
63

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

Arquitectura hardware para la implementación de la
transformada discreta Wavelet 2D

ELECTRICAL AND ELECTRONICAL ENGINEERING

Hardware Architecture for the Implementation of the
Discrete Wavelet Transform in two Dimensions

Norma X. Ríos-Cotazo*, Álvaro Bernal-Noreña**§

*Facultad de Ingeniería, Institución Universitaria Antonio José Camacho, Cali, Colombia
**Grupo GADyM, Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle, Cali,

Colombia
ximena.rios.cot@gmail.com , § alvaro.bernal@correounivalle.edu.co

(Recibido: 7 Mayo de 2012- Aceptado: 7 Marzo de 2013)

Resumen
El artículo presenta una arquitectura hardware que desarrolla la transformada Wavelet en dos dimensiones
sobre una FPGA, en el diseño se buscó un balance entre número de celdas lógicas requeridas y la velocidad de
procesamiento. El artículo inicia con una revisión de trabajos previos, después se presentan los fundamentos
teóricos de la transformación, posteriormente se presenta la arquitectura propuesta seguida por un análisis
comparativo. El sistema se implementó en la FPGA Ciclone II EP2C35F672C6 de Altera utilizando un diseño
soportado en el sistema Nios II.

Palabras clave: arquitectura de hardware, FPGA, procesador Nios, transformadora discreta Wavelet.

Abstract
This paper presents a hardware architecture developed by the two-dimensional wavelet transform on an FPGA,
in the design it was searched a balance between the number of required logic cells and the processing speed. The
design is based on a methodology to reuse the input data with a parallel-pipelined structure and a calculation
of the coefficients is performed using a method of odd and even numbers, which is achieved by calculating a
cycle ratio after 2 cycles latency, to store the data processing result of the SDRAM memory is used IS42S16400,
the control unit uses a design architecture supported by Nios II processor. The system was implemented in the
FPGA Altera Cyclone II EP2C35F672C6 using a design that combines descriptions in VHDL, schematics and
control connection via a general purpose processor.

Keywords: Hardware Architectures, FPGA, Nios Processor, Wavelet transform.

64

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

1. Introduction

The Signals representation using decomposing
techniques is an old practice. Approximately
two hundred years ago Joseph Fourier proposed
the representation of functions by superposition
of sinus and cosines, the idea has evolved over
time and the most recent research leads us
to another type of transformations, between
them the Wavelets. The Wavelets are families
of functions used for the analysis of other
functions, as they allow to represent a signal
as a decomposition of simple signals, now
discrete versions of the wavelet transform in
two dimensions (2D -DWT) are being used in
major applications of digital image processing
such as compression systems, noise removal,
radar systems, ECG systems, among others.

Currently, smaller and faster systems are
required. For this reason, a hardware architecture
of high performance and low cost for calculating
of 2D -DWT is necessary.

2. Two dimensions discrete wavelet
transform (2D-DWT)

The Wavelet analysis is based on a dilation
and translation of a scaling function as also a
wavelet function associated in order to obtain
the representation of a signal at different

resolutions, one of the great advances related to
the processing of digital signals using Wavelet
analysis was its implementation using filters,
which were formed using the coefficients of
the scaling and wavelet functions , as proposed
by Grgic & Grgic (2001), the low-pass filter
(h) is associated with the scaling function and
the signal obtained at the output is a smoothed
low-resolution version of the original signal,
the high pass filter (g) is associated with the
Wavelet function and its output signal obtained
contains the details of the signal.

Regarding images processing, we focused
in two-dimension, by extending the one
dimensional transform to two-dimensional
functions. In Figure 1, the development of the
Wavelet transform shows an image using one-
dimensional filters, first the wavelet transform
is applied over each one of the rows related to
the image, which generates two intermediate
images representing the approximation FL
and the detail FH over x axis, then the wavelet
transform is executed over each column of
the intermediate images. In consequence a
smoothed version of the image or average FLL
and three subimages with the details FLH,
FHL and FHH are obtained. FLH emphasizes
the horizontal characteristic, FHL the vertical
and FHH the diagonals, as reported by Hilton
et al (1994). The transformation may be

Figure 1. Block diagram of the filter bank used to calculate the 2D-DWT

65

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

defined according to the expressions proposed
Vishwanath (1994):

(,) () () (,)F x y h k h k f x k y k2 2LL
kk

1 2
2

1 2
1

= - -//
 (1)

(,) () () (,)F x y h k g k f x k y k2 2LH
kk

1 2
2

1 2
1

= - -//
 (2)

(,) () () (,)F x y g k h k f x k y k2 2HL
kk

1 2
2

1 2
1

= - -//
 (3)

(,) () () (,)F x y g k g k f x k y k2 2HH
kk

1 2
2

1 2
1

= - -//
 (4)

Where (x, y) represents the coordinates of the
images, h and g are the high pass and low pass
filters respectively, f is the input image and k
represents the size of the filters.. The process can
be iterated to higher levels, assuming the average
image FLL as input for the next level. Figure 2
shows the transforming for two levels.

The architecture presented in this article is
adapted to a compression system, however can
be used in any application requiring sub-band
frequency analysis , according to Ríos (2011),
the biorthogonal bases like Bior5.3 and Bior9.3
have coefficients which can be converted to
integers using a simple normalization, therefore
is not required in the implementation to use
modules of floating point arithmetic, in this same
work, some results showing that it is possible
to use 16-bit integer coefficients of accuracy

Figure 2. Block diagram of the filter bank used to calculate two levels of the 2D-DWT

without significantly affecting the reconstruction
quality of image, for that reason the proposed
architecture was implemented using integer
arithmetic. For that reason the proposed
architecture was implemented using arithmetic
of integer number. For applications requiring
representation in floating point, it is possible
maintain the overall structure of the architecture,
but it will be necessary to modify the calculation
blocks for working floating point arithmetic.

2.1 2D-DWT architectures hardware - state
of the art

Chen et al, propose a parallel processing
architecture that calculates the 2D -DWT using
an adaptation of Recursive Pyramid Algorithm
(RPA) Vishwanath (1994). The general idea
of the RPA consists in rethinking the order in
which the transform coefficients are calculated.
So, we are looking for start the calculation of the
next level without completing the calculation
of the coefficients of the previous level, Chen
presents an adaptation to transformations in
two dimensions and instead to organize the
transformation making the calculus pixel-to-
pixel, a planning of rows is done. Therefore the
coefficients of an entire row must be calculated
in parallel, the effort required to keep track of
the last coefficients calculated increases the
complexity of the controller becoming its main
disadvantage. Vishwanath et al (1994) present
two architectures, the first one consists essentially

66

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

of a one-dimension module for conversion that is
used repeatedly to calculate the 2D -DWT, the
advantage of the architecture is its simplicity,
but it requires too many memory cells which
makes it inconvenient for implementation on a
chip, another drawback is the latency required to
generate the first output data; the proposed second
architecture by Vishwanath et al (1995), consists
of a systolic filter that handles the filtering in the
horizontal direction, a parallel filter to handle the
vertical direction and a storage unit. Two rows
are processed in the systolic filter in the order of
RPA schema while a parallel filter calculates 4
rows which constitutes four outputs of the first
level being one of them carried to the systolic
filter for further processing, this approach allow
improve the performance with respect to the
first architecture but the area required for its
implementation increases. Colom et al (2001)
present an architecture that works with non -
separable 2D filters based on a parallel structure
called even-odd, the architecture is recurrent.

There is a filter unit which is used for
calculating the first level and presents processing
continuous, another filter unit is responsible for
the calculation of the other levels and begins
when the first unit has generated the first four
rows and its calculus continue each time that the
first generates two new lines; the intermediate
time periods are utilized for implementing the
recurrence. Two storage units which act as a
link between levels are used, the architecture
uses distributed control units in order to provide
scalability, there is a control inside of the filter
unit and a control for synchronizing the operation
between two consecutive levels; by increasing
the number of levels the number of control units
must be replicated. Sheu et al (2000), propose an
architecture which involves two horizontal filters
modules for calculating the coefficients along
rows and two vertical modules for calculating
along the columns, each module consists of a
high band pass filter and a low band pass filter.
A horizontal filter processes the lines and stores
the result in the first storage unit, then the result
is processed by the vertical filter, the output of the
bottom filter is loaded into the horizontal filter
and the process is iterated. The filter modules are
based on a methodology of reuse of input data
with a parallel - pipelined structure. Chakrabarti

et al (1999), show two architectures, the first
involves two memory units and four parallel
filters units composed of a high pass filter and a
low pass filter, the first two filters calculate along
rows, its output is stored in the first memory unit
where data are read by columns for the following
two filters and the coefficients are calculated
along the columns, similarly the outputs of these
filters are stored in the second memory unit by
columns and read in rows by the second filter, in
the work two scheduling algorithms of the data
stream that can be used on this architecture are
presented, due to the filter units are recursively
used to calculate two sub images, a delay of N
cycles is generated which may be unacceptable
for some applications. The proposed second
architecture by Andra et al (2002), is a modified
version of the above which seeks to reduce the
delay generated by the recursion, this proposal
increases two units of filters to produce at the
same time the output of all sub images of the
same level achieving reduce the size of the
storage units and delay.

This article presents an alternative architecture
with a simple routing and a control unit of
moderate complexity which decreases the
time required to compute the discrete wavelet
transform in two dimensions.

2.2 2D- DWT approach architecture

Figure 3 shows the block diagram of the
proposed architecture for executing the 2D
- DWT in hardware, the architecture consists
of three storage units (UM1, UM2, UM3), a
control unit and three parallel filters units (UF1,
UF2 , UF3) composed of a high-pass filter and
a low pass filter.

The control unit is responsible for scheduling
the data flow as follows: the UF1 processes
the input image along the rows and generates
the intermediate images FH and FL, these sub
images are stored in UM1 and UM2 for be
carried out to UF2 and UF3 where images are
processed by columns, in UF2 the coefficients
of the FHL, FHH sub images are generated
while in UF3 both FLL and FLH are provided.
The output of the low component of UF3 is
stored in UM3 to be loaded later in UF1 where

67

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

the process is iterated to calculate the next level.

The design was implemented on the development
board DE2 (2010), this card is composed by an
FPGA Cyclone II EP2C35F672C6 (2010) and
several storage units (SDRAM, SRAM and
FLASH). It is possible to create on the FPGA an
instance of the Nios II module for applications
that require a processor, the card also involves
standard interfaces such as RS- 232 and PS/2,
standard connectors for microphone, input
and output audio (24 bits), video input (TV
Decoder), VGA (10-bits DAC), offers USB 2.0
connectivity , Ethernet 10/100 , an infrared port
(IrDA), connectivity to other cards required by
the user by means of two expansion modules. For
the mentioned reason the card was considered
an ideal platform for prototyping regarding
multimedia and networks applications. In this
work the picture was taken from a file stored in
the SDRAM. Figure 4, shows the block diagram
of the system implemented on the DE2.

2.3 Unit memory

As mentioned in the previous section, the memory
units store the data obtained from the processing,
the UM1 and UM2 units store the results of the
transformation along the rows (FL, FH). NxN/2
memory cells are required for storing the result of
processing an image of size NxN. The UM3 unit

Figure 3. Parallel Architecture by level

stores the low frequency component results of
the transformation by columns; for that N/2xN/2
cells are required. Therefore the requirements of
capacity of memory of the proposed architecture
are determined by:

T N N N N N N N2 2 2 2 4
5

MEM
2$ $ $= + + =

(5)

The Cyclone II EP2C35F672C6 FPGA has
an internal memory structure organized in 3
columns containing a total of 105 blocks that
provide a storage capacity of 483840 bits and
a maximum operating speed of 250MHz, in
consequence it will be able to process images
with N lower than 220 pixels, although it is
possible to expand the internal storage using
blocks of logical arrangements to store data, it
is not recommended since only increase 2047
bytes using all the resources of the FPGA. To
process larger images, storage capacity of the
system was increased by using one of the DE2´s
block memory. The SDRAM IS42S16400
which stores data of 8 Mbytes was used;
respect to interface connection, Altera has
developed a tool called SoPC builder (System
expanded on a Programmable Chip) (2010
), which allows reuse IP blocks and uses the
AVALON interconnect bus which requires less
logic elements in the connection and improves
performance in the transmission rate.

68

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

2.4 Filters unit

The filter unit is based on a reuse methodology
of input data mixed with a parallel-pipelined
structure similar to that proposed by Sheu et al
(2000), but the calculation of the coefficients
is performed using the methodology even-odd
reported by Colom et al (2001). This strategy
allows the calculation of one coefficient by
cycle after 2 cycles of latency, the overall
scheme of the filter unit is shown in Figure
5. Each unit has two filters, and each filter is
composed of: a shift register that stores the filter
coefficients and is configured so that each cycle
makes two shifts; three units of Multiplier-
Adder-Accumulator (MSA1, MSA2, MSA3)
composed of two multipliers (one for pair data
and another for the odd data); an adder and
an accumulator register; a multiplexer that
selects which of the data is ready to be sent to
the next stage.

To illustrate the operation of this unit, we must
consider two filters h (Low-pass) and g (High-
pass) with six coefficients defined as:

[]654321 ,,,,, hhhhhhh =

(6)

[]654321 ,,,,, ggggggg =

(7)

Let f be a signal with N data, whose discrete
values are defined so:

[]Nffffff ,...,,, 4321=

(8)

By transforming the signal f using the filters g and
h, two signals are obtained, one of approximation
(A) and another with the details (D), whose
coefficients can be expressed as follows:





=

2
4321 ,...,,, NAAAAAA

(9)





=

2
4321 ,...,,, NDDDDDD

 (10)

Considering that the one-dimensional
transformation is defined by the following
equations:

∑ −=
k

kxfkhxA]2[][][

(11)

Figure 4. Block Diagram of the Implemented System in
Card Development DE2

69

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

∑ −=
k

kxfkgxD]2[][][(12)

We can use Eq. (11) to express each coefficient
as follows:

 A1= f1.h1+f2.h2+f3.h3+f4.h4+f5.h5+f6.h6 (13)

 A2= f3.h1+f4.h2+f5.h3+f6.h4+f7.h5+f8.h6 (14)

 A3= f5.h1+f6.h2+f7.h3+f8.h4+f9.h5+f10.h6 (15)

 A4= f7.h1+f8.h2+f9.h3+f10.h4+f11.h5+f12.h6 (16)

To reach the limits of the signal where:

211
2

.. hfhfA NNN += −
(17)

Reuse methodology consists in organizing the
flow of the input data so that it can be calculated
in parallel several output data, this process is
illustrated in Figure 6.

In each cycle the register of coefficients shifts
two spaces. So in the first cycle, to MSA1
arrives the coefficients h1, h2; to MSA2 arrives
h3, h4 and to MSA3 arrives h5, h6. In the
second cycle to MSA1 arrives the coefficients
h3, h4; to MSA2 arrives the coefficients h5, h6

Figure 5. Unit Filters

Figure 6. Data flow per cycle

70

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

and to MSA3 arrives and h1, h2. In the third
cycle, to MSA1 arrives the coefficients h5, h6;
to MSA2 arrives h1, h2 and to MSA3 arrives
h3, h4. The process repeats until the end of the
transformation. In the first cycle enters f1, f2,
with these data the MSA1 begins the calculation
of A1 accumulating f1.h1 + f2.h2. In second cycle
enters f3, f4, so the MSA1 accumulates f3.h3 + f4.h4
while in parallel the MSA2 uses the same input
data to calculate A2 accumulating f3.h1 + f4.h2.
In the third cycle enters f5, f6, the MSA1 unit
calculates f5.h5 + f6.h6 thereby completing the
calculation of A1. In parallel, MSA2 calculates
f5.h3 + f6.h4 and MSA3 begins the calculation of
A3 accumulating f5.h1 + f6.h2.

Henceforth, one output data will be provided in
each cycle while the multiplexer turns on in order
to lead this result to the output. In the fourth cycle
enters f7,f8, the MSA1 begins the calculation of
A4 accumulating f7.h1+f8.h2, the MSA2 calculates
f7.h5+f8.h6 completing thus the calculation of
A2, the MSA3 accumulates f7.h3+f8.h4. In the
fifth cycle enters f9,f10, the MSA1 accumulates
f9.h3+f10.h4, the MSA2 begins the calculation of
A5 and the MSA3 completes the calculation of A3
accumulating f9.h5+f10.h6; hereinafter the process
is iterated until the end of the input signal.

Following the methodology described in the
previous paragraph, the components of high
pass of the output signal must be calculated
in a parallel architecture, the only difference
lies in the stored data in the shift register
which must correspond to the coefficients of
the high pass filter. Note that each input data is
used in the partial calculation of several output
coefficients.

When processing the pairs in parallel with the
odd two output data (one high pass and one
low-pass) are available at each clock cycle after
the third cycle. Thus a one-dimensional signal
transforms of size N is performed in N/2 + 2 clock
cycles, by expanding the processing for two-
dimensional signal of size N x N requires (N/2
+ 2)N cycles to process all rows and (N/2 + 2)
N/2 cycles to process all columns, thus the total
of required cycles for the proposed architecture
for computing the coefficients of the first level of
transformation is determined by:

NNNNNNTCICLOS 3
4
3

2
2

2
2

2
2 +=






 ++






 +=

 (18)

The planning algorithm of the flow inside the
filter unit can be expressed as follows Rios &
Bernal (2011)

X=1

FOR i=1 To N TO INCREASE +2

 211 hfhfA iiX ++=

 211 gfgfD iiX ++=

 IF (x >1) THEN

 41311 gfgfDD iiXX +−− ++=
 END IF
 IF (x >2) THEN

61522 hfhfAA iiXX +−− ++=

 61522 gfgfDD iiXX +−− ++=

END IF

 X=X+1
END TO

41311 hfhfAA iiXX +−− ++=

The filter unit was modeled using VHDL and
Altera megafunciones, structural design has
5 modules: Registry coefficients, multiplier,
adder, accumulator register and multiplexer. For
the implementation of the multipliers of lpm_
mul Altera megafunción allowing embedded
multipliers used by optimizing the use of the
FPGA, for the megafunción Altera Multiplexer
lpm_mux to synthesize as described in VHDL
design 17 required logical elements are used
further, the adder module was implemented
with the megafunción parallel_add as described
in VHDL design required a longer stabilization
0.577ns, the remaining elements and the
connecting lines were modeled in VHDL.

This unit was synthesized in a Cyclone II FPGA
of Altera EP2C35F672C6 using the Quartus II
version 6.0 design web edition, Table I shows
the resources used in the implementation of the
filter unit.

71

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

Table 1. Resources used in the filter unit

Type Resources Used
Logic elements 292 / 33216 (<1%)

Records 219
Memory Bits 0 / 483840 (0%)

Embedded Multipliers 24 / 70 (34%)
PLL 0 / 4 (0%)

Table I notes that in the implementation of the
filter unit 34% of embedded multipliers, 1% of
the logic elements and 0 % of bits of memory
are used, this is evidence that space is available
within FPGA to increase the degree of parallelism
in the design and simultaneously use multiple
filter units , which would provide the coefficients
for higher levels in less time occupying all the
available multiplier, in applications where
FPGA is used only for implementation phase
of this transformation is a viable option, but
in applications where you need to implement
additional functions on the FPGA using the
recursive filter units for the calculation of the
following levels of transformation is necessary.

Figure 7 shows part of the results of the simulation
of the filter unit, in the first clock cycle of the
charging records the values of coefficients of
the filters is performed using the charge control
signal (Load) records storage and cleaning using
the signal (Clear) in the second cycle partial
operations is cleaned, from the third cycle output
two coefficients are obtained in each cycle for
which multiplexers are switched through its
signal selection (Sel), three cycles are necessary
to generate signals cleaning climbing to clear
accumulators records, pairs data are represented
by the signal called FPAR and odd by Fimpar,
the coefficients of high frequency transformation
signal output a and D low frequency, for the
validation of the data obtained the system model
in Matlab and the results were compared, the

data obtained from the processing and processed
in Matlab of the simulation in Quartus totally
agree (Error 0 %), which is consistent with
expectations since at this stage the data have not
yet been quantified.

2.5 Control unit

For the architecture control-unit, a design which
is supported in the NIOS II [13] system is used.
Nios II is defined in a hardware description
language which can be implemented in Altera
FPGAs using Quartus II synthesis tool in
conjunction with the processor SoPC Builder,
there are three versions of the processor: the
economic Nios/e, the standard Nios/s and rapid
Nios/f. The economic version has a smaller core
this version does not handle cache memory or
specialized hardware to develop arithmetic
operations; for the control architecture, the
economic version was chosen because the
operations required to control the architecture
does not include complex operations.

Control instructions are developed in C + +
using the integrated development environment
NIOS II IDE that enables compile, debug and
download fonts in C / C + + on the developed
system . To store the program to be executed
must allocate a memory space, the DE2 board
has a chip that stores 512Kbytes SRAM and
is included in the system as program memory
(see Figure 4); as well as the SDRAM, the
SRAM is connected to the AVALON bus, using
the SoPC Builder. The flow chart of the main
program is shown in Figure 8 and the flowchart
of the function for calculating the transform of a
dimension is shown in Figure 9.

Calculation blocks access memory-units through
the processor, it generates the instructions to
connect to an interface block which permits

Figure 7. Simulation Unit Filters

72

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

access of the SDRAM through a bus Avalon,
the processor or control unit plans all data flow
through the architecture generating the necessary
signals for operation (load signals to the records,
select signals for the multiplexers, read and write
signals on the SDRAM, etc.)

3. Results and discussion

In architectures implemented on FPGAs, it
should be taken into account that they contain
a limited number of logic cells. Therefore, it is
necessary that the design is oriented towards
the optimization of this resource. Whereas
a large number of logic cells is required for

implementing storage elements, it is convenient
to use a lower requirement architectures memory.
Similarly routing complexity also leads to a
high consumption of logic cells because more
elements are required to interconnect the system
being desirable a less complex routing network;
another major factor is the time required for the
calculation of the transformation, it should be
minimized to process large amounts of images
at satisfactory rates, and likewise it is desirable
to reduce the complexity of the control system
so that the architecture is easily scalable and
programmable. Achieving these objectives is
particularly difficult in an FPGA as area and
speed are inversely proportional and satisfying

Figure 8. Flowchart Program Control Unit

73

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

a requirement means significantly affecting the
other, for example, the speed can be increased
with a high degree of parallelism which implies
an increase in the required area. Table II relates
these features to the surveyed and proposed
architectures from Table II can be observed that
the proposed architecture in this paper presents
a decrease in computation time compared to the
surveyed architectures, in the most notable case
is improved approximately 3N2 cycles and the
least significant event is approximately 0.25N2
cycles, the improvement does not complicate
implementation since a simple routing is
maintained and control unit with moderate
complexity is preserved . If in fact in our

proposal required more store cells, this mishap
can be overcome by using an external memory
for data storage.

4. Conclusion

The hardware architecture presented to develop
the discrete wavelet transform in two dimensions
provides an efficient performance and speed of
calculation area, the architecture uses 3/4N2
+2 N cycles for transforming an image of size
NxN achieving improvement over architectures
developed on previous works, also it maintains
control and a routing of moderate complexity. This
architecture is adapted to an image processing

Figure 9. Flowchart of the function used to calculate the
transform in one dimension

74

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

system, however it can be used in any application
of signal requiring subband frequency analysis.

5. References

Altera Corporation (2010). Cyclone II Device
Handbook. http://www.altera.com/literature/lit-
cyc2.jsp Webdocs

Altera Corporation. (2011). Nios II Processor
Reference Handbook. http://www.altera.com/
literature/lit-nio2.jsp#related_documentation

Altera Corporation. (2010). User Guide SoPC
Builder. http://www.altera.com/literature/lit-
nio2.jsp#related_documentation

Andra, K., Chakrabarti, C., & Acharya, T. (2002)
A VLSI architecture for lifting-based forward and
inverse wavelet transform. IEEE Transactions on
Signal Processing 50 (4), 966-977

Colom, R. J., Gadea, R., Sebastiá, A., Martinez,
M., Ballester, F., & Herrero, V. (2001).
Implementación de la Transformada Wavelet
Discreta 2D con filtros no separables. In I
Conference on Reconfigurable Computing and
Applications, Alicante, Spain.

Colom, R. J., Gadea, R., Sebastiá, A.,
Martinez, M., Herrero, V., & Arnau, V. (2001).

Architecture Storage Requirement Time
Calculation

routing Control

Architecture Proposed in
This Work

5/4 N2 3/4 + N2 + 3N simple moderate

Architecture Parallel
Processing Rows Chen et al.

(K+1)NJ N2 + N complex complex

Architecture Direct
Approach Vishwanath et al.

N2 4N2 simple simple

Architecture Systolic-
Parallel Vishwanath et al.

2NK N2 + N complex complex

Architecture Recurring for
Three Levels Colom et al.

6N N2 + N moderate moderate

Architecture Recurring for
Three Levels Sheu et al.

N/2 + N/4 N2 + N moderate moderate

Architecture 1 Parallel
Chakrabarti et al.

≈N(3/2 - 21-J) + KN(2 - 21-J) ≈N2 moderate moderate

Architecture 2 Parallel
Chakrabarti et al.

≈KN(1-2-J) + N(1-21-J) ≈N2 moderate moderate

Table 2. Performance and Comparison of Architecture

Transformada Discreta Wavelet 2-D para
Procesamiento de Vídeo en Tiempo Real. In XII
Parallelism Workshop, Valencia, Spain.

Chakrabarti, C., & Mumford, C. (1999). Efficient
Realizations of Encoders and Decoder Based
on the 2-D Discrete Wavelet Transform. IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems 7(3), 289-298.

Chen, C., Yang, Z., Wang, T., & Chen, L.
(2000). A programmable VLSI architecture
for 2-D discrete wavelet transform. In IEEE
International Symposium ON Circuits and
Systems, pp. 619-622

DE2 User Manual, Altera Corporation. (2010).
ftp://ftp.altera.com/up/pub/

Grgic, S., & Grgic, M. (2001). Performance
Analysis of Image Compression Using Wavelets.
IEEE Transactions on Industrial Electronics 48
(3), 682-695.

Hilton, M.L., Jawerth, B.D., & Sengupta. A.
(1994). Compressing still and moving images
with wavelets. Multimedia Systems 2(3), 218–
227

Ríos, X. (2011). Diseño e Implementación de
un Sistema de Compresión de Imágenes Usando
Dispositivos Reprogramables. Master Thesis,

75

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

Faculty of Engineering, Universidad del Valle,
Cali, Colombia.

Ríos, X., & Bernal, A. (2011). Implementación de
un Sistema de Compresión en el Dominio Wavelet
sobre una FPGA Usando el Procesador Nios II.
In II International Congress on Instrumentation
Control and Telecommunications, Tunja,
Colombia.

Sheu, M., Shieh, M., & Liu, S. (1998). A VLSI
Architecture Design With Lower Hardware Cost
and Less Memory for separable 2-D Discrete

Wavelet Transform. In Proceedings of the
IEEE International Symposium on Circuits and
Systems (ISCAS) 5, p. 457-460.

Vishwanath, M. (1994). The Recursive Pyramid
Algorithm for the discrete wavelet transform.
IEEE Transactions on Signal Processing 42(3),
673-676.

Vishwanath, M., Owens, R. M., & Irwin, M.
J. (1995). VLSI architectures for the discrete
wavelet transform. IEEE Transactions on
Circuits and Systems – II 42(3), 305-316

