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Vol 8, No2, Jul–Dic 2014, pp.83–101, ISSN:1856-8890, Depósito Legal:pp200702LA2730

SPECTRAL PHASE: FROM BASICS TO

VIDEO-RATE APPLICATION TO

TUNING-FORK RESONANCE

CHARACTERIZATION

* Patrick Sandoz **Freddy Torrealba Anzola

Recibido: 05/12/2014 Aprobado: 07/03/2015

Abstract

Whereas graduated students are usually familiar with Fourier spectra, the
spectral phase remains often mysterious to them. This paper proposes a
“hands on.approach of discrete Fourier transform (DFT) and spectral phase.
In a first part, basics of DFT are explored through elementary simulations.
The variation of digital parameters allows the identification of sampled fre-
quencies as well as their relation with the size of the sampled window. The
significance of the spectrum phase is also illustrated experimentally to de-
monstrate the useful relationship between a displacement and the spectral
phase. In a second part, these properties are put in application for the
characterization of tuning-fork resonance by means of video-rate analysis
of the spectral phase. Experimental hardware is reduced to elementary de-
vices and remains affordable while involving all aspects of a measurement
chain.The proposed progression constitutes a practical approach to discrete
Fourier transform and spectral phase properties. At the end, the resonan-
ce curve of a tuning-fork is recorded in only a few minutes. The Shannon
sampling theorem as well as the uncertainty relation linking the resolutions
achieved in the direct and reciprocal domains, are also considered practi-
cally throughout this work.
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SPECTRAL PHASE: FROM BASICS TO VIDEO-RATE APPLICATION

FASE ESPECTRAL: DE LAS IDEAS BÁSICAS A LA

APLICACIÓN EN UN VIDEO DE LA RESONANCIA DE UN

DIAPASÓN

Resumen

Mientras que los estudiantes graduados están familiarizados con el espectro
de Fourier, la fase espectral a menudo se mantiene misteriosa. Este art́ıculo
propone una aproximación práctica a la Transformada de Fourier Discreta
(TFD) y a la fase espectral. En una primera parte, se exploran las bases
de TFD mediante simulaciones elementales. La variación de parámetros
digitales permite la identificación de frecuencias de muestreo y su relación
con el tamaño de la ventana muestreada. La importancia del espectro de
fase también se ilustra experimentalmente para demostrar la utilidad de
la relación existente entre un desplazamiento y la fase espectral. En la
segunda parte, estas propiedades son puestas en práctica caracterizando
la resonancia de un diapasón mediante el análisis de la tasa de video de
la fase espectral. El material experimental implicado en todos los aspectos
de las medidas se reduce a unos dispositivos elementales y económicos. La
propuesta constituye un acercamiento práctico a Transformada de Fourier
Discreta y las propiedades de la fase espectral. Para finalizar, se registra la
curva de resonancia de un diapasón en sólo unos minutos. El teorema del
muestreo de Shannon, aśı como la relación de incertidumbre que liga las
resoluciones alcanzadas en los dominios directos y rećıprocos también son
considerados prácticamente en todas las partes de este trabajo.

Palabras clave: Transformada de Fourier, Fase de Fourier, diapasón.

1. Introduction

Fourier transform is a key-concept to be transmitted in the frame
of linear system theory (Oppenheim y Schafer, 1975). While time is
usefully spend for teaching Fourier transform theory and its applica-
tions, some points remain often obscure in practice. Indeed several
steps have to be clearly understood to pass from the general defini-
tion of the Fourier transform of continuous variables to the computer
processing of experimental signals sampled over finite time intervals.
Whereas the shape of the power spectrum obtained is usually well
interpreted, the conversion of digital indexes into actual magnitudes
of physical parameters is often difficult and the meaning of the Fou-
rier phase remains widely misunderstood. Several papers published
during the last decades have proposed useful application works for
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the experimental approach of the Fourier transform(Higgins, 1976;
Maas, 1978; D’Astous y Blanchard, 1982; Matthys y Pedrotti, 1982;
Lambert y O’Driscoll, 1985; Kocher, 1988; Chen, Huang, y Loh, 1988;
Whaite y Wolfe, 1990; Peters, 1992). Our aim is also to provide the
frame of a laboratory work suited to make the students more fami-
liar with these practical aspects of the Fourier transform; especially
with the Fourier phase. This paper is made of two complementary
parts. The first one is based on elementary digital simulations built
in such a way that the meaning of the different parameters to be
clarified is approached qualitatively through results displayed on the
screen. This part allows the understanding of basic parameters and
relationships:

The frequencies actually sampled by a discrete Fourier trans-
form as a function of the number of signal samples available. We
emphasize on their property to correspond to a whole number
of periods over the signal interval considered.

The significance of these sampled frequencies with respect to
the actual signal spectrum is discussed; especially in regards of
the Shannon sampling theorem and of the effect of sampling on
the signal Fourier spectrum.

The meaning of the Fourier phase; i.e. the argument of each
spectral component with respect to the corresponding analysis
function. The ability of the Fourier phase to encode a delay is
emphasized.

The second part of the paper is dedicated to an application ex-
periment in which the res- onance curve of a tuning fork is finally
recorded within several minutes of time and from affordable parts.
Several principles and subtleties of signal acquisition and processing
are encountered in this experiment; either for the generation of the
excitation signals or for the processing of the recorded images. For
instance, the trade-off between acquisition time and spectral resolu-
tion achieved; usually known as the uncertainty principle; is clearly
observed in this experiment. This application work is also an oppor-
tunity to consider the Fourier theory in the spatial domain of two-
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dimensional images instead of the time domain as often implemented
in teaching works.

2. COMPUTER EXPLORATION OF THE

DFT SIGNIFICANCE

2.1. Definitions

The following equations give the usual integrals of the continuous
Fourier transform allowing to pass from the direct domain (variable
x) to the reciprocal one (variable u) and vice-versa:

F (u) =

∫

∞

−∞

f(x)e−i2πuxdx (1)

f(x) =

∫

∞

−∞

F (u)ei2πuxdu (2)

where functions f(x) and F (u) are Fourier transform of each ot-
her. In the case of discrete signals, the DFT is expressed as follows:

uk =

N
∑

n=1

xn exp
−2πi

N
(k−1)n , k = 1, . . . , N (3)

xn =
1

N

N−1
∑

k=0

uk exp
−2πi

N
(n−1) , n = 1, . . . , N (4)

where integers k and n stand for the indexes of the sample of the
discrete signals. We chose a convention in which the N samples of the
discrete signals are numbered with indexes from 1 to N as commonly
used in computation softwares. Since the number N of samples is in-
volved in the DFT definition, the indexes involved in these equations
do not correspond directly to actual physical quantities. They are
only linked to the actual physical quantities by two parameters; i.e.
the number of samples N and the sampling frequency used for signal
discretization. The following section emphasizes on the effect of the
value of N on the Fourier spectrum finally obtained.
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2.2. Observing the sampled frequency properties

In order to observe the effect of the number N of discrete samples
on the Fourier spectrum obtained by DFT , we built a digital signal
s(i) simply made of a complex harmonic function whose frequency
can be chosen arbitrarily as follows:

s(i) = exp
(

j
(

φ(i)
)

)

with: (5)

φ(i) = 2πi/T + φ0 (6)

where T is the period of the harmonic function and φ0 is an
arbitrary phase shift. The real and imaginary parts of this signal are
plotted in 1. To observe the effect of N , we did not apply the DFT
to the whole set of samples but only to a subset; i.e. on the interval
defined by indexes ILeft through IRight. The value of N is then varied
by increasing the value of IRight. Since s(i) has a single frequency, we
may expect the Fourier spectrum to be reduced to a single component.
We can observe experimentally that this expectation is only verified
for particular values of N whereas for the most common case, the
Fourier spectrum is spread over a narrow band extending over several
spatial components. To understand the origin of this behavior, let us
consider Fig. 2 that corresponds to increasing values of N.

Figura 1: Harmonic signal used for simulation: real part; dotted ima-
ginary part. A long period has been chosen for the sake of clarity.
FFT is computed between ILeft and IRight.
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Figura 2: Relationship between vector length and Fourier power spec-
trum. Up: connection between end and beginning of vector data stars:
last half period; circles: first half period); Bottom: Resulting Fourier
power spectrum obtained. Sup. stands for the mismatch between vec-
tor length and closest multiple of periods.

It allows the visualization of the relationship existing between the
length of the input signal and the shape of Fourier spectrum obtained.
Eight different cases are represented by subset of two figures. For each
subset, the upper sub-figure represents the extremities of the initial
signal; i.e. its values as taken for the last sixteen samples (stars) and
for the first sixteen samples (circles). Since ILeft is kept constant,
the circles present the same curve in all sub-figures. At contrary, the
stars present varying curves as a function of the value of IRight. By
observing the figures, we see that the Fourier spectrum is reduced to a
single component when there is a perfect continuity between the end
and the beginning of the interval considered. The following comments
can be derived from these observations:
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When the Fourier spectrum is reduced to a single component,
the input signal is equal to one elementary function of the DFT
decomposition basis multiplied by a real coefficient. By varying
the input signal frequency, the DFT decomposition function
basis are identified by the values leading to a single component
spectrum.

The frequency of each DFT decomposition function corresponds
to a particular value for which the N samples of the input signal
form a whole number of periods. The law defining the sampled
frequencies fk(k = 1, ..., N) by:

fk =
k − 1

N
per sample (7)

This law can also be expressed as: the kth sampled frequency
corresponds exactly to (k − 1) periods for the N samples. This
condition can be easily verified by setting T = 1/fk in Eq. 5
and 6. Whatever the value of N the spectrum is always made
of a single component at index k.

When this condition is satisfied, an infinite signal without pha-
se jitter can be constructed artificially by juxtaposing identical
sets of N samples. In such cases, the discrete form is qualita-
tively analogous to the definitions of equations 1 and 2 in the
case of continuous functions.

When this condition is not met, the input signal is decomposed
onto a set of several sampled frequencies. The spectrum obtai-
ned is thus spread onto several components. We observe in the
figure that the more pronounced the discontinuity, the wider
the spectrum obtained.

The elementary computations proposed in this section constitute
a convenient way to associate a visual representation with the mathe-
matical definitions of the continuous and discrete Fourier transforms.
The consequences of signal discretization are also emphasized.
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2.3. DFT versus signal sampling theory

As well described in the signal sampling theory, the sampling of a
continuous signal must comply with an important spectral bandwidth
condition. This condition is known as Shannon theorem that requires
the sampling frequency to be at least twice the highest frequency of
the continuous signal. This condition can also be expressed by: at
least two samples per period or by: a maximum frequency of 0.5 per

sample. However, we observe in Eq. 8 that the sampled frequency
becomes larger than 0.5 per sample for values of k larger than N/2.
This means that the range of frequencies provided by a combination
of signal sampling and DFT infringes the Shannon theorem. Despite
this Shannon theorem infringement, the spectrum obtained by DFT
is fully representative of the sampled signal. This contradiction results
from the effect of signal sampling on the Fourier spectrum. Because
of sampling, the initially band-limited spectrum of the continuous
signal is convolved by a Dirac comb at the sampling frequency. The
spectrum of the sampled signal is thus made of an infinite set of
reproductions of the continuous signal spectrum. Each reproduction
is representative of the continuous signal provided that there is no
overlapping between the different spectrum reproductions. The latter
condition is indeed the purpose of the Shannon theorem: if the signal
bandwidth is narrower than half the sampling frequency there is no
spectrum overlapping in the spectrum of the sampled signal. The way
in which DFT accesses the signal. The way in which DFT accesses
the signal spectrum is illustrated in Fig. 3(a). The continuous signal
bandwidth is narrower than the interval (fs/2, fs/2). After signal
sampling, an infinite set of this spectrum is reproduced with a spacing
of fs. The frequency range provided by DFT extends on the interval
[0, fs); i.e. on two consecutive reproductions of the spectrum of the
continuous signal. However the initial spectrum of the continuous
signal can be derived from the DFT one simply by applying a scale
shift to the right part of the spectrum. The new sampled frequencies
are then expressed by:

fk =
k − 1

N
− 1 per sample for k = N/2, . . . , N (8)
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Figura 3: Up) Frequency domain of FFT computations with respect
to the Shannon criterion domain; bottom) Phase shift per pixel for
a given spectrum index (14). stars: n < L/2; circles: complementary
phase with n′ < L/2.

This translation of one half of the spectrum can be approached in
a different way; i.e. visually on the trigonometric circle. The sampled
frequencies correspond to 0 through (N−1) periods over the N signal
samples and thus correspond to a total phase excursion of 0 through
(N − 1) · 2 rad. Reported to the transition from one signal sample
to the next one, this equivalent phase excursion varies then from 0
through N−1

N
· 2π rad. per sample. This is illustrated in Fig. 3(b) in

the case of N = 20 for the sake of simplicity. Let us consider the
case of k = 14. The phase excursion from one sample to the next
one is marked by black stars and is equal to 13 · π/10 rad. We can
observe that this phase excursion that is greater than is equivalent to
−7 · π/10 rad. as marked by red circles. In the latter case, the phase
excursion from one signal sample to the next one remains smaller
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than as required by the Shannon theorem.

2.4. Significance of the Fourier phase

Although the Fourier phase is clearly defined by Eq. 1 and 3 its
significance remains mysterious to many people, even among regular
users of the Fourier transform. Figure 4 may help to understand vi-
sually the Fourier phase from elementary computations based on the
input signal of Fig 1. To obtain Fig.4, we kept the number of sam-
ples N constant and simply shifted progressively the position of the
analysis window by incrementing ILeft and IRight simultaneously. We
observe that while the first sample value describes one period, the

Figura 4: Relationship between spectral phase at Fourier power spec-
trum peak and the vector intensity at first data point. Red stars:
spectral phase; black circles: first data point intensity.

Fourier phase of the peak component describes the (π, π] interval.
Furthermore we observe easily that the intensity of the first sample
considered is directly given by the cosine of the Fourier phase. In
addition to provide a visual representation of the Fourier phase, this
figure demonstrates clearly how the Fourier phase can be used for
displacement detection and measurement. Indeed, the motion of the
analysis window with respect to the fixed input signal is equivalent
to a translation of the input signal within the analysis window. The
simultaneous observation on an oscilloscope of a cosine signal and
of its delayed copy is a well known example of this property. In the
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domain of imaging, we may consider a camera observing an object
presenting a periodic contrast. Any lateral motion of the object in-
duces a translation of the periodic contrast with respect to the image
pixel frame that is equivalent to the conditions of Fig. 4. This displa-
cement can thus be detected and measured by means of the Fourier
phase with a conversion law of one period per 2π rad.

In the experimental part of this paper, we apply this property
of the Fourier phase to the characterization of the resonance curve
of a tuning fork. We may notice that we proposed a quite similar
experiment in a previous work (Sandoz, Friedt, Carry, Trolard, y R.,
2009) but the present work differs in several ways.

Here we use a periodic pattern stuck on the prong end of the tu-
ning fork. A single spectral component has thus to be considered and
computations can be performed at video-rate. We do not implement
a quite complicated iterative algorithm to reconstruct the prong end
displacement since it is directly given by the Fourier phase variation
observed. However, the Fourier phase observed here is subject to a
2π uncertainty and thus allows only the measurement of vibration
amplitudes smaller than half a period of the pattern stuck on the
prong end. As demonstrated below, the tuning fork resonance can
be reconstructed despite this limitation with the interest that it can
be obtain within a couple of minutes instead of hours in the method
reported previously.

3. APPLICATIONTO VIDEO-RATE TUNING-

FORK VIBRATION AMPLITUDE MEA-

SUREMENT

3.1. Tuning-fork excitation and observation

The relationship explained in previous sections between a dis-
placement in the signal domain and a phase change in the spectral
domain has been applied to the development of an affordable instru-
mentation setup. The latter is dedicated to the characterization of
the vibration amplitude of a tuning-fork. The experimental setup is
shown in Fig.5. It combines excitation and imaging of the tuning-fork
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and is fully controlled by a laptop computer. Tuning-fork excitation
is obtained by magnetic coupling between a speaker located close to
the end of one prong and the ferromagnetic material of the tuning-
fork(Sandoz y cols., 2009). The speaker driving signal is synthesized
numerically and sent to one channel of the stereo sound card of the
computer. The second sound channel is used in the same way for

Figura 5: Experimental setup used for tuning-fork vibration ampli-
tude measurement.

monitoring a pulsed LED ( LXHL-MWEA White Luxeon R©Star/C)
illuminating the prong-end surface. A two-channel audio amplifier
(Sony R©XM-SD12X250W ) amplifies the sound card outputs to the
levels required for driving the LED and the speaker. Since the tuning-
fork natural-frequency is much larger than the standard video-rate, a
stroboscopic illumination is necessary to perform a frequency chan-
ge. In this aim a 1.25 Hz frequency shift is systematically applied
between the excitation signals of the speaker and of the LED. The
motion of the tuning-fork is thus observed with an apparent frequency
of 1.25 Hz that is compatible with the bandwidth of a standard ca-
mera. The vision system used is made of a CMOS camera (µEye UI-
1540-M) connected to the USB port of the personal computer and a
C-mount zoom lens (Computar MLH-10x). In practice the continuous
excitation of the tuning fork is obtained by the infinite repetition of
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a time-limited signal of duration T sent digitally to the sound card
memory. To be equivalent to a steady-state harmonic signal, this in-
finite repetition of a time-limited sequence must ensure the perfect
phase continuity between the consecutive sequences. This condition
requires that the duration T is equal to an entire number of period
of the synthesized frequency as illustrated in Fig.2. The relationship
between the resolutions achieved in the direct and reciprocal domains
is then easily derived from this requirement:

T · f = k and T · (f + δf) = k + 1 (9)

By subtracting these equations, we derive the frequency resolution
δf allowed by a duration T as well as the minimum duration T for
exploring the frequency domain with a given resolution δf :

δf = 1/T or T = 1/δf (10)

From a discretization point of view, the duration T has to be a
multiple of the sampling period of the discrete signal built digitally
in order to avoid any phase jitter between the consecutive sequences.
In practice the sampling frequency can be adjusted as a function of
the desired frequency in order to fulfil this continuity requirement.

A periodic pattern of lines is stuck on the prong-end surface in the
aim to provide a carrier frequency on which phase computations can
be performed similarly to simulations carried out previously. Fig.6
presents an image of the periodic pattern of lines as recorded expe-
rimentally. In practice, we used a simple piece of paper on which a
half tone of gray has been printed. Shades of gray are indeed obtai-
ned by periodic distributions of black spots or lines. The intensity of
gray is controlled through the distribution duty cycle while its pe-
riod remains constant; at a value sufficiently small to be cut-off by
the naked-eye bandwidth. In the figure, the vertical lines correspond
to a 25% gray level while the oblique border line corresponds to a
gray level of 50%. The lines between 100-200 define a working in-
terval of 100 lines used as input data for image processing. In fact
all lines in this set carry the same spectral information but each one
with an independent pattern of noise due to printing imperfections
and electronic noise. By summing these 100 lines along columns, we
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Figura 6: Recorded image of the line pattern stuck on the prong end
of the tuning-fork. The lines define the region of interest actually
recorded.

obtain a noise-averaged signal as represented in Fig7. in which the ca-
rrier frequency appears clearly with a high signal-to-noise ratio. Any
vibration of the tuning-fork; i.e. any displacement of the prong-end
surface; can therefore be detected by analyzing the position of this
carrier-frequency signal with respect to the pixel frame of the camera
as described in the next section.

Figura 7: Sum of one hundred lines of linearly-patterned image of the
prong-end surface.
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3.2. Fourier phase analysis and vibration amplitude re-

construction.

A vibration of the tuning-fork induces a lateral shift of the pe-
riodic pattern printed on the prong-end surface in front of the vision
system. This vibration induces thus in the recorded image a displa-
cement of the carrier-frequency signal with respect to the pixel frame
of the camera. The aim of the signal processing is therefore to follow
the lateral position of this carrier-frequency signal along the image
column-index frame. As explained before, this information is provided
by the Fourier phase of the DFT taken at the particular frequency of
interest. We work in this way but in practice, we made two specific
adjustments:

In order to save time and to achieve real-time processing, we
compute a single spectral component instead of performing a
complete DFT.

To avoid disturbances due to the limited extension of the line
pattern, we choose to perform a windowed Fourier transform
as shown by the analysis function of Fig.8. The latter has a
gaussian envelope and its frequency is equal to that of the line
pattern in the recorded images.

The expected Fourier phase is thus obtained through the following
sum:

S =
∑

si · ai and φ = angle(S) (11)

where i is the column index, s i is the sum of one hundred li-
nes of the recorded image, a i is the analysis function represented in
Fig.8 and φ is the Fourier phase. The computation of this equation
is not time-consuming and the tuning-fork vibration amplitude can
be displayed at video-rate. Fig.9 presents the evolution of the Fourier
phase versus time after switching on the tuning-fork excitation at the
resonance frequency. The signal oscillations are due to the 1.25 Hz
phase difference between the excitation and stroboscope frequencies
while its envelope corresponds to the vibration amplitude. We ob-
serve the progressive increase of the vibration amplitude up to the
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Figura 8: Fourier phase analysis function; black: window envelope;
dashed: real part; dotted : imaginary part. Phase quadrature can be
seen in the zoom presented in the inset.

steady-state regime. This measurement is obtained in radians with
a conversion rule of 2π per pattern period. The actual calibration in
micrometer assumes the calibration of the vision system through the
measurement of the pattern period or by means of a reference object.
In our case, the displacement was evaluated to be 27 µm per radian
for a pattern frequency of 5.9 mm−1.

Figura 9: Spectral phase versus time for a tuning-fork excitation at
resonance frequency.

The phase variation observed in Fig.9 is centered on a mean phase
value π0 that depends on the pattern position in absence of vibra-
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tion. π0 can take any value in the interval (−π, π]. If φ0 is close to
±π, 2π phase discontinuities may appear. The latter can be removed
afterwards by performing a phase unwrapping. They can also be pre-
vented by inserting a phase offset in the analysis function in order
to set φ0 = 0. If the vibration amplitude becomes larger than π, this
precaution does not work anymore and phase unwrapping has to be
performed.

By scanning step by step the excitation frequency we recorded
the tuning-fork resonance curve as represented in Fig.10. We choose
a frequency step of 0.05 Hz and we respected a temporization of 20 s
to wait for the steady-state to be established. Another 20 s tempo-
rization is also used for vibration damping before switching to the
next frequency value. In this way the resonance curve of Fig.10 was
recorded automatically in about 25 mn. This time lapse can still be
reduced by restricting the explored spectrum to the central part of
the resonance curve. Such a recording can thus be carried out by the
end of a laboratory course.

Figura 10: Resonance curve of the tuning-fork as obtained from spec-
tral phase variation amplitude measured at video-rate.

4. CONCLUSION

This paper proposes a “hands on” approach to the Fourier trans-
form with an emphasize on the different effects of signal discretiza-
tion. The elementary simulations of the first part help to get a visual
representation of how the DFT works and to understand the impor-
tance of the number of signal samples considered as well as of the
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effects of frequency sampling on the spectra obtained. The significan-
ce of the Fourier phase may also be clarified. The second part of the
paper proposes an application experiment leading to the recording
of the resonance curve of a tuning fork within a couple of minutes.
The setting up of this experiment assumes that basic principles such
as stroboscopy for instance are understood. Once the experiment and
the software are ready, they can be used for further exploration of the
tuning fork behavior as proposed elsewhere (Sandoz y cols., 2009).
The completion of this work would be an interesting subject since it
covers many aspects of a detection chain in addition to digital aspects
of signal generation and numerical simulations. The affordable cost
of the required hardware could still be reduced by working with a
webcam and an homemade imaging system.
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