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ABSTRACT: Forecast combination models have been broadly studied and often used to improve 
forecast accuracy. This article presents a new non-linear composite model to forecast the volatility 
of asset returns. Our model is composed of a set of GARCH models fitted to a time series dataset 
using different loss functions, with the aim of capturing different features of volatility dynamics. 
Individual forecasts are combined by using either the simple arithmetical average method or an 
artificial neural network. The proposed model is used to forecast the monthly excess returns of 
S&P500 time series, finding that this new approach is able to forecast volatility with more accuracy 
than each individual GARCH model considered.
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Introduction 

Volatility forecasting is an important and difficult task in financial engi-
neering. Forecasts are used in option pricing, risk management, portfolio 
analysis and hedging strategies, among others (Poon & Granger, 2003; 
Tang et al., 2009; Hull & White, 1987). There are mainly two reasons to ex-
plain the difficulty for obtaining accurate forecasts: first, the volatility is an 
unobserved latent variable that evolves stochastically through time (Amen-
dola & Storti, 2008; Patton, 2011; Bollerslev & Engle, 1993) and the asset 
squared returns usually are assumed as an unbiased estimator of volatility; 
however, the squares returns will not always lead to the same estimated 
values for the volatility as if the latent variable were used. Second, vola-
tility must be approximated from return time series that exhibit complex 
features as time-varying variance, clusters of similar variance, persistence 
in the sense that current information remains important for forecasts of all 
horizons, heavy tailed marginal distributions, asymmetric response to the 
sign of past returns or leverage effect, and nonlinear and non-stationary 
behavior (Poon & Granger, 2003; Donaldson & Kamstra, 1997; Bollerslev 
& Engle, 1993).

There are two groups of approaches used for obtaining volatility fore-
cast when only one model is considered: The first group is related to the 
evaluation of the forecasting power of many well-established volatility 
models (Poon & Granger, 2003; Taylor, 2004; Verhoeven et al., 2002; Hu 
& Tsoukalas, 1999; Amendola & Storti, 2008) and to the use of alternative 

Un nuevo sistema de combinación de pronósticos para la 
predicción de la volatilidad

Resumen: Los modelos para la combinación de pronósticos han sido am-
pliamente estudiados, y de uso frecuente en el mejoramiento de la ex-
actitud de predicciones. En este artículo se presenta un nuevo modelo 
compuesto no lineal, para la predicción de la volatilidad de activos. Dicho 
modelo esta compuesto de una serie de modelos GARCH, anclados a un 
conjunto de datos de series de tiempo, que emplean diferentes funciones 
de pérdida, los cuales tienen el objetivo de capturar diferentes caracter-
ísticas de la dinámica propia de la volatilidad. Se combinan predicciones 
individuales, mediante el uso de la media aritmética simple, o de una red 
neuronal artificial. Este modelo propuesto se emplea para predecir la rent-
abilidad mensual de series de tiempo S&P500, llevando a concluir que el 
nuevo enfoque permite predecir la volatilidad con mayor exactitud que 
cada uno de los modelos GARCH considerados. 

Palabras clave: Volatilidad, modelos de predicción de la volatilidad, 
combinaciones de pronósticos

Un nouveau système de combinaison de pronostics pour la 
prédiction de la volatilité

Résumé : Les modèles pour la combinaison de pronostics ont été large-
ment étudiés et ont été d’un usage fréquent pour l’amélioration de 
l’exactitude des prédictions. Dans cet article est présenté un nouveau 
modèle composé non linéaire pour la prédiction de la volatilité des actifs. 
Ce modèle est composé d’une série de modèles GARCH, ancrés à un en-
semble de données de séries de temps, qui emploient différentes fonctions 
de perte, lesquelles ont pour objectif de de saisir plusieurs caractéristiques 
de la dynamique propre de la volatilité. Se combinent des prédictions in-
dividuelles, par l’usage soit de la moyenne arithmétique simple, soit d’un 
réseau neuronal artificiel. Ce modèle proposé est utilisé pour prédire la 
rentabilité mensuelle de séries de temps S&P500, ce qui mène à con-
clure que la nouvelle approche permet de prédire la volatilité avec plus 
d’exactitude que chacun des modèles GARCH considérés. 

Mots-clés : Volatilité, modèles de prédiction de la volatilité, combinai-
sons de pronostics.

Um novo sistema de combinação de prognósticos para a 
predição da volatilidade

Resumo: Os modelos para a combinação de prognósticos foram am-
plamente estudados, e de uso frequente no melhoramento da exatidão 
das predições. Neste artigo apresenta-se um novo modelo composto não 
lineal, para a predição da volatilidade de ativos. Este modelo está com-
posto por uma série de modelos GARCH, ancorados a um conjunto de 
dados de séries de tempo, que empregam diferentes funções de perda, 
os quais tem o objetivo de capturar diferentes características da dinâmica 
própria da volatilidade. Combinam-se predições individuais, mediante o 
uso já seja da média aritmética simples, ou de uma rede neuronal artificial. 
Este modelo proposto emprega-se para predizer a volatilidade com maior 
exatidão que cada um dos modelos GARCH considerados.

Palavras chave: Volatilidade, modelos de predição da volatilidade, 
combinações de prognósticos.
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pragmatic methodologies.As stated in previous para-
graphs, the second group is related to the evaluation of 
the forecasting power of many well-established volatility 
models (Poon & Granger, 2003; Taylor, 2004; Verhoeven 
et al., 2002; Hu & Tsoukalas, 1999; Amendola & Storti, 
2008) and to the use of alternative pragmatic method-
ologies. For example, Taylor (2004) develops a smooth 
transition exponential model in which the parameters are 
time-varying; Brooks and Persand (2003) evaluated vola-
tility forecasting in a financial risk management setting in 
terms of value-at-risk (VaR); Lopez (2001) considered prob-
ability scoring rules that were tailored to a forecast user’s 
decision problem and confirms that the choice of loss func-
tion directly affects the forecast evaluation results.

The second group is devoted to the use of traditional sta-
tistical rigorous econometric approaches with the aim of 
understand the in-sample properties and explain the his-
torical behavior of the volatility. Most of the approaches 
are based on the seminal work of Engle (1982); for ex-
ample, Bollerslev (1986) postulated the GARCH model as 
a more parsimonious model than the ARCH model of Engle 
(1982); other approaches as the GJR-GARCH, the exponen-
tial GARCH (EGARCH) of Nelson (1991), the A-GARCH, 
NA-GARCH and V-GARCH models of Engle et al. (1993), 
among others, were developed to account for more com-
plex issues, with the aim of representing the asymmetric 
impact of positive and negative information on the market, 
distribution of the standardized innovation and persistence 
of the volatility process. The topic of volatility modeling is 
reviewed by Andersen et al. (2005a). An extension of pre-
vious idea is to suppose the existence of several regimens 
in the time series and to use a different type of model –or 
the same type of model with different estimated parame-
ters– for each regimen; the SETAR or STAR models are used 
when the regimens are determined by observable variables; 
and Markov-switching models when the regimens are de-
termined by unobserved variables. Examples of this ap-
proach are the works of Chan and McAleer (2003) which 
considered a smooth transition ST-GARCH model for the 
errors; Lundbergh and Teräsvirta (1998),applied a STAR-
STGARCH to characterize nonlinear behavior in the con-
ditional mean and conditional variance; Klaassen (2002) 
used a regime-switching GARCH model for distinguishing 
two regimes with different volatility levels; Nazifi and Fa-
tahi (2012) study Markov- switching GARCH models to es-
timate and forecast the volatility of Tehran stock market. 
An extend discussion about this topic is provided by 
Franses and Dijk (2006).

However, the forecasts of several independent models 
would be considered simultaneously for obtaining a 
single volatility forecast. The idea of combining several 

alternative forecasts is justified by many empirical experi-
ences, indicating that the accuracy of the combined fore-
cast is often higher than each alternative forecast (Clemen 
& Winkler, 1986; Clemen, 1989; Hashem, 1997). In statis-
tics, these methodologies are known as forecast combina-
tion techniques (Granger, 1989), while in computational 
intelligence are called ensemble methods (Haykin, 1996). 
The conceptual key idea behind all of these approaches 
is the diversification of the forecasting models; this diver-
sification may be achieved mainly in three ways: first, by 
using different types of models; second, by using the same 
type of model with identical internal configuration but dif-
ferent parameter values; and third, by using the same type 
of model with different internal configuration.

There are several successful experiences about the com-
bination of individual volatility forecasts. Amendola and 
Storti (2008) propose the use of the generalized method 
of moments for estimating the weights of a linear com-
biner. Tsangari (2007) presents a new non-linear, non-
parametric, kernel-based method for combining individual 
forecasts effectively, where the functional form is not as-
sumed to be known. Hu and Tsoukalas (1999) propose an 
ANN model to combine four model forecasts, in order to 
provide improved volatility forecasts.

The objective of this paper is to present a new volatility 
forecast combination methodology based on the following 
points:

1.	 The GARCH must be rewritten in the form of the ARMA 
approach, such that, model parameters would be esti-
mated by minimizing a function of the difference be-
tween the squared shocks and the estimated volatility 
(Tsay, 2010). 

2.	 The behavior, advantages, and limitations of different 
error functions have extensively studied in time series 
literature (Hyndman et al., 2006). It is well-known that 
the use of different functions for estimating the param-
eters in time series and regression models, allows the 
modeler to capture different behaviors in a time series. 
For example, the mean squared error is very sensitive to 
the presence of outliers, unlike the mean absolute de-
viation. In our approach, we fit several GARCH models 
by minimizing different error functions with the aim of 
capture different aspects of the volatility behavior. 

3.	 When several forecasts for the same event are available, 
it is possible to obtain a composite forecast using fore-
cast combination techniques. In this work, we consider 
possible alternatives to obtain a composite forecast: 
the simple arithmetical average method, the multiple 
linear regression and an artificial neural network.
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The structure of this paper is organized as follows. In Sec-
tion 2, we present the GARCH model, the parameterization 
and methodologies for estimating model parameters, and 
the proposed forecast combination model. In section 3, we 
give a numerical experiment using a benchmark time series 
for exemplifying and testing the performance of the fore-
cast volatility models. The final section gives some con-
cluding remarks.

Proposed methodology 

The GARCH model

One of the most used models for statistical modeling 
and forecasting the conditional volatility is the general-
ized autoregressive conditional heteroskedastic (GARCH) 
approach of Bollerslev (1986). In a GARCH model, the 
current variance, , is a function of the past squared 
shocks, , and the past variances, 

:

	 (1)

where the parameters κ, αi and βj, are subject to 
the following restrictions: κ > 0, αi ≥ 0, βj ≥ 0 and 

.

The classical and well-known procedure for the estimation 
of the parameters is derived supposing that the normal-
ized residuals εt follow a standard normal distribution; see 
Tsay (2010). Thus, the optimal values of the parameters 
are calculated by maximizing the natural logarithm of the 
residuals likelihood function:

	
(2)

where N is the time series length.

General model structure

The general structure of the proposed system is presented 
in the Figure 1. It is composed of N GARCH(p, q) models 
with the same structure but with different parameter 
values; all GARCH(p, q) models are fitted using the same 
sample of data, but using different optimizations with 
the aim of capturing different features of the volatility 
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dynamics. Each model is used to produce an individual 
forecast using the available information; finally, all indi-
vidual forecasts are combined to obtain a volatility com-
posite forecast.

Alternative parameter estimation 
procedure for the GARCH model

Tsay (2010) presents an alternative estimation procedure 
based on the minimization of a function of the difference 
between the volatility and its forecasting. By defining 

, the GARCH model presented in Eq. (1) 
would be written out as:

	
(3)

Thus, the previous equation has the same structure of an 
ARMA model where the first expression inside parenthesis 
corresponds to the autoregressive component while the 
second correspond to the moving average component. As 
a consequence, the parameters in the model presented in 
Eq. (3) would be estimated by the following minimization:

	

(4)

Note that maximize the Eq. (2) is not the same thing that 
the expression in Eq. (4) and the optimal parameters in 
each case are different. As indicated by Tsay (2010), the 
theoretical implications and the practical merits of this ap-
proach are unknown and it is necessary further research.

Estimation of the Parameters of the GARCH 
model using different error functions

The use of Eq. (2) for estimating the optimal values of the 
parameters in a GARCH(p, q) is based on the assumption 
of normality of the standardized residuals εt; in this sense, 
when the log-likelihood function is higher, then the prob-
ability distribution of εt is nearer to a theoretical standard 

normal distribution; however, it does not mean that the 
parameters are optimal in terms of the volatility forecast 
accuracy.

The estimation procedure proposed by Tsay (2010) is fo-
cused in the forecast accuracy by minimizing a function 
of the forecast error; this is, the parameters of the model 
defined in Eq. (3) are estimated executing the minimiza-
tion presented in Eq. (4). However, the parameters of each 
GARCH(p, q) model would be estimated by minimizing any 
general loss function.

Below, we present a list of commonly employed loss func-
tions on volatility forecast evaluation (Gooijer & Hyndman, 
2006; Patton, 2011; Dunis & Huang, 2002). These func-
tions are not robust to noise (Patton, 2011), such that, the 
optimal forecast is not the true conditional variance. How-
ever, we use these functions for fitting the GARCH(p, q)
models of our system because of they are able to capture 
other statistical features of time series that are ignored 
when the GARCH model is estimated by maximizing the 
likelihood function; as a consequence, we expect to im-
prove our forecast accuracy respect the classical approach. 
The functions are a measure that gives us a basis to com-
pare our volatility forecasts with the realized volatility. 
Under the assumptions for the conditional distribution of 
daily returns given in Patton (2011), the MSE loss func-
tion generates an optimal forecast equal to the conditional 
variance, and thus satisfies the necessary condition for ro-
bustness. In addition, we include the linex loss function 
[proposed by Varian (1974) and used by Zellner (1986) and 
Christoffersen and Diebold (1994)] for modeling the pos-
sible existence of asymmetries in the response of volatility 
to the sign of shocks; in practical terms, this means that 
the model is able to model in a different way large posi-
tive and negative differences between squared shocks and 
variances; in eq. (8), the parameter c controls the asym-
metry level, and  in most simple case.

•	 Mean absolute deviation:

	 (5)

•	 Mean squared error:

	 (6)

•	 Mean cubic error:

	 (7)

GARCH
2 
(p, q)  

Volatility 
series  

dataset 

Combiner 

GARCH
1 
(p, q) 

Volatility 
composite 
forecast 

GARCHN (p, q) 
 

Forecast 1 

Forecast N  

Forecast 2 

Figure 1. Structure of the volatility forecasting system.

Source: Authors’ elaboration. 
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•	 Linex loss function:

	 (8)

Forecasts combiner 

By analyzing the most relevant literature about ensemble 
averaging methods and forecasts combination techniques, 
we select the following techniques for combining the vol-
atility forecasts, with fi, i = 1, ...n, of the GARCH(p, q) 
models:

•	 Simple arithmetical average: 

•	 Combination by multiple linear regression:  
, where βi are the 

parameters.

•	 Nonlinear optimal combination by using an artificial 
neural network. In this research, we use the model pro-
posed by Hu and Tsoukalas (1999), where the forecast 
is obtained as:

	 (9)

where φ, βh, ηh, ωh, and αhi are the parameters. g(·) is the 
sigmoid transfer function:

	 (10)

Note that, the ANN model described by eq. (9) is the com-
bination of a linear regression model and a multilayer 
perceptron neural network; this allows to the neural net-
work to capture in a better way the linear and nonlinear 
dynamics in the data. Finally, the model in eq. (9) has 
nH + 2H + n + 1 parameters to be estimated.

Numerical experiment 

Data and preliminary analysis

For our experiment, we use the monthly excess stock re-
turns of the S&P500 index from January of 1926 to De-
cember of 1991; see Figure 1. The dataset contains 792 
observations and it is commonly used as a benchmark for 
exemplifying and testing volatility models; see Tsay (2010) 
and Verhoeven et al. (2002). 

Tsay (2010) analyses this time series using all avail-
able information (the 792 observations). First, an AR(3)-
GARCH(1,1) is postulated for representing the dynamics 
of the data; the parameters of this model are estimated by 

maximizing Eq. ((2). Following, all non-significant parame-
ters are dropped and the model is reduced to a GARCH(1,1). 
The final model proposed by Tsay (2010, page. 136) would 
be written out as:

	(11)

with μ = 0.0076, κ = 0.000086, α1= 0.1216 and β1= 0.8511. 

Experimental setup

In our numerical experiment, we use the first 708 obser-
vations for estimating the parameters of all GARCH(1,1) 
models and the remaining 84 observations for forecasting. 
Forecast accuracy, for the fitting and forecasting samples, 
is measured using the mean absolute deviate (MAD) and 
the mean squared error (MSE) previously defined in Eq. (5) 
and Eq. (6) respectively.

The setup of our experiment is described by the following 
steps:

•	 The GARCH model in Eq. (11) is fitted using the first 
708 observations by maximizing the natural logarithm 
of likelihood function in Eq. (2). 

•	 We rewrite the GARCH(1, 1) model in Eq. (11) as:

	 (12)

	A nd then, we estimate a set of optimal parameters {κ, 
(α1+β1), β1} when each one of the loss functions in Eq. 
(5), Eq. (6), Eq. (7) and Eq. (8) are minimized. Thus, we 
obtain four sets of parameters for the model presented 
in Eq. (12).

•	 For each GARCH model considered in this experiment, 
we forecast the volatility one month ahead for both the 
fitting and the forecasting samples.

•	 Combined forecasts are calculated using the individual 
forecasts obtained from the models estimated in steps 
1 and 2 as follows:

◊◊ The simple arithmetical average of the forecasts of 
each GARCH model.

◊◊ By using a multiple linear regression.

◊◊ By using ANN models with H = 1, ..., 4 and n = 5. 
See Eq. (9). f1, f2, f3, f4 and f5 are the forecasts of 
the models estimated in the steps 1 and 2 by maxi-
mizing Eq. (2) and minimizing the MAD, MSE, MCE 
and LLF(c = 0.038) error functions respectively. Each 
ANN model is trained fifty times with random initial 
weights. We prefer the ANN model with the set of pa-
rameters minimizing the MSE for the fitting sample.

Figure 1. Structure of the volatility forecasting system.

Source: Authors’ elaboration. 

Forecast 1
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•	 The fitting and forecasting MSE and MAD are calcu-
lated. The obtained results, multiplying the MSE by 104 
and the MAD by 102, are presented in Tables 2, 3, 4 
and 5.

In Table 1, the set of parameters for the estimate models 
maximizing Eq. (2) and minimizing Eq. (5), Eq. (6), Eq. (7) 
and Eq. (8) are presented. It is interesting to note that the 
parameters of models in Table 1, do not satisfy the statis-
tical constraints for guaranty positive values of , but, 
this is not a problem because of the models are used for 
forecasting in normal conditions of the market and it is 
very improbable to obtain negative values for . In addi-
tion, very large values for  occur in abnormal conditions 
as crashes and bubbles, and it is impossible to forecast 
such events with any model. Finally, statistical restrictions 
are not absolute and necessary for obtaining good fore-
casting models.

In all cases, we use the MSE as the evaluation criteria for 
testing the volatility forecast accuracy (Tsangari, 2007; 
Lopez, 2001), where small values of MSE indicate good 
forecasting accuracy. Additionally, as it is shown in Patton 
(2011), the MSE error function is unbiased and it satisfies 
the necessary condition for a loss function to be robust to 
noise in the volatility proxy.

For this work, we implement a prototype in Microsoft Excel 
and R program. The optimal parameters of the experts and 
artificial neural networks were obtained using the solver 
complement and evolutionary algorithms.

Forecast accuracy of the individual models

We compare and measure the performance of the models 
using two criteria: the mean squared error (MSE), and the 
mean absolute deviation (MAD). In Table 2, we present 
the MSE (MAD) values for the fitting and forecasting sam-
ples when the five individual models are considered. The 
M2 model (GARCH fitted by minimizing the MSE) results, 
present the lower value for MSE in both samples among 
all five models. But the MAD values for fitting and fore-
casting samples are not as good. The standard M1 model 
(GARCH fitted by maximizing the log L) is overcome by the 
M2 model in MSE values, and by the M3 model (GARCH 
fitted by minimizing the MAD) in MAD values; this can 
happen because of the criterion of optimization of these 
models. The M5 model (GARCH fitted by minimizing the 
LLF) results show good MSE values in comparison with the 
M3 model but not in MAD values. In this way we look for 
a model which conforms to our expectation of reaching a 
balance for the MSE (MAD) values across both fitting and 
forecasting samples.

Forecast accuracy of the combined forecasts 
obtained using a simple average

In Table 3, we present the values of the MSE and MAD sta-
tistics calculated for the fitting and forecasting samples. In 
this case, we consider the average of the all combinations 
obtained by considering two, three, four and five models. 
By inspecting the Table 3, we found that the M26 model 
(the average of the forecasts from M2 and M3 models) 

Table 1. Parameters of individual GARCH(1, 1) models.

Criteria	 Obtained model

Fitted maximizing the log L

Fitted minimizing the MSE

Fitted minimizing the MAD

Fitted minimizing the MCE

Fitted minimizing the LLF

Source: Own elaboration.

Table 2. Evaluation of the volatility forecasting of individual models

Model Fitting MSE (MAD) Forecasting MSE (MAD)

GARCH (1, 1) models

M1 : Fitted maximizing the log L 12294.0 (38.1) 3718.6 (28.7)

M2: Fitted minimizing the MSE * 12262.3 (38.6) * 3678.7 (29.2)

M3: Fitted minimizing the MAD 13426.9 (31.3) 3768.9 (23.0)

M4: Fitted minimizing the MCE 15768.4 (73.2) 5905.4 (60.6)

M5: Fitted minimizing the LLF 12326.1 (40.1) 3740.0 (30.1)

*Lower values of MSE in the column.

Source: Own elaboration.
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results present the lower MSE for the forecasting sample 
in comparison with the competing models and individual 
models, but in fitting sample it does not hold for the MSE 
value; the M26 model has the lower MAD values. Also, we 
observe that M19 model (the average of the forecasts from 
M2, M3 and M5 models) has a MSE value near to the MSE 
of M26 model for the forecasting sample and it has low MSE 
value for the training sample.

A common practice in forecast combining literature is con-
sidering the average of the forecast values of the all avail-
able models; in our case, this corresponds to consider the 
M6 model in Table 3. Reported results show that this model 
only is better than the M3, M4 and M5 models.

Forecast accuracy of the combined forecasts 
obtained using a multiple linear regression

In this case we consider the most of the possible linear 
combinations of individual forecasts. The estimation of the 
weights was doing by minimizing MSE and the obtained 

results are in Table 4. The better linear regression model, 
with respect to MSE value in the forecast sample, is the 
model that combines forecasts from models M1 and M3, 
the obtained MSE value is 3676.8, which is lower than 
MSE value in the combination by ANN with three nodes 
and the same forecasts; also we observe that simple ar-
ithmetical average gets a low MSE value of 3662.1 in 
forecasting sample with the same forecasts. We compare 
the accuracy between M48 model and individual forecasts 
from models M1 and M3, the linear multiple regression of 
these forecasts ( model) is better because it has less MSE 
value than the individuals.

Accuracy of individual forecasts combined 
using an artificial neural network

In this case, we consider most of the possible combina-
tions of the individual forecasts using the artificial neural 
network described by equations (9) and (10). For each 
set of possible inputs, ANN models with H = 1, ..., 4 were 
considered.

Table 3. Evaluation of the volatility forecasting combination by simple arithmetical average

Model Fitting MSE (MAD) Forecasting MSE (MAD)

M6: Average of M1, M2, M3, M4, M5 12314.0 (41.8) 3738.6 (32.1)

M7: Average of M1, M2, M3, M4 12321.5 (42.3) 3744.1 (32.6)

M8: Average of M1, M2, M3, M5 12304.5 (36.1) 3657.9 (27.2)

M9: Average of M1, M2, M4, M5 12540.6 (46.0) 3902.4 (35.8)

M10: Average of M1, M3, M4, M5 12341.2 (42.7) 3762.2 (32.8)

M11: Average of M2, M3, M4, M5 12343.7 (42.9) 3759.0 (33.0)

M12: Average of M1, M2, M3 12381.9 (35.0) 3647.3 (26.2)

M13: Average of M1, M2, M4 12662.3 (48.2) 3997.3 (37.9)

M14: Average of M1, M2, M5 12278.2 (38.9) 3710.0 (29.3)

M15: Average of M1, M3, M4 12364.3 (43.7) 3783.2 (33.9)

M16: Average of M1, M3, M5 12336.8 (35.4) 3659.5 (26.5)

M17: Average of M1, M4, M5 12753.7 (48.7) 4030.8 (38.3)

M18: Average of M2, M3, M4 12373.7 (43.9) 3781.4 (34.1)

M19: Average of M2, M3, M5 12342.1 (35.5) *3645.4 (26.7)

M20: Average of M2, M3, M5 12744.6 (49.0) 4030.8 (38.5)

M21: Average of M3, M4, M5 12373.7 (43.9) 3781.4 (34.1)

M22: Average of M1, M2 12271.3 (38.3) 3696.7 (28.9)

M23: Average of M1, M3 12530.3 (33.6) 3662.1 (24.9)

M24: Average of M1, M4 13154.9 (53.7) 4307.1 (42.9)

M25: Average of M1, M5 12297.1 (39.1) 3727.0 (29.4)

M26: Average of M2, M3 12553.1 (33.6) *3639.3 (25.2)

M27: Average of M2, M4 13145.3 (54.2) 4315.9 (43.3)

M28: Average of M2, M5 12278.3 (39.3) 3708.1 (29.6)

M29: Average of M3, M4 12506.5 (47.0) 3891.4 (36.9)

M30: Average of M3, M5 12441.9 (34.2) 3651.8 (25.6)

M31: Average of M4, M5 13341.1 (55.0) 4376.3 (43.8)

*Lower values of MSE in the column.

Source: Own elaboration.
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In Table 5, we present the values of the MSE and MAD 
statistics for the fitting and forecasting samples. Several 
conclusions arise from this table:

•	 All the considered models have fitting MSE values 
lower than each individual model in Table 2. Thus, we 
conclude that each individual forecaster is able to cap-
ture valuable nonlinear information about the volatility 
dynamics.

•	 For almost all possible combinations of inputs, in terms 
of forecast MSE values the optimal configuration of the 
artificial neural network has two neurons in the hidden 
layer (H = 2).

•	 The nonlinear combination of individual models is 
better than each individual model; this is in concor-
dance with the reported experiences in the literature 
where the composite forecast is more accurate than 
each individual forecast.

•	 The M86 model is the preferred among all possible com-
binations by ANN of volatility forecasts because it has 
a balance for the MSE (MAD) values across the fitting 
and forecasting samples in comparison with the indi-
vidual models. In this case, the composite forecast is 

obtained by the non-linear combination of the fore-
casts calculated with the M2, M3 and M4 models (which 
parameters are calculated by minimizing different loss 
functions). In Figure 1, we plot the squared shocks for 
the sample and the forecasts from the M86 model; in 
Figures 2, 3 and 4, we compare the forecasts of the M86 
model with the forecasts of the M4, M3 and M4 models; 
in these figures are evident that each model captures a 
different behavior of the squared shocks: the M2 model, 
that is estimated by minimizing the MSE, (see Figure 2) 
presents a similar behavior with the M86 model, but the 
model M86 is able to approximate better the regions 
with high values of the squared shocks. The model M3, 
estimated by minimizing the MAD, is able to capture 
better the lower values of the squared shocks. Finally, 
the model M4 is better for approximating the higher 
values of the squared shocks. Consequently, the arti-
ficial neural network is able to integrate the behavior 
of each considered individual model and to produce a 
more accurate forecast.

•	 The M54, M58 and M64 models results, also present a 
good and balanced MSE (MAD) values in fitting and 
forecasting samples.

Table 4. Evaluation of the volatility forecasting combination by multiple linear regression

Model Fitting MSE (MAD) Forecasting MSE (MAD)

M32: Linear combination of M1, M2, M3, M4, M5 12233.9 (38.7) 3691.2 (29.7)

M33: Linear combination of M1, M2, M3, M4 12233.3 (38.7) 3690.1 (29.7)

M34: Linear combination of M1, M2, M3, M5 12238.1 (38.6) 3694.0 (29.7)

M35: Linear combination of M1, M2, M4, M5 12233.9 (38.7) 3691.0 (29.7)

M36: Linear combination of M1, M3, M4, M5 12235.8 (38.6) 3691.7 (29.7)

M37: Linear combination of M2, M3, M4, M5 12232.4 (38.7) 3688.1 (29.8)

M38: Linear combination of M1, M2, M3 12258.8 (38.5) 3677.9 (29.2)

M18: Linear combination of M1, M2, M4 12235.9 (38.7) 3688.4 (29.6)

M39: Linear combination of M1, M2, M5 12261.2 (38.7) 3678.0 (29.3)

M40: Linear combination of M1, M3, M4 12239.1 (38.6) 3686.8 (29.5)

M41: Linear combination of M1, M3, M5 12241.1 (38.7) 3692.7 (29.7)

M42: Linear combination of M1, M4, M5 12241.2 (38.6) 3684.9 (29.4)

M43: Linear combination of M2, M3, M4 12248.5 (38.9) 3686.2 (29.7)

M44: Linear combination of M2, M3, M5 12262.3 (38.6) 3678.6 (29.2)

M45: Linear combination of M2, M4, M5 12256.5 (38.6) 3681.5 (29.2)

M46: Linear combination of M3, M4, M5 12247.1 (38.6) 3681.5 (29.3)

M47: Linear combination of M1, M2 12262.1 (38.6) 3677.0 (29.2)

M48: Linear combination of M1, M3 12261.5 (38.6) *3676.8 (29.2)

M49: Linear combination of M1, M4 12270.4 (38.6) 3679.9 (29.2)

M50: Linear combination of M2, M3 12262.3 (38.6) 3679.0 (29.2)

M51: Linear combination of M2, M4 12261.1 (38.6) 3683.1 (29.2)

M52: Linear combination of M3, M4 12262.0 (38.5) 3682.8 (29.2)

*Lower values of MSE in the column.

Source: Own elaboration. 
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Model
Fitting

MSE (MAD)
Forecasting
MSE (MAD)

Combining models M1, M2, M3, M4 and M5 using ANN

M53: ANN (H = 1) 10978.0 (38.2) 3724.2 (26.0)

M54: ANN (H = 2) 4521.2 (30.3) *3667.4 (29.2)

M55: ANN (H = 3) 4383.2 (29.9) 3985.2 (30.1)

M56: ANN (H = 4) 4210.2 (29.1) 4010.7 (32.0)

Combining models M1, M2, M3 and M4 using ANN

M57: ANN (H = 1) 11434.8 (38.8) 4159.3 (32.3)

M58: ANN (H = 2) 4521.2 (30.3) *3665.3 (29.1)

M59: ANN (H = 3) 4351.0 (29.9) 3857.2 (30.2)

M60: ANN (H = 4) 4291.6 (29.2) 3988.4 (29.5)

Combining models M1, M2, M3, and M5 using ANN 

M61: ANN (H = 1) 10372.0 (39.5) 4378.5 (34.4)

M62: ANN (H = 2) 9507.4 (38.4) 3629.5 (26.0)

M63: ANN (H = 3) 8057.3 (33.9) 3784.0 (31.3)

M64: ANN (H = 4) 5321.1 (34.5) *3620.8 (28.7)

Combining models M2, M3, M4 and M5 using ANN

M65: ANN (H = 1) 11408.8 (38.8) 3941.8 (29.9)

M66: ANN (H = 2) 6529.8 (32.5) 3723.5 (28.1)

M67: ANN (H = 3) 6526.7 (32.4) *3713.1 (27.9)

M68: ANN (H = 4) 6238.4 (32.5) 3795.0 (27.2)

Combining models M1, M2 and M3 using ANN

M69: ANN (H = 1) 11694.5 (39.0) 4191.2 (33.1)

M70: ANN (H = 2) 6629.7 (32.6) *3731.6 (29.3)

M71: ANN (H = 3) 6541.8 (33.5) 3860.3 (30.4)

M72: ANN (H = 4) 6368.2 (33.1) 3911.6 (31.4)

Combining models M1, M2, and M4 using ANN

M73: ANN (H = 1) 10970.7 (38.7) 3707.2 (25.5)

M74: ANN (H = 2) 10436.2 (40.7) *3661.6 (33.4)

M75: ANN (H = 3) 10232.8 (39.4) 3723.3 (33.4)

M76: ANN (H = 4) 8009.7 (33.4) 3724.7 (30.7)

Combining models M1, M3, and M4 using ANN

M77: ANN (H = 1) 11562.2 (39.5) 4180.0 (32.3)

M78: ANN (H = 2) 10438.4 (39.1) *3603.2 (25.3)

M79: ANN (H = 3) 10329.3 (38.8) 3619.0 (24.6)

M80: ANN (H = 4) 9704.5 (36.6) 3880.7 (27.4)

Combining models M1, M3 and M5 using ANN

M81: ANN (H = 1) 11660.3 (39.2) 4261.1 (34.1)

M82: ANN (H = 2) 7024.6 (35.5) 3952.9 (32.1)

M83: ANN (H = 3) 6414.3 (32.7) *3873.4 (30.7)

M84: ANN (H = 4) 6260.8 (33.0) 3915.3 (31.8)
Continúa...

Model
Fitting

MSE (MAD)
Forecasting
MSE (MAD)

Combining models M2, M3 and M4 using ANN

M85: ANN (H = 1) 11939.1 (38.3) 3786.2 (29.8)

M86: ANN (H = 2) 4954.1 (30.6) *3580.6 (27.2)

M87: ANN (H = 3) 4489.7 (30.2) 3878.6 (30.8)

M88: ANN (H = 4) 2619.8 (37.7) 4147.0 (30.7)

Combining models M2, M3 and M5 using ANN

M89: ANN (H = 1) 11244.5 (38.3) 3895.7 (26.4)

M90: ANN (H = 2) 10391.0 (37.9) 3796.4 (29.1)

M91: ANN (H = 3) 9249.5 (37.7) *3742.9 (28.9)

M92: ANN (H = 4) 9221.9 (37.8) 3834.3 (30.9)

Combining models M1 and M2 using ANN

M93: ANN (H = 1) 11195.7 (38.7) 3755.5 (25.6)

M94: ANN (H = 2) 6688.4 (32.9) *3734.4 (29.4)

M95: ANN (H = 3) 6486.6 (32.4) 3803.4 (30.0)

M96: ANN (H = 4) 6483.9 (32.9) 3800.8 (30.6)

Combining models M1 and M3 using ANN

M97: ANN (H = 1) 11278.6 (38.0) 3936.8 (28.7)

M98: ANN (H = 2) 6573.8 (32.8) 3768.5 (29.6)

M99: ANN (H = 3) 6569.0 (32.7) *3767.7 (29.6)

M100: ANN (H = 4) 6249.9 (32.5) 3733.4 (30.3)

Combining models M1 and M4 using ANN

M101: ANN (H = 1) 11287.6 (38.5) 3888.6 (27.4)

M102: ANN (H = 2) 11203.6 (37.6) *3684.1 (27.2)

M103: ANN (H = 3) 10283.1 (37.0) 3906.4 (28.3)

M104: ANN (H = 4) 10281.2 (36.7) 3875.0 (28.7)

Combining models M2 and M3 using ANN

M105: ANN (H = 1) 11776.8 (38.2) 3963.8 (31.2)

M106: ANN (H = 2) 6731.2 (34.2) *3746.0 (30.4)

M107: ANN (H = 3) 6502.6 (32.4) 3763.0 (29.5)

M108: ANN (H = 4) 6481.4 (31.6) 3808.3 (29.2)

Combining models M2 and M4 using ANN

M109: ANN (H = 1) 11646.0 (38.7) 4209.4 (33.2)

M110: ANN (H = 2) 6677.1 (32.7) *3740.8 (29.4)

M111: ANN (H = 3) 6379.9 (33.3) 3885.4 (31.6)

M112: ANN (H = 4) 6348.8 (32.7) 3836.4 (30.2)

Combining models M3 and M4 using ANN

M113: ANN (H = 1) 11331.5 (38.7) 3871.8 (27.2)

M114: ANN (H = 2) 6462.1 (32.5) 3787.4 (29.8)

M115: ANN (H = 3) 6459.0 (32.4) 3784.5 (29.8)

M116: ANN (H = 4) 6455.6 (32.3) *3777.6 (29.3)

*Lower values of MSE in the column.

Source: Own elaboration. 

Table 5. Evaluation of the volatility forecasting combination by ANNs with different number of neurons in the hidden layer
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Figure 2. Conditional variance for monthly excess returns of S&P500 and forecast from the model M86 (combination of 
models M2, M3 and M4 using an ANN with H = 2 neurons in the hidden layer).

Source: Own elaboration. 

Figure 3. Comparison of the forecasts calculated using the M2 and M86 models.

Source: Own elaboration. 

Figure 4. Comparison of the forecasts calculated using the M3 and M86 models.

Source: Own elaboration. 
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Figure 5. Comparison of the forecasts calculated using the M4 and M86 models.

Source: Own elaboration. 

Performance of the preferred model

As we indicated in last section, the M86 model is the pre-
ferred among all possible combinations by ANN of vola-
tility forecasts, in this section we implement a statistical 
test to show the difference in accuracy between the pre-
ferred model and the standard GARCH model (M1). We 
also present an evaluation of the preferred model and the 
standard GARCH model using Value at Risk evaluation.

Statistical test of predictive accuracy

A demonstration of the effectiveness of the M86 model 
over the M1 model is shown in a statistical test. A test of 
the null hypotheses of no difference in accuracy between 
M1 and the preferred model is attempted. We implement 
the test due to Diebold and Mariano (1995), which uses 
the Morgan-Granger-Newbold statistic for testing of these 
hypotheses. The test consists in consider the punctual fore-
casting errors e1t and e2t given by two forecasting models, 
respectively. The used statistic has a Student’s t-distribu-
tion with T − 1 degrees of freedom. The t statistic is de-
fined by:

Where, ; ; , 

to T; and T is the number of observations.

The Morgan-Granger-Newbold test results show that the 
null hypothesis of equal predictive accuracy is rejected be-
tween M1 and M86 models, at 93% level in training sample 
with a ρ–value of 7,06694×10−54 and in the forecast 
sample with a ρ–value of 0,0663.

Value at Risk evaluation

In addition, we have compared the GARCH model fitted by 
maximizing the log L and the preferred model with respect 
to the value at risk performance (VaR) for the data. The 
VaR is defined as the maximum potential loss of a port-
folio that occurs under normal market conditions with a 
predefined probability. Assuming that the returns are nor-
mally distributed, the 95%-VaR is computed as 95% quan-
tile of the returns distribution:

where  is the forecast of the standard deviation given 
all information until time t.

To evaluate the performance of the 95%-VaR estimators 
we are using the failure rate criterion. The failure rate (F) is 
the number of times for which the actual loss is larger than 
the estimated VaR. This criterion is defined as 

where the Dt dummy variable is one if the actual loss is 
larger than the estimated VaR and zero in other case. 

We have used the VaR to evaluate the performance, the 
failure rate of the M86 model is 4.8% and it is low than the 
failure rate of the M1 model (6.2%). We concluded that the 
model obtained from the combination with an ANN can 
improve the predictive accuracy. The results are shown in 
Table 6.

Table 6. Number of times for which the actual loss is larger 
than estimated VaR.

Forecast model M1 M86

Failure rate 49(6.2%) 38(4.8%)

Source: Own elaboration. 
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Conclusions

This work considers the forecasting combination as an al-
ternative to reduce the forecast error of the volatility of 
the monthly excess returns of S&P500. Several GARCH(1,1) 
models were estimate, by considering different error mea-
sures, and combined by the use of simple arithmetical av-
erage and ANNs to produce a new model that integrate all 
information from individual models. The results have been 
showed this forecasting combination approach has a good 
ability for predict with major accuracy the volatility in com-
parison with the traditional forecast models. 

As future work, several research addresses emerge. First, 
consider several datasets with different frequencies and 
proceeding from different markets. Second, analyze other 
alternative models for specifying the experts in the model. 
And third, test and justify the use of other types of loss 
functions for optimizing the parameters of the models 
used as experts. 
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