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Resumen
El artículo presenta una arquitectura hardware que desarrolla la transformada Wavelet en dos dimensiones 
sobre una FPGA, en el diseño se buscó un balance entre número de celdas lógicas requeridas y la velocidad de 
procesamiento. El artículo inicia con una revisión de trabajos previos, después se presentan los fundamentos 
teóricos de la transformación, posteriormente se presenta la arquitectura propuesta seguida por un análisis 
comparativo. El sistema se implementó en la FPGA Ciclone II EP2C35F672C6 de Altera utilizando un diseño 
soportado en el sistema Nios II. 

Palabras clave: arquitectura de hardware, FPGA, procesador Nios, transformadora discreta Wavelet.

Abstract
This paper presents a hardware architecture developed by the two-dimensional wavelet transform on an FPGA, 
in the design it was searched a balance between the number of required logic cells and the processing speed. The 
design is based on a methodology to reuse the input data with a parallel-pipelined structure and a calculation 
of the coefficients is performed using a method of odd and even numbers, which is achieved by calculating a 
cycle ratio after 2 cycles latency, to store the data processing result of the SDRAM memory is used IS42S16400, 
the control unit uses a design architecture supported by Nios II processor. The system was implemented in the 
FPGA Altera Cyclone II EP2C35F672C6 using a design that combines descriptions in VHDL, schematics and 
control connection via a general purpose processor.

Keywords: Hardware Architectures, FPGA, Nios Processor, Wavelet transform.
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1. Introduction

The Signals representation using decomposing 
techniques is an old practice. Approximately 
two hundred years ago Joseph Fourier proposed 
the representation of functions by superposition 
of sinus and cosines, the idea has evolved over 
time and the most recent research leads us 
to another type of transformations, between 
them the Wavelets. The Wavelets are families 
of functions used for the analysis of other 
functions, as they allow to represent a signal 
as a decomposition of simple signals, now 
discrete versions of the wavelet transform in 
two dimensions ( 2D -DWT ) are being used in 
major applications of digital image processing 
such as compression systems, noise removal, 
radar systems, ECG systems, among others.

Currently, smaller and faster systems are 
required. For this reason, a hardware architecture 
of high performance and  low cost for calculating 
of 2D -DWT is necessary.
 
2. Two dimensions discrete wavelet 
transform (2D-DWT)

The Wavelet analysis is based on a dilation 
and translation of a scaling function as also a 
wavelet function associated in order to obtain 
the representation of a signal at different 

resolutions, one of the great advances related to 
the processing of digital signals using Wavelet 
analysis was its implementation using filters, 
which were formed using the coefficients of 
the scaling and wavelet functions , as proposed 
by Grgic & Grgic (2001), the low-pass filter 
(h) is associated with the scaling function and 
the signal obtained at the output is a smoothed 
low-resolution version of the original signal, 
the high pass filter (g) is associated with the 
Wavelet function and its output signal obtained 
contains the details of the signal. 

Regarding images processing, we focused 
in two-dimension, by extending the one 
dimensional transform to two-dimensional 
functions. In Figure 1, the development of the 
Wavelet transform shows an image using one-
dimensional filters, first the wavelet transform 
is applied over each one of the rows related to 
the image, which generates two intermediate 
images representing the approximation FL 
and the detail FH over x axis, then the wavelet 
transform is executed over each column of 
the intermediate images. In consequence a 
smoothed version of the image or average FLL 
and three subimages with the details FLH, 
FHL and FHH are obtained. FLH emphasizes 
the horizontal characteristic, FHL the vertical 
and FHH the diagonals, as reported by Hilton 
et al (1994). The transformation may be 

Figure 1. Block diagram of the filter bank used to calculate the 2D-DWT
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defined according to the expressions proposed 
Vishwanath (1994):
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Where (x, y) represents the coordinates of the 
images, h and g are the high pass and low pass 
filters respectively, f is the input image and k 
represents the size of the filters.. The process can 
be iterated to higher levels, assuming the average 
image FLL as input for the next level. Figure 2 
shows the transforming for two levels.

The architecture presented in this article is 
adapted to a compression system, however can 
be used in any application requiring sub-band 
frequency analysis , according to Ríos ( 2011), 
the biorthogonal bases like Bior5.3 and Bior9.3 
have coefficients which can be converted to 
integers using a simple normalization, therefore 
is not required in the implementation  to use 
modules of floating point arithmetic, in this same 
work, some results showing that it is possible 
to use 16-bit integer coefficients of accuracy 

Figure 2. Block diagram of the filter bank used to calculate two levels of the 2D-DWT

without significantly affecting the reconstruction 
quality of image, for that reason the proposed 
architecture was implemented using integer 
arithmetic. For that reason the proposed 
architecture was implemented using arithmetic 
of integer number. For applications requiring 
representation in floating point, it is possible 
maintain the overall structure of the architecture, 
but it will be necessary to modify the calculation 
blocks for working floating point arithmetic.

2.1 2D-DWT architectures hardware - state 
of the art

Chen et al, propose a parallel processing 
architecture that calculates the 2D -DWT using 
an adaptation of Recursive Pyramid Algorithm 
(RPA) Vishwanath (1994). The general idea 
of the RPA consists in rethinking the order in 
which the transform coefficients are calculated. 
So, we are looking for start the calculation of the 
next level without completing the calculation 
of the coefficients of the previous level, Chen 
presents an adaptation to transformations in 
two dimensions and instead to organize the 
transformation making the calculus pixel-to-
pixel, a planning of rows is done. Therefore the 
coefficients of an entire row must be calculated 
in parallel, the effort required to keep track of 
the last coefficients calculated increases the 
complexity of the controller becoming its main 
disadvantage. Vishwanath et al (1994) present 
two architectures, the first one consists essentially 
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of a one-dimension module for conversion that is 
used repeatedly to calculate the 2D -DWT, the 
advantage of the architecture is its simplicity, 
but it requires too many memory cells which 
makes it inconvenient for implementation on a 
chip, another drawback is the latency required to 
generate the first output data; the proposed second 
architecture by Vishwanath et al (1995), consists 
of a systolic filter that handles the filtering in the 
horizontal direction, a parallel filter to handle the 
vertical direction and a storage unit. Two rows 
are processed in the systolic filter in the order of 
RPA schema while a parallel filter calculates 4 
rows which constitutes four outputs of the first 
level being one of them carried to the systolic 
filter for further processing, this approach allow 
improve the performance with respect to the 
first architecture but the area required for its 
implementation increases. Colom et al (2001) 
present an architecture that works with non - 
separable 2D filters based on a parallel structure 
called even-odd, the architecture is recurrent. 

There is a filter unit which is used for 
calculating the first level and presents processing 
continuous, another filter unit is responsible for 
the calculation of the other levels and begins 
when the first unit has generated the first four 
rows and its calculus continue each time that the 
first generates two new lines; the intermediate 
time periods are utilized for implementing the 
recurrence. Two storage units which act as a 
link between levels are used, the architecture 
uses distributed control units in order to provide 
scalability, there is a control inside of the filter 
unit and a control for synchronizing the operation 
between two consecutive levels; by increasing 
the number of levels the number of control units 
must be replicated. Sheu et al (2000), propose an 
architecture which involves two horizontal filters 
modules for calculating the coefficients along 
rows and two vertical modules for calculating 
along the columns, each module consists of a 
high band pass filter and a low band pass filter. 
A horizontal filter processes the lines and stores 
the result in the first storage unit, then the result 
is processed by the vertical filter, the output of the 
bottom filter is loaded into the horizontal filter 
and the process is iterated. The filter modules are 
based on a methodology of reuse of input data 
with a parallel - pipelined structure. Chakrabarti 

et al (1999), show two architectures, the first 
involves two memory units and four parallel 
filters units composed of a high pass filter and a 
low pass filter, the first two filters calculate along 
rows, its output is stored in the first memory unit 
where data are read by columns for the following 
two filters and the coefficients are calculated 
along the columns, similarly the outputs of these 
filters are stored in the second memory unit by 
columns and read in rows by the second filter, in 
the work two scheduling algorithms of the data 
stream that can be used on this architecture are 
presented, due to the filter units are recursively 
used to calculate two sub images, a delay of N 
cycles is generated which may be unacceptable 
for some applications. The proposed second 
architecture by Andra et al (2002 ), is a modified 
version of the above which seeks to reduce the 
delay generated by the recursion, this proposal 
increases two units of filters to produce at the 
same time the output of all sub images of the 
same level  achieving reduce the size of the 
storage units and delay.

This article presents an alternative architecture 
with a simple routing and a control unit of 
moderate complexity which decreases the 
time required to compute the discrete wavelet 
transform in two dimensions.

2.2 2D- DWT approach architecture 

Figure 3 shows the block diagram of the 
proposed architecture for  executing  the 2D 
- DWT in hardware, the architecture consists 
of three storage units (UM1, UM2, UM3), a 
control unit and three parallel filters units (UF1, 
UF2 , UF3) composed of a high-pass filter and 
a low pass filter.

The control unit is responsible for scheduling 
the data flow as follows: the UF1 processes 
the input image along the rows and generates 
the intermediate images FH and FL, these sub 
images are stored in UM1 and UM2 for be 
carried out to UF2 and UF3 where images are 
processed by columns, in UF2 the coefficients 
of the FHL, FHH sub images are generated 
while in UF3 both FLL and FLH are provided. 
The output of the low component of UF3 is 
stored in UM3 to be loaded later in UF1 where 
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the process is iterated to calculate the next level.

The design was implemented on the development 
board DE2 (2010), this card is composed by an 
FPGA Cyclone II EP2C35F672C6 (2010) and 
several storage units (SDRAM, SRAM and 
FLASH). It is possible to create on the FPGA an 
instance of the Nios II module for applications 
that require a processor, the card also involves 
standard interfaces such as RS- 232 and PS/2, 
standard connectors for microphone, input 
and output audio (24 bits), video input (TV 
Decoder), VGA (10-bits DAC), offers USB 2.0 
connectivity , Ethernet 10/100 , an infrared port 
( IrDA), connectivity to other cards required by 
the user by means of two expansion modules. For 
the mentioned reason the card was considered 
an ideal platform for prototyping regarding 
multimedia and networks applications. In this 
work the picture was taken from a file stored in 
the SDRAM. Figure 4, shows the block diagram 
of the system implemented on the DE2.

2.3 Unit memory

As mentioned in the previous section, the memory 
units store the data obtained from the processing, 
the UM1 and UM2 units store the results of the 
transformation along the rows (FL, FH). NxN/2 
memory cells are required for storing the result of 
processing an image of size NxN. The UM3 unit 

Figure 3. Parallel Architecture by level

stores the low frequency component results of 
the transformation by columns; for that N/2xN/2 
cells are required. Therefore the requirements of 
capacity of memory of the proposed architecture 
are determined by:

T N N N N N N N2 2 2 2 4
5

MEM
2$ $ $= + + =

  
(5)

The Cyclone II EP2C35F672C6 FPGA has 
an internal memory structure organized in 3 
columns containing a total of 105 blocks that 
provide a storage capacity of 483840 bits and 
a maximum operating speed of 250MHz, in 
consequence it will be able to process images 
with N lower than 220 pixels, although it is 
possible to expand the internal storage using 
blocks of logical arrangements to store data, it 
is not recommended since only increase 2047 
bytes using all the resources of the FPGA. To 
process larger images, storage capacity of the 
system was increased by using one of the DE2´s 
block memory. The SDRAM IS42S16400 
which stores data of 8 Mbytes was used; 
respect to interface connection, Altera has 
developed a tool called SoPC builder (System 
expanded on a Programmable Chip) (2010 
), which allows reuse IP blocks and uses the 
AVALON interconnect bus which requires less 
logic elements in the connection and improves 
performance in the transmission rate.
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2.4 Filters unit 

The filter unit is based on a reuse methodology 
of input data mixed with a parallel-pipelined 
structure similar to that proposed by Sheu et al 
(2000), but the calculation of the coefficients 
is performed using the methodology even-odd 
reported by Colom et al (2001). This strategy 
allows the calculation of one coefficient by 
cycle after 2 cycles of latency, the overall 
scheme of the filter unit is shown in Figure 
5. Each unit has two filters, and each filter is 
composed of: a shift register that stores the filter 
coefficients and is configured so that each cycle 
makes two shifts; three units of Multiplier-
Adder-Accumulator (MSA1, MSA2, MSA3) 
composed of two multipliers (one for pair data 
and another for the odd data); an adder and  
an accumulator register; a multiplexer that 
selects which of the data is ready to be sent to 
the next stage.

To illustrate the operation of this unit, we must 
consider two filters h (Low-pass) and g (High-
pass) with six coefficients defined as:

[ ]654321 ,,,,, hhhhhhh =
          

(6)

[ ]654321 ,,,,, ggggggg =
          

(7)

Let f be a signal with N data, whose discrete 
values are defined so:

[ ]Nffffff ,...,,, 4321=
         

(8)

By transforming the signal f using the filters g and 
h, two signals are obtained, one of approximation 
(A) and another with the details (D), whose 
coefficients can be expressed as follows:





=

2
4321 ,...,,, NAAAAAA

        
(9)





=

2
4321 ,...,,, NDDDDDD

      
 (10)

Considering that the one-dimensional 
transformation is defined by the following 
equations:

∑ −=
k

kxfkhxA ]2[][][

         
(11)

Figure 4. Block Diagram of the Implemented System in 
Card Development DE2



69

Ingeniería y Competitividad, Volumen 16, No. 1, p. 63 - 75 (2014)

∑ −=
k

kxfkgxD ]2[][][           (12)

We can use Eq. (11) to express each coefficient 
as follows:

        A1= f1.h1+f2.h2+f3.h3+f4.h4+f5.h5+f6.h6     (13)

       A2= f3.h1+f4.h2+f5.h3+f6.h4+f7.h5+f8.h6      (14)

       A3= f5.h1+f6.h2+f7.h3+f8.h4+f9.h5+f10.h6    (15)

       A4= f7.h1+f8.h2+f9.h3+f10.h4+f11.h5+f12.h6  (16)

To reach the limits of the signal where:

211
2

.. hfhfA NNN += −            
(17)

Reuse methodology consists in organizing the 
flow of the input data so that it can be calculated 
in parallel several output data, this process is 
illustrated in Figure 6.

In each cycle the register of coefficients shifts 
two spaces. So in the first cycle, to MSA1 
arrives the coefficients h1, h2; to MSA2 arrives 
h3, h4 and to MSA3 arrives h5, h6.  In the 
second cycle to MSA1 arrives the coefficients 
h3, h4; to MSA2 arrives the coefficients h5, h6 

Figure 5. Unit Filters

Figure 6. Data flow per cycle
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and to MSA3 arrives and h1, h2. In the third 
cycle, to MSA1 arrives the coefficients h5, h6; 
to MSA2 arrives h1, h2 and to MSA3 arrives 
h3, h4. The process repeats until the end of the 
transformation. In the first cycle enters f1, f2, 
with these data the MSA1 begins the calculation 
of A1 accumulating f1.h1 + f2.h2. In second cycle 
enters f3, f4, so the MSA1 accumulates f3.h3 + f4.h4 
while in parallel the MSA2 uses the same input 
data to calculate A2 accumulating f3.h1 + f4.h2. 
In the third cycle enters f5, f6, the MSA1 unit 
calculates f5.h5 + f6.h6 thereby completing the 
calculation of A1. In parallel, MSA2 calculates 
f5.h3 + f6.h4 and MSA3 begins the calculation of 
A3 accumulating f5.h1 + f6.h2. 

Henceforth, one output data will be provided in 
each cycle while the multiplexer turns on in order 
to lead this result to the output. In the fourth cycle 
enters f7,f8, the MSA1 begins the calculation of 
A4 accumulating f7.h1+f8.h2, the MSA2 calculates 
f7.h5+f8.h6 completing thus the calculation of 
A2, the MSA3 accumulates  f7.h3+f8.h4. In the 
fifth cycle enters f9,f10, the MSA1 accumulates 
f9.h3+f10.h4, the  MSA2 begins the calculation of  
A5 and the MSA3 completes the calculation of A3 
accumulating f9.h5+f10.h6; hereinafter the process 
is iterated until the end of the input signal.

Following the methodology described in the 
previous paragraph, the components of high 
pass of the output signal must be calculated 
in a parallel architecture, the only difference 
lies in the stored data in the shift register 
which must correspond to the coefficients of 
the high pass filter. Note that each input data is 
used in the partial calculation of several output 
coefficients. 

When processing the pairs in parallel with the 
odd two output data (one high pass and one 
low-pass) are available at each clock cycle after 
the third cycle. Thus a one-dimensional signal 
transforms of size N is performed in N/2 + 2 clock 
cycles, by expanding the processing for two-
dimensional signal of size N x N requires (N/2 
+ 2)N cycles to process all rows and (N/2 + 2 )
N/2 cycles to process all columns, thus the total 
of required cycles for the proposed architecture 
for computing the coefficients of the first level of 
transformation is determined by:

NNNNNNTCICLOS 3
4
3

2
2

2
2

2
2 +=






 ++






 +=

                                                                    (18)

The planning algorithm of the flow inside the 
filter unit can be expressed as follows Rios & 
Bernal (2011)

X=1

FOR  i=1 To N TO INCREASE +2
  
 211 hfhfA iiX ++=

             211 gfgfD iiX ++=

 IF (x >1) THEN

 41311 gfgfDD iiXX +−− ++=  
 END IF
 IF (x >2) THEN
 

61522 hfhfAA iiXX +−− ++=    

 61522 gfgfDD iiXX +−− ++=   

 
END IF

 X=X+1
END TO

41311 hfhfAA iiXX +−− ++=

The filter unit was modeled using VHDL and 
Altera megafunciones, structural design has 
5 modules: Registry coefficients, multiplier, 
adder, accumulator register and multiplexer. For 
the implementation of the multipliers of lpm_
mul Altera megafunción allowing embedded 
multipliers used by optimizing the use of the 
FPGA, for the megafunción Altera Multiplexer 
lpm_mux to synthesize as described in VHDL 
design 17 required logical elements are used 
further, the adder module was implemented 
with the megafunción parallel_add as described 
in VHDL design required a longer stabilization 
0.577ns, the remaining elements and the 
connecting lines were modeled in VHDL.

This unit was synthesized in a Cyclone II FPGA 
of Altera EP2C35F672C6 using the Quartus II 
version 6.0 design web edition, Table I shows 
the resources used in the implementation of the 
filter unit.
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Table 1. Resources used in the filter unit

Type Resources Used
Logic elements 292 / 33216 (<1%)

Records 219
Memory Bits 0 / 483840  (0%)

Embedded Multipliers 24 / 70  (34%)
PLL 0 / 4  (0%)

Table I notes that in the implementation of the 
filter unit 34% of embedded multipliers, 1% of 
the logic elements and 0 % of bits of memory 
are used, this is evidence that space is available 
within FPGA to increase the degree of parallelism 
in the design and simultaneously use multiple 
filter units , which would provide the coefficients 
for higher levels in less time occupying all the 
available multiplier, in applications where 
FPGA is used only for implementation phase 
of this transformation is a viable option, but 
in applications where you need to implement 
additional functions on the FPGA using the 
recursive filter units for the calculation of the 
following levels of transformation is necessary.

Figure 7 shows part of the results of the simulation 
of the filter unit, in the first clock cycle of the 
charging records the values of coefficients of 
the filters is performed using the charge control 
signal (Load) records storage and cleaning using 
the signal (Clear) in the second cycle partial 
operations is cleaned, from the third cycle output 
two coefficients are obtained in each cycle for 
which multiplexers are switched through its 
signal selection (Sel), three cycles are necessary 
to generate signals cleaning climbing to clear 
accumulators records, pairs data are represented 
by the signal called FPAR and odd by Fimpar, 
the coefficients of high frequency transformation 
signal output a and D low frequency, for the 
validation of the data obtained the system model 
in Matlab and the results were compared, the 

data obtained from the processing and processed 
in Matlab of the simulation in Quartus totally 
agree (Error 0 % ), which is consistent with 
expectations since at this stage the data have not 
yet been quantified.

2.5 Control unit 

For the architecture control-unit, a design which 
is supported in the NIOS II [13] system is used. 
Nios II is defined in a hardware description 
language which can be implemented in Altera 
FPGAs using Quartus II synthesis tool in 
conjunction with the processor SoPC Builder, 
there are three versions of the processor: the 
economic Nios/e, the standard Nios/s  and  rapid  
Nios/f. The economic version has a smaller core 
this version does not handle cache memory or 
specialized hardware to develop arithmetic 
operations; for the control architecture, the 
economic version was chosen because the 
operations required to control the architecture 
does not include complex operations.

Control instructions are developed in C + + 
using the integrated development environment 
NIOS II IDE that enables compile, debug and 
download fonts in C / C + + on the developed 
system . To store the program to be executed 
must allocate a memory space, the DE2 board 
has a chip that stores 512Kbytes SRAM and 
is included in the system as program memory 
(see Figure 4); as well as the SDRAM, the 
SRAM is connected to the AVALON  bus, using 
the SoPC Builder. The flow chart of the main 
program is shown in Figure 8 and the flowchart 
of the function for calculating the transform of a 
dimension is shown in Figure 9.

Calculation blocks access memory-units through 
the processor,  it generates the instructions to 
connect to an interface block which permits 

Figure 7. Simulation Unit Filters
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access of the SDRAM through a bus Avalon, 
the processor or control unit plans all data flow 
through the architecture generating the necessary 
signals for operation ( load signals to the records, 
select signals for the multiplexers, read and write 
signals on the SDRAM, etc.)

3. Results and discussion  

In architectures implemented on FPGAs, it 
should be taken into account that they contain 
a limited number of logic cells. Therefore, it is 
necessary that the design is oriented towards 
the optimization of this resource. Whereas 
a large number of logic cells is required for 

implementing storage elements, it is convenient 
to use a lower requirement architectures memory. 
Similarly routing complexity also leads to a 
high consumption of logic cells because more 
elements are required to interconnect the system 
being desirable a less complex routing network; 
another major factor is the time required for the 
calculation of the transformation, it should be 
minimized to process large amounts of images 
at satisfactory rates, and likewise it is desirable 
to reduce the complexity of the control system 
so that the architecture is easily scalable and 
programmable. Achieving these objectives is 
particularly difficult in an FPGA as area and 
speed are inversely proportional and satisfying 

Figure 8. Flowchart Program Control Unit
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a requirement means significantly affecting the 
other, for example, the speed can be increased 
with a high degree of parallelism which implies 
an increase in the required area. Table II relates 
these features to the surveyed and proposed 
architectures from Table II can be observed that 
the proposed architecture in this paper presents 
a decrease in computation time compared to the 
surveyed architectures, in the most notable case 
is improved approximately 3N2 cycles and the 
least significant event is approximately 0.25N2 
cycles, the improvement does not complicate  
implementation since a simple routing is 
maintained and control unit with moderate 
complexity is preserved . If in fact in our 

proposal required more store cells, this mishap 
can be overcome by using an external memory 
for data storage.

4. Conclusion

The hardware architecture presented to develop 
the discrete wavelet transform in two dimensions 
provides an efficient performance and speed of 
calculation area, the architecture uses 3/4N2 
+2 N cycles for transforming an image of size 
NxN achieving improvement over architectures 
developed on previous works, also it maintains 
control and a routing of moderate complexity. This 
architecture is adapted to an image processing 

Figure 9. Flowchart of the function used to calculate the 
transform in one dimension
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system, however it can be used in any application 
of signal requiring subband frequency analysis. 
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