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Abstract
Glutamate N-methyl-D-aspartate (NMDA) receptor activation within the dorsal column of the periaqueductal gray (dPAG) leads 
to antinociceptive, autonomic, and behavioral responses characterized as the fear reaction. Activation of NMDA receptors in the 
brain increases nitric oxide (NO) synthesis, and NO has been proposed to be a mediator of the aversive action of glutamate. This 
paper reviews a series of studies investigating the effects of neuronal NO synthase (nNOS) inhibition in the dPAG of mice in 
different aversive conditions. nNOS inhibition by infusion of Nω-propyl-L-arginine (NPLA) prevents fear-like reactions (e.g., 
jumping, running, freezing) induced by NMDA receptor stimulation within the dPAG and produces anti-aversive effects when 
injected into the same midbrain site in mice confronted with a predator. Interestingly, nNOS inhibition within the dPAG does 
not change anxiety-like behavior in mice exposed to the elevated plus maze (EPM), but it reverses the effect of an anxiogenic 
dose of NMDA injected into the same site in animals subjected to the EPM. Altogether, the results support a role for glutamate 
NMDA receptors and NO in the dPAG in the regulation of defensive behaviors in mice. However, dPAG nitrergic modulation 
of anxiety-like behavior appears to depend on the magnitude of the aversive stimulus. Keywords: periaqueductal gray matter 
(PAG), NMDA receptors, neuronal nitric oxide synthase (nNOS), elevated plus maze (EPM), rat exposure test (RET), mouse.
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Introduction

The dorsal portion of the periaqueductal gray (dPAG) 
has been identified as the principal substrate of aversive 
states in the midbrain (Graeff, 2004). Electrical or 
chemical stimulation of the dPAG elicits autonomic (e.g., 
tachycardia, defecation) and behavioral (e.g., jumping, 
running, immobility) responses characterized as the 
fear reaction. Additionally, many lines of evidence have 
indicated that in addition to fundamentally controlling fear-

like fight and flight responses (for review, see Graeff, 2004), 
the PAG modulates less vigorous defensive responses 
related to anxiety, such as threat avoidance and risk 
assessment (Bertoglio & Zangrossi, 2006; Carvalho-Netto, 
Litvin, Nunes-de-Souza, Blanchard, & Blanchard, 2007; 
McNaughton & Corr, 2004; Mendes-Gomes & Nunes-de-
Souza, 2005, 2009; Teixeira & Carobrez, 1999;). 

Chemical stimulation of the PAG can be performed 
by local glutamate NMDA (N-methyl-D-aspartate) 
receptor activation. When injected into the dPAG, NMDA 
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receptor agonists elicit fight and flight reactions in rats 
(e.g., Bandler, 1988; Bittencourt, Carobrez, Zamprogno, 
Tufik, & Schenberg, 2004) and mice (e.g., Beckett, 
Lawrence, Marsden, & Marshall, 1992), whereas local 
microinjection of 2-amino-7-phosphonoheptanoic acid 
(AP-7), a competitive NMDA receptor antagonist, 
produces antiaversive-like effects in the elevated plus 
maze (EPM; Guimarães, Carobrez, De Aguiar, & Graeff, 
1991), a widely used animal model of anxiety.

Glutamate is a ubiquitous excitatory amino acid in the 
central nervous system. In addition to activating ionotropic 
NMDA receptors, glutamate is also able to activate two 
other ion channel-coupled receptors, the α-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) 
receptor and kainate receptor (Heresco-Levy, 2003; 
Huntley, Vickers, & Morrison, 1994; Ozawa, Kamiya, & 
Tsuzuki, 1998; Seeburg, 1993), and a G-protein-coupled 
receptor (metabotropic receptor). These receptors are 
largely expressed in the PAG (Albin & Gilman, 1990; 
Onstott, Mayer, & Beitz, 1993; Schubert, Shaikh, & 
Siegel, 1996). Glutamate NMDA receptor activation 
leads to cellular calcium influx, which triggers a cascade 
of intracellular events, including activation of nitric 
oxide synthase (NOS), an enzyme that produces nitric 
oxide (NO) by converting L-arginine to L-citroline, with 
nicotinamide adenine dinucleotide phosphate (NADPH) 
and Ca2+ as co-factors (Garthwaite, Garthwaite, Palmer, 
& Moncada, 1989; Heresco-Levy, 2003; Mayer et al., 
1991). NOS has at least three isoforms. Inducible NOS 
(iNOS) is involved in immunological reactions and 
activated by factors released during pathological events, 
such as cytokines that can induce a substantial release of 
NO. Two other NOS isoforms are constitutive forms that 
are present in vase endothelia (endothelial NOS [eNOS]) 
and neurons (neuronal NOS [nNOS]) (Guix, Uribesalgo, 
Coma, & Muñhoz, 2005; Lamas, Marsden, Li, Tempst, & 
Michel, 1992; Mungrue, Bredt, Stewart, & Husain, 2003; 
Prast & Philippu, 2001).

Similar to the proaversive effects produced by 
glutamate NMDA receptor agonists, injection of 
NO donors into the dorsolateral column of the PAG 
(dlPAG) produces fight and flight reactions in rats (De 
Oliveira, Del-Bel, & Guimarães, 2001). In contrast, 
administration of NOS inhibitors, guanylate cyclase 
inhibitors, and a NO scavenger in this same region 
induces anxiolytic-like effects in the EPM (De Oliveira 
& Guimarães, 1999; Guimarães, Beijamini, Moreira, 
Aguiar, & de Lucca, 2005; Guimarães, De Aguiar, Del 
Bel, & Ballejo, 1994).

This paper attempts to show that the roles played 
by glutamate NMDA receptors and the NO complex 
within the dPAG in defensive behavior in mice appear 
to depend on the magnitude or nature of the aversive 
stimuli. Whereas chemical stimulation of the dPAG 
elicits defensive reactions that are blocked by local 
infusion of a nNOS inhibitor, the behavioral defensive 

responses induced by a more naturalistic situation (e.g., 
exposure to the EPM) are sensitive to NOS inhibition 
only in animals pretreated with an NMDA receptor 
agonist in the same midbrain structure. However, when 
exposed to a more aversive situation (e.g., confrontation 
by a predator), inhibition of nNOS within the dPAG 
attenuates defensive-like behaviors in mice.

Defensive-like responses induced by chemical 
stimulation of the dPAG with NMDA infusion 
in mice: effects of nNOS inhibition

As widely demonstrated in many laboratories 
(e.g., Bandler & Carrive, 1988; Bittencourt et al., 
2004; Blanchard & Blanchard, 1988; Carvalho-
Netto, Markham, Blanchard, Nunes-de-Souza, & 
Blanchard, 2006), chemical stimulation of the dPAG 
(e.g., with NMDA infusion) induces a set of behavioral 
responses, such as jumping, running, and freezing, 
that last approximately 5 minutes. Immediately after 
(and sometimes during) intra-dPAG NMDA infusion, 
animals exhibit a sequence of apparently disoriented 
jumps intercalated with running. These explosive motor 
behaviors, especially jumping, last approximately 60-
90 seconds and are followed by running intercalated 
with periods of freezing for 60-120 seconds. These 
defensive-like behaviors are followed by a sequence of 
non-aversively motivated behaviors (e.g., walking and 
rearing). Figure 1 illustrates the effects of intra-dPAG 
injection of NMDA (.04 nmol) on jumping and rearing 
frequency and on running and freezing time (in seconds) 
over 5 minutes in mice pretreated with saline or .2-.4 
nmol Nω-propyl-L-arginine (NPLA, a highly selective 
and potent inhibitor of nNOS; Ki = 57 nM) that displays 
3158-fold and 149-fold selectivity for iNOS and eNOS, 
respectively (Zhang, Fast, Marletta, Martasek, & 
Silverman, 1997), in the same midbrain site. Intra-dPAG 
infusions of NPLA (.4 nmol) changed the defensive 
behaviors induced by intra-dPAG injections of NMDA. 
The excitatory amino acid induced a sudden sequence 
of jumping and running behaviors that were followed 
by a period of freezing. These results corroborate many 
previous studies (Bandler, 1988; Bandler & Carrive, 1988; 
Beckett et al., 1992; De Oliveira et al., 2001; Molchanov 
& Guimaraes, 1999), which demonstrated that intra-
PAG injections of glutamate receptor agonists produce 
defensive reactions in rodents. NPLA antagonized these 
NMDA-induced behavioral effects, suggesting that 
NO release within the PAG plays a role in defensive 
behavior. Intra-dPAG infusion of NMDA did not alter 
rearing frequency, but higher-dose NPLA increased 
this vertical exploratory behavior, an effect that was 
independent of the treatment combination (i.e. saline or 
NMDA). The increase in rearing frequency suggests that 
this nNOS inhibitor (.2 and .4 nmol) does not provoke 
motor disruption, an effect previously reported with 
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systemic injections of other NOS inhibitors (Del Bel, da 
Silva, & Guimaraes, 1998; Del Bel, Souza, Guimaraes, 
da Silva, & Nucci-da-Silva, 2002; Del Bel, da Silva, 
Guimaraes, & Bermudez-Echeverry, 2004). Intra-dPAG 
NPLA injections appear to selectively reduce NMDA-
induced behavioral responses (e.g., jumping, running, 
freezing) in mice. Altogether, these results suggest 
that NO, synthesized after glutamate NMDA receptor 
activation within the dPAG, may modulate defensive 
behaviors in this midbrain structure.

However, intra-dPAG NPLA fails to alter defensive 
behavior when mice are exposed to a more naturalistic 
situation (e.g., the EPM). The results shown below 
suggest that the role played by NO in emotional 
responsiveness appears to be dependent on glutamate 
NMDA receptor activation, at least within the mouse 
dPAG, and the type of aversive stimulus exposure.

Inhibition of nNOS within the dPAG fails to 
alter anxiety-like behavior in the mouse EPM

Figure 2 shows that inhibition of NO synthesis 
within the mouse dPAG neither increased nor decreased 
anxiety-like behavior in the EPM. Intra-dPAG infusion 

of .4 nmol NPLA completely blocked vigorous 
defensive-like behaviors (e.g., jumping and running) 
induced by NMDA infusion (.04 nmol) into the same 
site (Figure 1), and intra-dPAG NPLA infusions of this 
nNOS inhibitor at doses of .2, .4, and .8 nmol failed to 
attenuate anxiety-like behavior in the EPM (Figure 2). 
The failure of intra-dPAG NPLA to affect anxiety-like 
behavior suggests that the aversive experience in the 
EPM is not sufficient to induce an anxiogenic amount of 
NO synthesis within the mouse dPAG, suggesting that 
intra-dPAG NO likely does not play a role in anxiety-
like behavior elicited during EPM exposure in mice.

Inhibition of nNOS within the dPAG attenuates 
anxiety-like behavior induced by intra-dPAG 
NMDA infusion in the mouse EPM

Although intra-dPAG NPLA failed to alter indices 
of anxiety in the mouse EPM, NO synthesis appears to 
be important for the anxiogenic-like effects induced by 
local infusion of NMDA. We found that intra-dPAG 
injection of NMDA at a dose that did not produce 
any vigorous defensive-like behavior (.02 nmol/.1 µl) 
led mice to explore the open arms of the EPM less 

Figure 1. Effects of intra-dPAG injection of NMDA (0.04 nmol) on (A) jumping frequency, (B) rearing frequency, (C) running 
time (s), and (D) freezing time (s) over 5 min in mice pretreated with saline or NPLA (0.2-0.4 nmol) into the same midbrain 
site (n = 9-14; see text for details). *p < .05, compared with Saline+Saline; #p < .05, compared with Saline+NMDA (adapted 
from Miguel & Nunes-de-Souza, 2006).
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(Figure 3). This anxiogenic-like effect of NMDA was 
characterized by a selective reduction in the percentage 
of open arm entries and percentage of open arm time, 
the two main measures used as indices of anxiety in the 
EPM (e.g., File, 1992; Rodgers & Johnson, 1995). These 
results corroborate previous findings that demonstrated 
an anxiogenic-like effect induced by glutamate NMDA 
receptor activation within the midbrain PAG in rodents 
(e.g., Bandler, 1988; Bittencourt et al., 2004).

Interestingly, when injected into the dPAG, NPLA 
completely blocked the enhancement of anxiety-like 
behavior induced by intra-PAG NMDA. As shown in 
Figure 4, intra-dPAG NPLA reversed the anxiogenic-
like effects produced by local infusion of NMDA. 
Importantly, animals that received intra-dPAG injection 
of NPLA (NPLA + saline) did not exhibit any significantly 
different behavior in the mouse EPM compared with 

the control group (saline + saline). NMDA-injected 
animals (NMDA + saline), in turn, confirmed the results 
shown in Figure 3, showing an anxiogenic-like profile 
of this NMDA receptor agonist. These results indicate 
that glutamate NMDA receptor activation within the 
mouse PAG induces NO synthesis, which in turn leads 
to enhanced anxiety-like behavior in the EPM.

The mechanisms involved in the apparently 
contrasting effects of intra-dPAG NPLA on anxiety-like 
behavior (i.e., blockade of the anxiogenic-like effects of 
NMDA but inability to attenuate anxiety-like behavior 
when injected alone) are not clear. In fact, the existing 
data suggest that glutamatergic activation appears to be 
necessary to observe the effects of NO. However, this does 
not exclude a possible intrinsic anxiogenic-like effect of 
glutamate release during the exposure of mice to the EPM. 
Measuring glutamate release or NMDA receptor activation 
within the dPAG during the exposure of mice to the EPM 
would be interesting. In this context, we recently found 
that glutamate NMDA receptor blockade by intra-dPAG 
infusion of the NMDA receptor antagonist AP-7 attenuated 
anxiety-like behavior in mice exposed to the EPM (Figure 
5). Intra-dPAG injection of AP-7 (.2 nmol/.1 µl) increased 
open arm exploration without affecting closed arm entries 
(results not shown), suggesting a selective effect of this 
NMDA receptor antagonist on anxiety-like behavior. 
This anxiolytic-like profile produced by NMDA receptor 
blockade within the PAG was previously demonstrated in 
rats exposed to the EPM (Guimarães et al, 1991; Molchanov 
& Guimarães, 2002).

The mechanisms underlying these apparently 
contrasting effects of intra-dPAG AP-7 and NPLA 
on anxiety-like behavior remain unclear. The results 
showing that intra-dPAG injection of AP-7 and NPLA 

Figure 2. Effects of NPLA microinjection (0, .2, .4, and .8 
nmol/0.1 µl; n = 9-15) into the dPAG on the percentage of 
open arm entries and percentage of open arm time in the EPM. 
Data are expressed as mean ± SEM (reproduced from Miguel 
& Nunes-de-Souza, 2008).

Figure 3. Effects of NMDA microinjection (0 and .02 nmol/.1 µl; 
n = 15-16) into the dPAG on the percentage of open arm entries 
and percentage of open arm time in the EPM. Data are expressed 
as mean ± SEM. *p < .05, compared with control group (saline) 
(reproduced from Miguel & Nunes-de-Souza, 2008).

Figure 4. Effects of combined microinfusions of NPLA (0 and 
.4 nmol/.1 µl) and NMDA (0 and .02 nmol/.1 µl) into the dPAG 
on the percentage of open arm entries and percentage of open 
arm time in the EPM. Data are expressed as mean ± SEM (n = 
7-8). *p < .05, compared with control group (saline + saline); 
#p < .05, compared with saline + NMDA group (adapted from 
Miguel & Nunes-de-Souza, 2008).
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attenuated and did not alter, respectively, anxiety-
like behavior when injected alone suggest that the 
anxiogenic-like effect of glutamate NMDA receptor 
activation may not be completely dependent on NO 
synthesis. The anxiogenic-like effect of NO appears to 
depend on NMDA receptor “hyperactivation” within 
the mouse dPAG, whereas glutamate NMDA receptor 
activation appears to play a tonic role in anxiety-like 
behavior. If so, then NMDA receptor activation would 
lead to neuronal excitation without affecting NO 
release. Ca2+ influx via NMDA receptor activation has 

been demonstrated to trigger subsequent and persistent 
changes in the expression of AMPA receptors, and these 
receptors are responsible for a substantial portion of 
basal excitatory postsynaptic potential (e.g., MacDonald, 
Jackson, & Beazely, 2006).

Considering that intra-dPAG nNOS inhibition 
attenuated anxiety-like behavior only in animals 
pretreated with an NMDA receptor agonist, dPAG 
nitrergic modulation of defensive behavior may depend 
on the magnitude of the aversive stimulus to which mice 
are subjected. To test this hypothesis, we investigated 
the effects of intra-dPAG infusion of NPLA on defensive 
behavior in mice confronted by a predator (rat).

Role of glutamate NMDA receptors and nitric 
oxide within the periaqueductal gray on defensive 
behaviors in mice confronted by a predator

The rat exposure test (RET, Figure 6) is an animal 
model of anxiety based on the predator-prey (rat-mouse) 
interaction. The RET was developed and validated 
to facilitate the measurement of avoidance and risk 
assessment behaviors in mice (Yang et al., 2004). Testing 
procedures are conducted in a clear polycarbonate cage 
(exposure chamber) covered with a black polycarbonate 
lid. The exposure chamber is divided into two equally 
sized compartments by a wire mesh screen (surface and 
predator compartment). The home cage is a box made of 
black Plexiglas on three sides and clear Plexiglas on the 
fourth side to facilitate videotaping. The home chamber 
is connected to the exposure cage by a clear Plexiglas 
tube tunnel. Rats have been shown to be predators 
of mice both in nature and in the laboratory (Calvo-

Figure 5. Effects of AP-7 microinjection (0, .05, .1, and .2 
nmol/.1 µl; n = 8-15) into the dPAG on the percentage of open 
arm entries and percentage of open arm time in the EPM. 
Data are expressed as mean ± SEM. *p < .05, compared with 
control group (saline).

Figure 6. Photograph of rat exposure test apparatus. The predator (rat) is placed in the right half of the exposure cage, which 
is divided into two equally sized compartments by a wire mesh screen (surface and predator compartments) (reproduced from 
Amaral et al., 2010).
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Torrent, Brain, & Martinez, 1999; O’Boyle 1974, 1975). 
When confronted by rats, both wild and laboratory mice 
show clear innate defensive behaviors (Blanchard et al., 
1998). Recent studies have attempted to identify possible 
neurotransmitter systems and hormonal changes (e.g., 
plasma corticosterone) involved in the modulation 
of defensive responses in mice exposed to the RET 
(Amaral, Gomes, & Nunes-de-Souza, 2010; Carvalho-
Netto et al., 2007; Litvin, Pentowski, Blanchard, & 
Blanchard, 2007; Martinez, Carvalho-Netto, Amaral, 
Nunes-de-Souza, & Canteras, 2008).

In this context, we recently found that NPLA infusion 
into the dPAG attenuates the avoidance of the predator in 
the RET (Carvalho-Netto, Gomes, Amaral, & Nunes-de-
Souza, 2009). Figure 7 shows the dose-response curve for 
NPLA treatment. The highest dose (.4 nmol) increased 
the time in the surface compartment and in contact with 
the wire screen barrier between the mouse and predator. 
Additionally, intra-dPAG NPLA (.4 nmol) markedly 
reduced the duration of freezing behavior and risk 
assessment behavior, indicating that NLPA significantly 
reduced the spatiotemporal (avoidance) and ethological 
(freezing and risk assessment) measures of the RET, 
supporting the hypothesis of a potential role for the nitric 
oxide system in the dPAG in the regulation of anxiety-like 
behavior. Moreover, intra-dPAG NPLA also reversed the 
proaversive-like effect of NMDA injected into the same 
structure, suggesting a modulatory role for NO in defensive 
behavior induced by glutamate NMDA receptor activation 
within the dPAG (Carvalho-Netto et al., 2009).

Final considerations

Based on previous studies (for review, see De 
Oliveira et al., 2001; Guimarães et al. 2005) and the 
present discussion, the effects of NPLA may represent 
an inhibition of NO production mediated by endogenous 
glutamatergic activation via NMDA receptors. Indeed, 
NMDA receptor activation has been established as the 
main stimulus for NO production in the central nervous 
system (for review, see Esplugues, 2002), and reciprocal 
regulatory mechanisms between these two neuronal 
pathways (glutamatergic and nitrergic) are likely to occur 
in the dPAG (Lin, Kang, Wan, Huang, & Tseng, 2000). 
An elegant study reported by Beijamini and Guimarães 
(2006) showed that exposure to a cat activated NOS-
expressing neurons in the rat dPAG, an effect that was 
attenuated by prior intracerebroventricular microinjection 
of AP-7, a competitive NMDA receptor antagonist.

However, the failure of intra-dPAG NPLA to affect 
anxiety-like behavior in the EPM suggests that nitrergic 
neurotransmission located within this midbrain structure 
appears to not be recruited during the exposure of mice 
to this widely used animal model of anxiety. The scope 
of the present review was not to extensively compare 
the roles of glutamate NMDA receptors and NO in the 
dPAG on defensive behaviors in rats and mice. The 
existing literature suggests that the defensive response 
evaluated in the mouse EPM does not depend on NO 
synthesis within this limbic midbrain structure.

Previous studies have shown that mice exhibit a 
different behavioral defensive profile compared with 
rats (Blanchard et al., 1997; Blanchard, Griebel, & 
Blanchard, 2001; Carvalho-Netto & Nunes-de-Souza, 
2004; Gomes et al., 2009; Jardim, Nogueira, Graeff, 
& Nunes-de-Souza, 1999), suggesting species-specific 
neurobiological mechanisms. The inability of intra-
dPAG NPLA to affect anxiety-like behavior in the 
mouse EPM contrasts with previous findings reported 
with the rat EPM. For example, Guimarães et al. (1994) 
showed that administration of NG-nitro-L-arginine 
methyl ester (L-NAME) and L-NG-nitro arginine 
(L-NOARG) into the dPAG produced anxiolytic-like 
effects in the rat EPM. Altogether, these results suggest 
that the different effects of NO formation in the dPAG 
in rats and mice reflect a higher aversive state generated 
by the EPM in rats compared with mice. Importantly, 
however, L-NAME and L-NOARG are not selective 
nNOS inhibitors because they also inhibit eNOS 
(Pfeiffer, Leopold, Schmidt, Brunner, & Mayer, 1996). 
Considering the evidence indicating the presence of 
eNOS within the PAG (Iwase et al., 2001; Paakkari & 
Lindsberg, 1995), mechanisms other than, or in addition 
to, those involving nNOS in the rodent PAG may 
play a role in the modulation of anxiety-like behavior. 
Supporting this hypothesis are findings showing that 
eNOS also contributes to long-term potentiation (LTP) 

Figure 7. Effects of NPLA microinjection (.1 and .4 nmol/.1 µl; 
n = 9-15) into the dPAG on the behaviors of mice in the RET. 
Each bar represents the mean ± SEM. *p < .05, compared with 
control group (reproduced from Carvalho-Netto et al., 2009).
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in the hippocampus (Hopper & Garthwaite, 2006). These 
authors emphasized the importance of an integrated 
action of both isoenzymes (nNOS and eNOS) in LTP. 
Synaptic plasticity and neurochemical and behavioral 
evidence demonstrate the relevance of eNOS in other 
biological processes previously believed to be exclusive 
of nNOS action (Demas et al., 1999; Doreulee et al., 
2003; Frisch et al., 2000; Haul, Godecke, Schrader, 
Haas, & Luhmann, 1999; Kano, Shimizu-Sasamata, 
Huang, Moskowitz, & Lo, 1998). Altogether, these 
findings suggest that the role of NO in anxiety-like 
behavior in the EPM appears to depend on the combined 
action of both enzyme isoforms within the mouse PAG. 
Further studies are required to confirm the anxiolytic-
like profile of eNOS in this midbrain structure.
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