Model: Changes in Data Analysis and Sampling Predict Inference Change

Parameter Estimate SE df T Sig.

Intercept .22 .04 636.91 5.24 .00

Intervention .09 .06 635.96 1.60 .11

Change in data analysis score .14 .06 632.73 2.37 .02

Change in sampling score .22 .06 613.73 3.51 .00

Intervention * Change in data .04 .09 629.27 .42 .67

Intervention * Change in sampling -.13 .09 625.98 -1.55 .12

Conclusion
The findings presented in this study need 

to be articulated to explain both the gains in 
the sampling scores observed in the sampling 
intervention and the lack of change in the data 
analysis scores in the data analysis condition. 
The differences seem to be related to the number 
of exercises in each condition. The data analysis 
intervention contains fewer exercises than the 
sampling intervention because authentic exer-
cises are time-consuming and this fact limits 
the number of exercises that can be presented 
in the time frame of the intervention. For this 
reason, simulations seem to be a better option. 
They provide learners with more intensive activ-
ity in similar timeframes than data analysis ex-
ercises. For this reason they produce larger gains 
in probability knowledge. This result indicates 
that there is a tradeoff between the authenticity 
and the number of exercises that can be con-
ducted in a given instructional session. Asking 
students to conduct the data analysis task from 
scratch is important, because they grow famil-
iar with the basic process of statistical activity, 
from organizing information into data bases to 
interpreting statistical reports. However, this 
authenticity comes with a cost: few exercises by 
time unit. This tradeoff needs to be accounted 
for researchers and instructional designers in 
statistical education.
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