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ABSTRACT. In this research paper GARCH processes are applied in order to estimate Value at Risk (VaR)
for an interest rate futures portfolio. According to several documents in the literature, GARCH models tend
to overestimate VaR because of volatility persistence. The main objective here is to put to test if GARCH
models actually overestimate VaR. The analysis is carried out for several time-horizons for the above
mentioned asset, which has trading at the Mexican Derivatives Exchange. To analyze the VaR with time
horizons of more than one trading day Real-World Densities (RWD) are estimated applying GARCH
processes. The results show that GARCH models are relatively accurate for time horizons of one trading
day. However, the volatility persistence captured by these models is reflected with relatively high VaR estimates
for longer time horizons. In terms of Risk Management this is considered undesirable given that not-optimal
amounts of capital must be set aside in order to meet Minimum Capital Risk Requirements for futures
portfolios. These results have also implications for short-term interest rate forecasts given that RWD are
estimated.

Keywords: Bootstrapping, GARCH, interest rates, Mexico, Value at Risk, volatility persistence.

RESUMEN. En el presente trabajo de investigación se utilizan procesos GARCH para estimar el valor-en-
riesgo (VaR) de un portafolio hipotético de futuros de tasas de interés. De acuerdo con algunos documen-
tos en la literatura (Brooks, et. al. 2000), los modelos GARCH tienden a sobreestimar el VaR debido a que
capturan la persistencia en la volatilidad. El principal objetivo del presente trabajo es poner a prueba si los
modelos GARCH en realidad sobreestiman el VaR. El análisis se lleva a cabo para diferentes horizontes en
el tiempo para el activo previamente mencionado, el cual tiene negociación en el Mercado Mexicano de
Derivados (Mexder). Para analizar el VaR con horizontes de tiempo de más de un día de negociación
(trading day) densidades del mundo-real son estimadas con procesos GARCH y simulaciones Bootstrapping.
Los resultados muestran que los modelos GARCH son relativamente certeros para horizontes de un día de
negociación. Sin embargo, la volatilidad persistente capturada por este tipo de modelos se refleja con
estimados de VaR relativamente altos para horizontes de tiempo mayores (Ej. de diez días de negociación
ó más). En términos de análisis de riesgos lo anterior es considerado subóptimo ya que cantidades innece-
sarias de capital tendrían que destinarse para cubrir los requerimientos mínimos de capital en riesgo (Minimum
Capital Risk Requirements). Lo anterior para una posición (corta ó larga) en un portafolio de futuros de
tasas de interés. Los métodos aquí explicados pueden servir para pronosticar tasas de interés, ya que
estas se estiman a través de estimaciones de densidades del mundo-real. La investigación aquí realizada
tiene implicaciones para bancos centrales, ya que se obtienen predicciones de distribuciones de tasas de
interés y se analizan estimaciones de VaR. Esto último es relevante para un Banco Central considerando
su función de supervisor financiero.

Palabras clave: GARCH, Mexico, persistencia en la volatilidad, remuestreo, tasas de interés, Valor en
Riesgo.
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1. INTRODUCTION

Nowadays it is important to measure financial risks in
order to make better-informed decisions relevant to
risk management. It is well documented that volatility
is a measure of financial risk. Measuring financial
volatility of asset prices is a way of quantifying potential
losses due to financial risks. An important tool for this
measure is to estimate volatility-based Value at Risk
(VaR). Nowadays, there are several methods applied
in order to obtain a volatility-based Value at Risk.
Among the most popular ones are the use of ARCH
models.

The main objective of this paper is to analyze if
Autoregressive Conditional Heteroscedasticity
(ARCH-type) models are accurate to predict risks
caused by interest rate volatility from a Value at Risk
perspective. The idea is to analyze if volatility
persistence inherent in this type of models affects VaR.
Volatility persistence in this project refers to the
financial volatility that takes a long time to die away.
This is done by considering a theoretical portfolio of
interest rate (Cetes 91-day and TIIE 28-day) futures.
VaR is estimated using ARCH-type models and then
their accuracy is formally tested with back-testing
(Kupiec: 1995, Jorion: 2000, 2001). The procedure is
to find out how accurate is the VaR with daily interest
rate futures observations. The time horizons
considered are from on trading day up to six months
or equivalent in trading days. For one trading day a
parametric approach is applied. For ten trading days
and more Bootstrapping simulations (Enfron: 1982)
are carried out (non-parametric approach). If the
number of daily violations or ‘exceptions’ is reasonable
according to VaR models performance criteria (Jorion:
1998), then the models are considered accurate.
Otherwise, the ARCH-type models are rejected.
According to Pérignon, Deng and Wang (2006) banks
normally over estimate VaR. The n-day forecast
horizon is also interpreted as the probability that future
interest rate will be within certain statistical confidence
interval i.e. the 95% confidence interval VaR. It is
expected that these results could have implications
for forecasts about the future range of Mexican interest
rates.

The layout of this paper is as follows. The literature
review is presented in Section 2. The motivation and
contribution of this work are presented in Section 3.
The models are explained in Section 4. Data is detailed
in Section 5. Section 6 presents the descriptive
statistics. The results are analysed in Section 7. Finally,
Section 8 concludes.

2. LITERATURE REVIEW

Historical volatility is described by Brooks (2002) as
simply involving calculation of the variance or stan-
dard deviation of returns in the usual statistical way
over some long period (time frame). This variance or
standard deviation may become a volatility forecast
for all future periods (Markowitz: 1952). However, in
this type of calculation there is a drawback. This is
because volatility is assumed constant for a specified
period of time. Nowadays, it is well known that financial
prices have time-varying volatility i.e. volatility changes
through time (the volatility that it is considered here is
the conditional volatility of a financial asset and not
necessarily the unconditional one. I am thankful to
Victor Guerrero for asking me to clarify this point). It
is well documented that non-linear ARCH models can
provide accurate estimates of time-varying price
volatility. Just to mention a few papers see for example,
Engle (1982), Taylor (1985), Bollerslev, Chou and
Kroner (1992), Ng and Pirrong (1994), Susmel and
Thompson (1997), Wei and Leuthold (1998), Engle
(2000), Manfredo et al. (2001), etc (For an excellent
survey about applications of ARCH models in Finance
the reader can refer to Bollerslev, Chou and Kroner
(1992)).

Nonetheless, there is a growing literature of the
implications of non-linear dynamics for financial risk
management (Brock et al.:1992; Hsieh: 1993). In the
light of this topic some researchers have extended
the work for the application of time-varying volatility
models, specifically ARCH-type models, in VaR
estimations (Brooks, Clare and Persand: 2000;
Manfredo: 2001; Engle: 2003; Giot: 2005; Mohamed:
2005; among others). Most of these findings enhance
the use of time-varying models in risk management
applications using VaR. Even though, there are several
research papers, which used these types of models
for financial time series there is, however, no works
that have analysed VaR for interest rate futures in an
emerging economy. This is considered a ‘gap’ in the
literature.

3. MOTIVATION AND CONTRIBUTION

Previous works have applied non-linear models within
a VaR framework in order to estimate Minimum Capi-
tal Risk Requirements (MCRRs) (Hsieh: 1991; Brooks,
Clare and Persand: 2000). MCRR is defined as the
minimum amount of capital needed to successfully
handle all but a pre-specified percentage of possible
losses (Brooks, Clare and Persand: 2000). This
concept is relevant to banks and bank regulators. For
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the latter it is important to require banks to maintain
enough capital so banks could absorb unforeseen
losses. These regulatory practices go back to the ori-
ginal Basle Accord of 1988. Even tough there is a
broad agreement about the need of MCRRs there is,
however, significantly less agreement about the
method to calculate them. According to Brooks, Clare
and Persand (2000) the most well known methods
are the Standard/International Model Approach of the
Basle Accord (1988), the Building-Block Approach of
the EC Capital Adequacy Directive (CAD), the
Comprehensive Approach of the Securities Exchange
Commission (SEC) of the US, the Pre-commitment
Approach of the Federal Reserve Board (FED) and
the Portfolio Approach of the Securities and Futures
Authority of the UK. By estimating the VaR of their
financial portfolios banks are able to calculate the
amount of MCRRs needed to meet bank supervision
requirements. According to Basel Bank Supervision
Requirements, banks have to hold capital (as a
precautionary action) at least three times the
equivalent to the VaR for a time horizon of 10 trading
days at the 99% confidence level.

In this project the works of Hsieh (1991) and Brooks,
Clare and Persand (2000) are extended. The
extension here is that MCRRs are estimated for futures
contracts that have not been applied for this type of
analysis and that the null hypothesis that ARCH-type
models overestimate VaR is tested. This also has
implications for interest rate forecasts. By estimating
Real-World densities it is possible to have an idea of
future interest rate range-levels with certain statistical
confidence. For example, if a 95% confidence level
VaR with a time horizon of one month is applied, it is
possible to quantify the range of possible interest rates
in one month with 95% statistical certainty. Also, it is
possible to quantify what are the chances of observing
those extreme values i.e. one in twenty (those outside
the 95% interval in a parametric and non-parametric
distribution).

These findings contribute with new knowledge to the
existing academic literature on the use of time-varying
volatility models in VaR estimates. The results could
be for the interest of agents involved in making risk
management decisions related to interest rate
forecasts. These groups of persons could be private
bankers, policy makers, investors, futures traders,
central bankers, academic researchers, among
others.

4. THE MODELS

4.1 GARCH Specification

The volatility of the time series under analysis is
estimated with historical data. It is known that ARCH
models (Engle: 1982) are accurate estimators of time-
varying volatility. A well known model within the family
of ARCH models is the univariate Generalized
Autoregressive Conditional heteroscedasticity,
GARCH(p, q) model. This model is estimated applying
the standard procedure as explained in Bollerslev
(1986) and Taylor (1986) (the ARCH-type models
presented in this paper were estimated using Eviews
computer language). The formulae for the GARCH(p,
q) are presented below. For the model there are two
main equations. These are the mean equation and
the variance equation:
mean equation,

(1)

and the variance equation,

(2)

Where: Δy
t
 = first differences of the natural log (logs)

of the series under analysis at time t (the interest rate
spot or futures-index), e

t
 is the error term at time t, I

t-1is the information set at time t-1, s2

t
 = variance at time

t and t-j for s2

t-j
. m, w, 

i,
 
i 
are parameters and N(0, s2

t
) is

for the assumption that the log returns are normally
distributed. In other words, assuming a constant mean
m (the mean of the series y

t
) the distribution of e

t
 is

assumed to be Gaussian with zero mean and variance
s2

t
. The parameters are estimated using maximum

likelihood methodology applying the Marquardt
algorithm This algorithm modifies the Gauss-Newton
algorithm by adding a correction matrix to the Hessian
approximation. This allows to handle numerical
problems when the outer products are near singular
thus, increases the chance of improving convergence
of the parameters. The objective log-likelihood function
to be maximized is the following:

, (3)

where θ is the set of parameters (μ, ω, α
i
, β

i
) estimated
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that maximize the objective function ln L(θ). z
trepresents the standardized residual calculated as .

Δy
t
 - μ

 σ 2

The rest of the notation is the same as expressed
previously.

Considering that the assumption of normality in the
residuals stated above does not hold (as it is common
with financial high frequency price data), the Bollerslev
and Wooldridge (1992) methodology is used in order
to estimate consistent standard errors. With this
method the results have robust standard errors and
covariance. The estimated coefficients are reliable
once they are positive, statistically significant and the
sum of the α + β < 1 (otherwise the series are
considered explosive or equivalently non-mean
reverting, Taylor: 1986).

4.2 The VaR model

The VaR is a useful measure of risk (Value at Risk is
normally abbreviated as VaR. The small letter a
differentiates this abbreviation to that of Vector
Autoregressive Models, which are usually abbreviated
as VAR (with a capitol A)). It was developed in the
early 1990s by the corporation JPMorgan. According
to Jorion (2001) ‘VaR summarizes the expected
maximum loss over a target horizon with a given level
of confidence interval.’ Even though it is a statistical
figure, most of the times is presented in monetary
terms. The intuition is to have an estimate of the
potential change in the value of a financial asset
resulting from systemic market changes over a
specified time horizon (Mohamed: 2005). It is also
normally used to obtain the probability of losses for a
financial portfolio of futures contracts. Assuming
normality, the VaR estimate is relatively easy to obtain
from GARCH models. For example, for a one trading
day 95% confidence interval VaR the estimated
GARCH standard deviation (for the next day) is
multiplied by 1.645. If the standard deviation forecast
is, lets say, 0.0065, the VaR is approximately 1.07%.
To interpret this result it could be said that an investor
can be 95% sure that he or she will not lose more
than 1.07% of asset or portfolio value in that specific
day. However, a problem with a parametric approach
is that if the observed asset returns depart significantly
from a normal distribution the applied statistical model
may be incorrect to use (Dowd: 1998).

So, as it was said, when using VaR models it is

necessary to make an assumption about the
distribution of the returns. Although normality is often
assumed, it is known in practice that for price returns
series normality is highly questionable (Mandelbrot:
1963, Fama: 1965, Engle: 1982, 2003).

For time horizons of more than one trading day (ten,
thirty, ninety and one hundred and eighty trading days),
the bootstrapping methodology of Enfron (1982) will
be applied The bootstrap is a resampling method for
inferring the distribution of a statistic, which is derived
by the data in the population sample. This is normally
estimated by simulations. It is said to be a
nonparametric method given that it does not draw
repeated samples from well-known statistical
distributions. On the other hand, Monte Carlo
simulations draw repeated samples from assumed
distributions. In this research project the bootstrap
methodology was implemented using Eviews
computer language. The fact that the returns of the
series are non-normally distributed motivates the use
of a non-parametric procedure as the bootstrapping.
The procedure used in Hsieh (1993) and Brooks, Clare
and Persand (2000) is considered here. In the latter
they empirically tested the performance of that VaR
model for futures contracts traded in the London
International Financial Futures Exchange (LIFFE)
(these futures contracts were the FTSE-100 stock
index futures contract, the Short Sterling contract and
the Gilt contract). A similar paradigm is applied here
for interest rate-indexed (interest rate) futures
contracts. Thus, a hypothetical portfolio of interest rate
futures is considered and MCRRs will be estimated.
These estimated MCRRs values for the interest rate
portfolio are compared to the observed (historical)
interest rates. This analysis allows to evaluate how
accurate are the ARCH-type models in terms of
estimating MCRRs for interest rate-indexed futures.
Yet, another objective is to analyze the performance
of these in terms of how accurate are they for providing
an upper threshold for interest rates i.e. what are the
statistical chances that interest rate will be high enough
to be outside the upper (positive) confidence interval.
In order to calculate an appropriate VaR estimate it is
necessary to find out the maximum loss that a position
might have during the life of the futures contract. In
other words, by replicating with the bootstrap the daily
values of a long futures position it is possible to obtain
the possible loss during the sample period. This will
be obtained with the lowest replicated value. The same
reasoning applies for a short position. But in that case
the highest possible loss will be obtained with the
highest replicated value As it is well known in futures
market mechanics decreases in futures prices mean

t
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losses for long positions and increases in futures
prices mean losses for short positions. Following
Brooks, Clare and Persand (2000) and Brooks (2002)
the formulae is as follows. The maximum loss (L) is
given by

L = (P
0
 – P

1
) x Number of contracts (4)

where P
0
 represents the price at which the contract is

initially bought or sold; and P
1
 is the lowest (highest)

simulated price for a long (short) position, respectively,
over the holding period. Without loss of generality it is
possible to assume that the number of contracts held
is one. Algebraically, the following can be written,

(5)

Given that P
0
 is a constant, the distribution of L will

depend on the distribution of P
1
. It is reasonable to

assume that prices are lognormally distributed (Hsieh:
1993) i.e. the log of the ratios of the prices are normally
distributed The log of the ratios of the prices can be
represented as ln(P

1
/P

0
). However, this assumption

is not considered here. Instead the log of the ratios of
the prices is transformed into a standard normal
distribution following JPMorgan Risk-Metrics (1996)
methodology. This is done by matching the moments
of the log of the ratios of the prices’ distribution to a
distribution from a set of possible ones known
(Johnson: 1949). Following Johnson (1949) a stan-
dard normal variable can be constructed by
subtracting the mean from the log returns and then
dividing it by the standard deviation of the series,

(6)

The expression above is approximately normally
distributed. It is known that the 5% lower (upper) tail
critical value is -1.645 (1.645). To find the fifth
percentile then the following applies,

(7)

Cross-multiplying and taking the exponential the case
for the long position is,

(8)

From Equation 5 the following can be expressed,

(9)

when the maximum loss for the long position is
obtained. For the case of finding the maximum
possible loss for the short position the following for-
mula applies,

(10)

The MCRRs of the short position can be interpreted
as an upper threshold for interest rate. This will be
the threshold of more interest given that in the Mexican
economy it was common to observe increases in
interest rates. MCRRs for both positions are reported
in this paper.

The simulations were performed in the following way.
The GARCH model was estimated with the bootstrap
using the standardized residuals from the whole
sample (instead of residuals taken from a normal
distribution as it was written in Equation 1). The interest
rate variable was simulated, with the bootstrap as well,
for the relevant time horizon (10, 30, 90 and 180
trading days) with 10,000 replications. The formula
used was r

1
 = r 

t-1
 ereturnT (where interest rate is defined

as r and could be the futures or spot price. The rest of
the notation is the same as specified above). From
the interest rate simulations the maximum and
minimum values were taken in order to have the
MCRRs for the short and long positions respectively.

5. DATA SOURCES

The data consists of daily spot and futures closing
prices of the interest rate obtained from Banco de
México and MEXDER respectively. The data was
downloaded from both institutions’ Web Pages (Ban-
co de México’s Web page is http://
www.banxico.org.mx (the Web page is also available
in English). The MEXDER web page is http://
www.mexder.com.mx ). Two types of interest rates
are considered: Cetes 91-days and TIIE 28-days. The
first one is calculated from Mexican Government
Bonds and the second one is an equilibrium rate

PANORAMA SOCIOECONÓMICO AÑO 25, Nº 35, p. 92-105 (Julio-Diciembre 2007)
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calculated according to Mexican commercial banks
borrowing and lending transactions. The sample size
is 951 daily observations from 1st January 2003 to 29th

September 2006. The sample period was chosen
according to availability of interest rate futures data
and high volume of trading. 2004 was a year of
relatively high trading for Mexican interest rate futures.
According to the Futures Industry Association these
types of contracts were rank fifth in the world in terms
of volume of trading. In other words, these are highly
liquid futures contracts. The interest rate contracts
used here are the closest ones to maturity. They have
delivery dates for up to ten years. The MEXDER is
relatively new compared to other derivatives
exchanges around the world. It began operations in
1998.

6. DESCRIPTIVE STATISTICS

This section presents the descriptive statistics for the
realized (observed) volatilities of the interest rate Cetes
and TIIE and the forecast volatility from the models.
Prior to fitting the GARCH model an ARCH-effects
test was conducted for the series under analysis. This
was done in order to see if these types of models are
appropriate for the data (Brooks: 2002). The test
conducted was the ARCH-LM following the procedure
of Engle (1982). These tests were conducted by using
ordinary least squares regressing the logarithmic
returns of the series under analysis against a constant.
The ARCH-LM test is performed on the residuals of
that regression. The test consists on regressing, in a

second regression, the square residuals against a
constant and lagged values of the same square
residuals. The null hypothesis is that the errors are
homoscedastic. An F-statistic was used in order to
test the null. The test was carried out with different
lags 2 to 10. All have the same qualitative results.
Only the cases for 2 lags are reported. According to
the results both series under study have ARCH effects.
Under the null of homoscedasticity in the errors the
F-statistics were 51.2398 for the Cetes and 40.9592
for the TIIE (the critical value at 95% confidence level
is 3.84 for 948 degrees of freedom). Both statistics
clearly reject the null in favour of heteroscedasticity
on those errors. The parsimonious specification
GARCH(1,1) was chosen according to results
obtained from information criteria (Akaike Information
Criterion and Schwarz Criterion tests). The model
parameters were positive and statistically significant
at the 1% level. The sum of α

1
 + b

1
 was less than one.

Diagnostic tests on the models were applied to ensure
that there were no serious misspecification problems.
The Autocorrelation Function as well as the BDS test
were applied on the standardized residuals obtained
from the forecast models. Both show that these
residuals were i.i.d. (these results are available upon
request).

Table 1 shows the descriptive statistics for the realized
volatility and the volatility from the forecasting models.
Figures 1 and 2 presents the logs of both interest
rate series and their respective realized volatilities for
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the time frame under analysis. The daily realized
volatility is defined as the log-return squared. As it
can be observed in Table 1 the four moments of the
distribution of the Cetes series are the ones with higher

values (the realized volatilities and the volatility
forecasts). The distributions from both series are highly
skewed and leptokurtic indicating non-normality of the
returns and the forecast estimates.

PANORAMA SOCIOECONÓMICO AÑO 25, Nº 35, p. 92-105 (Julio-Diciembre 2007)
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7. RESULTS

7.1 Parametric method

Once the next-day volatility estimate is obtained the
95% confidence intervals are created by multiplying
1.645 by the forecasted conditional standard deviation
(from the GARCH model). An analysis is made about
the number of times the observed interest rate spot
return was above that 95% threshold. This is formally
known as a violation or an exception. Again, the
positive part (right tail of the distribution) is the one of
most interest given that it is positive interest rate what
it causes more concern to relatively high interest rate
economies thus, the interest on predicting it. Although
for some economies it may be of interest the significant
decreases in interest rates. For that case it is important
to see the negative side of the distribution (left tail of
the distribution). This is equivalent to taking a long
position on the portfolio. Figure 3 and 4 shows the
spot interest rate returns and the futures confidence
intervals. It can be observed that the Cetes interest
rate spot returns were mostly within the 95%
confidence level for the daily forecasts. However, there
were violations in 25 days, which represent 2.62% of
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the total number of observations. Considering that a
95% confidence level is applied the model it should
not exceed the VaR more than 5% (Jorion: 2001). The
null hypothesis in this case is not to reject the model
because it has fewer than 5% violations. The situation
is qualitatively the same when TIIE series are used to
calculate the 95% confidence intervals. Figure 4
shows the same interest rate spot returns but with
confidence intervals constructed with the TIIE interest
rate. For this case the number of violations is 30, which
represents 3.15% of the total number of observations.
Again, the model is not rejected. Applying the Kupiec
test as explained by Jorion (2000), the non-rejection
region (interpolating) is 11 < x < 47. So, the model is
not rejected for both series under study.

7.2 Bootstrapping simulations

The methodology to carry out the simulations was
explained in Section V.2 above. With the simulations
it is possible to estimate Real-World Densities
simulated with an ARCH model (for more information
about Real-World Densities estimated with ARCH
model simulations the reader can refer to Taylor
(2005)). These are basically predictive densities
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estimated in a given day for a specific date in the
future. Tables 3 and 4 show the histograms and Fi-
gures 5 and 6 present the Real-World densities for
the Cetes and TIIE series. Simulations were carried
out for 29/09/06 and the Jump-off period was 18/09/
06. It can be observed in the figures that the Cetes
curve shows the higher maximum value and higher
skewness and kurtosis. As shown with the real data
the Cetes series is considerably more volatile than
the TIIE series (see Table 1). This is also consistent
with the information given in the above mention
histograms (Tables 3 and 4). The high volatility
observed in the Cetes futures is also reflected with
high volatility persistence in ARCH simulations. As the
time horizon increases so the confidence intervals
calculated with the simulations. This can be observed
in Figure 7. In that graph there is no event of violation
or exception. This is synonymous of overestimated
VaRs. The upper and lower bounds are higher
compared with those for one trading day. Having a
model that shows no exceptions could be costly for
some portfolio investors, especially for banks. This is
because unnecessary amounts of capital must be set
aside in order to meet MCRRs. This is an opportunity
cost of capital.

PANORAMA SOCIOECONÓMICO AÑO 25, Nº 35, p. 92-105 (Julio-Diciembre 2007)

Table 4 presents the VaR for the bootstrap simulations
performed for the Cetes and TIIE series respectively.
The numbers of n-days ahead considered in the
simulations were 10, 30, 90 and 180 trading days.
The simulations were carried out applying the
GARCH(1,1) model.

Considering the fact that the interest rate returns show
autocorrelation it is necessary to do the bootstrap
adjusting for an autocorrelated process (I am thankful
to Alejandro Díaz de León and Daniel Chiquiar for
pointing this out. I also want to thank Arnulfo Rodríguez
for his assistance in helping me to incorporate the
Politis and Romano (1994) methodology in the Eviews
computer code). The procedure postulated by Politis
and Romano (1994) is applied here. This is basically
a method in which the autocorrelated returns are
grouped in to non-overlapping blocks. For this case
the size of these blocks is fixed during the estimation
(it is also possible to have different size blocks, which
vary randomly. For a more detailed explanation please
refer to Politis and Romano (1994)). With the bootstrap
the blocks are resample. During the simulation of the
interest rate the GARCH simulated residuals (plus the
original estimated parameters) are taken from the
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resample blocks. The intuition is that if the
autocorrelations are negligible for a length greater than
the fixed size of the block, then this moving block
bootstrap will estimate samples with approximately
the same autocorrelation structure as the original se-
ries (Brownstone and Kazimi: 1998). Thus, with this
procedure the autocorrelated process of the residuals
is almost replicated and it is possible to obtain a more
accurate simulated interest rate series.

From Table 4 it can be observed that for one trading
day short positions (short positions given in fourth
column) the MCRRs are about 6.11% and 2.32% for
the Cetes and TIIE series respectively. The
interpretation of these figures is that we can be 95%
certain that we will lose no more than 6.11% for Cetes
or 2.32% for TIIE of portfolio value for the next trading
day. As the number of the trading days increases so
the VaR time horizon. In other words, for ten trading
days we will be 95% certain that we will lose no more
than 21.41% for Cetes or 5.20% for TIIE of portfolio
value for the next ten trading days. It is important to
point out that the fact that Cetes show higher variance,
skewness and kurtosis (see descriptive statistics in

Tables 1 and 2) is reflected with higher VaR estimated
and consequently with higher MCRRs. As the time
horizon is increased the VaR estimates increase
considerably. For the case of the Cetes series the
MCRRs for 180 trading days goes as far as 1238.80%.
This does contrast with the MCRRs for the TIIE se-
ries that for the same time horizon the MCRRs is only
about 24.08%. The fact that ARCH-type models tend
to overestimate the VaR because of volatility
persistence is evident. As it can be observed for both
series in Table 4 the MCRRs quickly increase to high
levels as the time horizon increases for some relatively
few days. For the case of the Cetes series the MCRRs
increase is even higher. As explained before the
explanation to this phenomenon is related with Cetes
having significantly higher values for the higher
moments than those for the TIIE series. The evidence
here suggests rejection of the null hypothesis that
ARCH-type models do not overestimate VaR. In this
sense, these results are consistent with Brooks, Clare
and Persand (2000). In portfolio analysis the
overestimation is considered costly. This is because
unnecessary quantities of capital are set aside to meet
MCRRs, which in this case are unnecessary high.
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8. CONCLUSIONS

In this research project an analysis of Mexican short-
term interest rate volatility was presented. The
research on this project differs from that found in the
literature in that interest rate futures are examined in
order to draw conclusions about ARCH-type models
overestimating Value at Risk (VaR). High VaR will give
not optimal Minimum Capital Risk Requirements
(MCRRs). This is considered costly given that
investors need to set aside more capital to meet
MCRRs. The results show that GARCH processes
can be accurate to estimate MCRRs for one-trading
day ahead time horizons. However, for time horizons

of more than ten trading days the MCRRs were
relatively high because of the volatility persistence
captured by ARCH-type models.

In terms of forecasting short-term interest rates the
estimation of the predictive Real-World densities
provided confidence intervals, which can give insights
about the expected range for future interest rates. In
other words, it is possible to be 95% sure that the
interest rate will fall within a specific confidence
interval. It is recommended to extend the present
research work controlling for over night volatility in the
GARCH model during the estimation procedure.

PANORAMA SOCIOECONÓMICO AÑO 25, Nº 35, p. 92-105 (Julio-Diciembre 2007)



105

REFERENCES

Bollerslev, T.P. (1986). Generalized Autoregressive
Conditional Heteroscedasticity. Journal of
Econometrics, Vol. 31:307-327.

Bollerslev, T.P., Chou, R.Y. and Kroner, K.F. (1992).
ARCH Modeling in Finance: A Review of the
Theory and Empirical Evidence. Journal of
Econometrics, Vol. 52:5-59.

Bollerslev, T. and Wooldridge, J.M. (1992). Quasi-
Maximum Likelihood Estimation and Inference in
Dynamic Models with Time Varying Covariances.
Econometric Reviews, Vo. 11:143-172.

Brock, W., Dechert, D., Sheinkman, J and LeBaron,
B. (1996). A Test for Independence Based on the
Correlation Dimension. Econometric Reviews,
Vol. 3:197-235.

Brooks, C. (2002). Introductory Econometrics for
Finance. Cambridge University Press.

Brooks, C., Clare, A.D. and Persand, G. (2000). A
Word of Caution on Calculating Market-Based
Minimum Capital Risk Requirements. Journal of
Banking and Finance, Vol. 24:1557-1574.

Brownstone, D. and Kazimi, C. (1998) Applying the
Bootstrap. Research Paper. August, 1998.

Dowd, K. (1998). Beyond Value at Risk: The New
Science of Risk Management. Chichester and
New York: Wiley and Sons.

Enfron, B., (1982). The Jack knife, the Bootstrap, and
other Resampling Plans. Society for Industrial and
Applied Mathematics. Philadelphia, PA, USA.

Engle, R. F. (1982). Autoregressive Conditional
Heteroskedasticity with Estimates of the Variance
of U.K. Interest rate. Econometrica, Vol. 50:987-
1008.

Engle, R. F. (2000). Dynamic Conditional Correlation
– A Simple Class of Multivariate GARCH Models.
SSRN Discussion Paper 2000-09, University of
California, San Diego. May 2000.

Engle, R. F. (2003). Risk and Volatility: Econometrics
Models and Financial Practice. Economics Nobel
Prize Lecture. New York University, Department
of Finance, New York, USA. December.

Fama, E. (1965). The Behavior of Stock Market Prices.
Journal of Business, Vol. 38:34-105.

Giot, P. (2005). Implied Volatility Indexes and Daily
Value at Risk Models. Journal of Derivatives, Vol.
12:54-64

Hsieh, D.A. (1991). Chaos and Nonlinear Dynamics:
Application to Financial Markets. Journal of
Finance, Vol. 46:1839-1877.

Hsieh, D.A. (1993). Implications of Nonlinear
Dynamics for Financial Risk Management.
Journal of Financial and Quantitative Analysis,
Vol. 28:41-64.

Johnson, N. L. (1949). Systems of Frequency Curves
Generated by Methods of Translations.
Biometrika, Vol. 36:149-176.

Jorion, P. (2000). The Value at Risk Field Book: The
complete Guide to Implementing VaR. McGraw-
Hill.

Jorion, P. (2001). Value at Risk: The Benchmark for
Managing Market Risk. McGraw-Hill.

JPMorgan / Reuters Risk Metrics Technical Document.
(1996). Available in the following Web page: http:/
/www.riskmetrics.com/rmcovv.html

Kupiec, P.H. (1995). Techniques for Verifying the
Accuracy of Risk Measurement Models. Finance
and Economics Discussion Series 95-24, Board
of Governors of the Federal Reserve System.
USA.

Mandelbrot, B. 1963. The Variation of Certain
Speculative Prices. Journal of Business, Vol.
36:394-419.

Manfredo, M. Leuthold, R.M. and Irwin, S.H. (2001).
Forecasting Cash Price Volatility of Fed Cattle,
Feeder Cattle and Corn: Time Series, Implied
Volatility and Composite Approaches. Journal of
Agricultural and Applied Economics, Vol. 33:523-
538.

Markowitz, H. (1952). Portfolio Selection. The Journal
of Finance, Vol. VII:77-91.

Mohamed, A. R. (2005). Would Student’s t-GARCH
Improve VaR Estimates? Master’s Thesis,
University of Jyväskylä, School of Business and
Economics.

Politis, D.M. and Romano, J.P. (1994). The Stationary
Bootstrap. Journal of the American Statistical
Association, Vol. 89:1303-1313.

Ng, V.K and Pirrong, S.C. (1994). Fundamentals and
Volatility: Storage, Spreads, and the Dynamic of
Metals Prices. Journal of Business, 67:203-230.

Pérignon, C., Deng, Z.Y. and Wang, Z.J. (2006). Do
Banks Overstate their Value-at-Risk? Working
paper, Simon Fraser University, Faculty of Busi-
ness Administration. Canada.

Susmel, R. and Thompson, R. (1997). Volatility,
Storage and Convenience Evidence from Natu-
ral Gas Markets. Journal of Futures Markets, Vol.
17:17-43.

Taylor, S.J. (1986). The Behaviour of Futures Prices
Overtime. Applied Economics, 17:713-734.

Taylor, S.J. (2005). Asset Price Dynamics, Volatility,
and Prediction. Princeton University Press.

Wei, A. and Leuthold, R.M. (1998). Long Agricultural
Futures Prices: ARCH, Long Memory, or Chaos
Processes. OFOR Paper Number 98-03,
University of Illinois at Urbana – Champaign.

Procesos GARCH y Valor en Riesgo: Un Análisis Empírico de Futuros de Tasas
de Interés Mexicanas

Guillermo Benavides P.


