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Abstract
During the last decades, several formal models have been proposed to formalize musical applications, to solve 
musical and improvisation problems, and to prove properties in music. In this paper, we briefly describe some of 
those formal models (computational calculi). We provide a description of some applications of these formalisms, 
and discuss some considerations about each calculus mentioned here remarking strengths and weaknesses.

Keywords: Computational calculi, formalization, musical applications.

Resumen
En las últimas décadas muchos modelos formales han sido propuestos para formalizar aplicaciones musicales, 
para resolver problemas musicales y de improvisación, y para probar propiedades en la música. En este artículo 
describiremos brevemente algunos de estos modelos formales (los cálculos computacionales); proveeremos una 
descripción de algunas aplicaciones de dichos formalismos; finalmente discutiremos algunas consideraciones sobre 
cada cálculo mencionado aquí, resaltando fortalezas y debilidades.
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1. Introduction

During the last fifty years, the term formalization 
has been increasingly used in process modeling. 
Formalization is a procedure to present scientific 
theories within the framework of a formal system, 
and it can be considered a deductive approach 
from a purely combinatorial point of view. In other 
words, formalization may be seen as a deductive 
step leading from a language to a theory.

Musical composition, performance and 
improvisation are complex tasks. They demand to 
define and control real-time concurrent activities. 
Musical objects can be seen as structures with 
various dimensions. In a horizontal dimension, 
for example, time becomes a tight notion 
where musical objects like notes or chords are 
constrained. The position of each object defines 
the relative order of musical events with respect 
to each other, forming rhythmic patterns. In 
a vertical dimension, event simultaneity and 
musical objects like voices running in parallel can 
be perceived, building harmony patterns.

Formalization, in musical terms, consists in 
clarifying phenomena such as analysis and 
composition, representing musical processes 
(human thoughts) in a formal language that can be 
understood by computers. That means, elaborating 
models of formal representations of musical 
concepts that can be transmitted to computers. 
It is believed that the complexity of musical 
processes is a challenge to any computational 
formalism. The development of computational 
models and tools to be used in musical systems 
has increased during the last decades. Simple and 
expressive formal models provide techniques for 
reasoning musical properties; they are useful in 
the construction of meaningful musical processes, 
which are the basis of high-level musical 
applications.

There are many programming languages for 
music, musical applications and tools based 
on mathematical principles, formal theories, 
and studies in computer science. In this paper, 

computational calculi that have been proposed 
to formalize some musical applications to solve 
musical and improvisation problems, and to prove 
properties in music are briefly described. Various 
known musical applications of those formalisms 
are also described.

2. Calculi

The first time that computer theory was used 
in western music was in the 13th century when 
a perforated card was introduced in a musical 
machine to make it play automatically (Roads, 
1985). Late 19th century, as Peter Hanappe 
mentioned in (Hanappe, 1999), Ada Lovelace 
realized that the unachieved computing 
machine designed by Charles Babbage was 
able to manipulate symbols and numbers; thus, 
it could become a composing machine for 
several disciplines including music. Then, in the 
first decades of the twentieth century, Joseph 
Schillinger (Schillinger, 1948) predicted the use 
of computers in musical compositions.  After 
that, the famous musicologists Lejaren Hiller and 
Leonard Isaacson composed Illiac Suite for String 
Quartet in the 1950s. This composition derived 
in computational music theories, music research, 
and engineering for automatic or algorithmic 
compositions.

The software Musicomp (Music Simulator 
Interpreter for Compositional Procedures) is 
perhaps the first software designed for assisting 
a composition (Assayag, 1998). Robert Baker 
created it around 1963 with Hiller’s expertise 
help. Later, technological advances as digital 
audio, personal computers, graphical interfaces, 
standards like MIDI and, above all, programming 
languages, the computational music paradigm 
was gradually defined.

Recently, research in computer music has focused 
in providing high-level expressions for music 
representation synthesis, and real-time control; 
as a result, languages, tools and computational 
formalisms were created. The latter provide 
data abstraction, and control flow paradigms, 
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such as convenient methods for handling 
time flow, structural organization of musical 
materials, music data representation, hierarchy, 
machine improvisation, and those related to style 
simulation, and concurrency. The following are 
representative formalisms that have been directly 
or indirectly used to model musical scenarios.

2.1 λ-Calculus

A λ-calculus (Church, 1985) is a calculus for 
describing functions that compute values from 
arguments. It was introduced by Alonzo Church 
and Stephen Cole Kleene as part of a research 
on David Hilbert’s Entscheidungsproblem, who 
aimed to find a general algorithm in which given a 
formal language and a mathematical statement in 
a language, the output would become True if the 
statement was true; otherwise, it would become 
False). The typed λ-calculus is a variant of the 
λ-calculus that makes the intended types of all 
expressions explicit. The type of an expression is 
determined from the types of its sub-expressions. 
The λ&-calculus (Castagna, 1998) is an extension 
of the λ≤-calculus (Cardelli and Abadi, 1996), 
which is the simple typed λ-calculus with a 
subtyping relation. The λ&-calculus is a formal 
model for the Common Lisp Object System, 
CLOS, (Steele, 1990). The following are 
programming languages based on or formalized 
with the λ-calculus or its variants.

Yann Orlarey et al., at Grame, have studied the 
λ-calculus (and functional programming) in order 
to show its capability to express musical functions 
and operations. In Orlarey et al. (1994), a music 
calculus was proposed by introducing abstraction 
and application concepts from λ-calculus to a 
descriptive language. The result is an approach 
to formalize composition activity, and it led to 
a visual musical language made based on the 
λ-calculus, called Elody (Orlarey et al., 1997). 
This language is a visual environment written 
in Java where musicians can construct musical 
objects and assemble them with other objects to 
create a composition. The main concept in Elody 
is the visual constructor, which is an interface to 

build new musical objects. The basic elements 
are notes and silences (musical expressions are 
built from them). Windows with boxes represent 
the visual constructors (arguments and a result). 
This application is appropriate for introducing 
programming principles to musicians and non-
programmers in general. Programs can be seen as 
the combination of abstractions and applications 
(both λ-calculus concepts). 

The λ&-calculus has been used in Agon (1998) 
and Assayag et al. (1998) to formalize OpenMusic 
(OM) (Assayag et al., 1999), a visual and object-
oriented programming language based on CLOS 
developed by Gérard Assayag and Carlos Agon 
at Ircam. OpenMusic is a general-purpose 
application providing an environment to support 
musical composition by implementing a set of 
musical and computational objects symbolized by 
icons that can be dragged and dropped all around, 
and it came after PatchWork (Laurson, 1996). 
Programs in OpenMusic (called patches) are 
graphical algorithms constituted by boxes (icons 
that represent functions, classes, instances, etc.), 
and connections among them. Each patch has an 
associated Lisp code; that is, there is a flowchart 
within a patch, which graphically describes 
Lisp code accomplishing a specific function. 
Additionally, OpenMusic defines an original 
notion called Maquettes. They are OpenMusic 
entities for representing patches and scores in 
the same object (Agon, 2004). Inside a maquette, 
musical structures can be organized in a time line 
together with temporal relations, constraints and 
hierarchies.

Arctic (Dannenberg, 1984) is a high-level 
computational language developed by Roger 
Dannenberg. It synthesized ideas from functional 
programming to specify real-time control systems 
(real-time systems are modeled as black boxes 
with inputs and outputs). A program in Arctic 
is a higher-order function from a set of inputs 
to a set of outputs. The formal model on which 
Arctic is based lacks time, concurrency and 
synchronization. This problem is solved by 
borrowing details from other languages. For 
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example, time is represented as functions that 
execute statements.

The Canon Score Language (Dannenberg, 1989) 
is another language developed by the same author, 
which combines Arctic and MIDI concepts. It 
takes primitive operators to create scores from 
them and make score transformations. Canon uses 
its declarative programming style, and its ability to 
define an abstract behavior to make compositions. 
As in Arctic, Canon can specify and manipulate 
time and synchronization.

Common Music (Taube, 1990) is an object-
oriented music composition environment. 
Heinrich Taube created it for describing sound 
and its higher-level structure to compose. A 
composition process is divided in three different 
levels: developing musical ideas, translating ideas 
to real world, and understanding how to conceive 
these ideas. Common music provides collections to 
translate high-level information introduced by the 
user into lower-level information understandable 
by a synthesizer.

In Dannenberg et al. (1991), Roger Dannenberg 
worked on another language to synthesize sound 
and music composition called Fugue. It extends 
the traditional approach to synthesize sound, using 
functional programming concepts. Fugue is used 
to design instruments by combining functions 
(similar to orchestra languages of Music-N family 
(Mathews et al., 1969)). These new instruments 
are used in expressions to generated sounds, and 
the expressions are combined into complex ones 
to create a whole composition. Fugue extended 
Canon to manipulate digital audio.

In Hudak et al. (1996), Paul Hudak proposed 
Haskore, an algebraic formalism to describe 
music and compositions in Haskell programming 
language. It is a collection of musical modules 
(data types) to express music. A score and its 
components are defined separately from their 
performance (which is a temporally ordered 
sequence of musical events): some Music data 
types (such as notes and their combination) 

become the score, and various functions can be 
defined to interpret it to produce a performance.
Finally, BOOMS (Balaban et al., 2002; Barzilay, 
1996) is a computer-music environment developed 
by Eli Barzilay. It is a general application 
framework for developing editors supporting a 
structural and regular editing combination, and an 
end-user abstraction as a tool to define reusable 
functions without programming. It is implemented 
in CLOS and features a sophisticated Windows 
interface. Although it is a general framework, 
it was conceived to be instantiated to domains 
similar to music composition.

2.2 Communicating sequential processes (CSP)

The Communicating Sequential Processes algebra 
(Hoare, 1978) is a model introduced by C.A.R. 
Hoare for the formalization and mathematical 
treatment of concurrent systems. It is supported by 
a mathematical theory, a set of proof tools, and an 
extensive literature. CSP permits the description 
of systems in terms of component processes that 
operate independently and interact with each other 
through message-passing communication. There 
are two types of primitives: events and processes. 
Processes are independent self-contained 
entities with particular interfaces through which 
they interact with environment. Events (or 
actions) are central elements of interaction and 
communications among processes or between a 
process and an environment. 

MAX is a programming language considered as a 
graphical and musical environment for developing 
real-time  musical applications by connecting 
boxes, which represent a particular treatment of 
sound. It was developed by Miller Puckette, and 
proposed as “the Patcher” in (Puckette, 1988). 
The fundamental element in MAX is the patch, 
which is a set of objects (boxes) interconnected 
by lines. These objects send messages among 
them and respond by taking actions. Since there 
were no documents explaining the theoretical 
foundations of MAX, this programming language 
was formalized in (Seleborg, 2004) using CSP. 
Then, a Patch is defined as a network of reactive 
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objects (or reactive system): A patch receives 
some values from an external device (software or 
hardware), treats these values, and then, returns 
other data calculated from the original values to 
an external device (the same or another). This 
makes MAX an environment builder for musical 
reactive systems.

2.3 PiCO

The AVISPA research group in Colombia was 
founded to develop models for integrating 
Object Oriented and Concurrent Constraint 
Programming into a Visual Language to have 
a programming environment sustained in rich 
semantics to facilitate computer music application 
development. The group defined PiCO (Alvarez et 
al., 1998; Rueda et al., 2001), a calculus integrating 
objects and constraints. The π+-calculus (Diaz 
et al., 1999) extends π-calculus (Milner et al., 
1992) with a constraint notion. PiCO adds π+ the 
notion of objects and messages synchronized by 
constraints. Constraints and concurrent objects are 
primitive notions at a calculus level (the objects 
are located in constraints and sending messages is 
defined by delegation).

This calculus is a foundation for developing 
a computational model which is suitable for 
constructing music composition tools. Cordial 
(Quesada et al., 1998) is a high-level visual 
programming language integrating object-
oriented and constraint programming intended 
for musical applications. Its semantics is based on 
PiCO. Cordial is an iconic language in the spirit 
of OpenMusic. The basic elements of a program 
are those of object-oriented programming, such 
as classes, objects and methods. The solution 
of a music composition problem is given by a 
visual, concurrent, object-oriented and constraint 
programming.

2.4 The MWSCCS calculus

The Calculus of Communicating Systems (CCS) 
(Milner, 1980) is a process algebra proposed by 
Robin Milner when he noticed that concurrent 
processes have an algebraic structure; that is, if 

there were two processes, P and Q, already built; 
a new process can be built by combining them 
sequentially or concurrently, and the new process 
behavior depends on that of P and Q, and the 
operation used to combine them. A process algebra 
based on CCS, called MWSCCS, was introduced 
in Ross (1995) as an extension of WSCCS (Tofts, 
1990), a probabilistic version of the synchronous 
CCS. In MWSCCS, the basic atomic event is 
called a particle. Each particle represents either 
an output communication (denoted by an over 
barred letter) or an input communication (denoted 
by a non-over barred letter). Particles are used to 
construct actions. Actions are events occurring 
at one moment in time. This calculus permits 
assigning relative frequencies and priorities to 
processes.

The Musical Weighted Synchronous Calculus 
of Communicating Systems (MWSCCS) was 
developed to design stochastic automata to model 
complex stochastic musical systems. Particles are 
notes in a chord, inputs are “hearing” actions and 
outputs are “playing” actions.

2.5 Block-Diagram algebra

Yann Orlarey proposed the Block-Diagram 
Algebra in (Orlarey et al., 2002) as an algebraic 
approach to construct block diagram. It was 
design as an alternative to classical graph 
approach inspired by dataflow models. This 
algebra gives an explicit formal semantics to 
dataflow inspired music languages by means of 
high-level construction operations combining and 
connecting block diagrams and rules associated to 
each construction operation.

Faust (Gaudrain and Orlarey, 2003) is a 
programming language designed for real-
time sound processing and synthesizing. It 
combines two programming models: functional 
programming (the name Faust, Functional 
AUdio Stream, comes from this approach) and 
block-diagram composition. This language was 
developed by Grame helping programmers and 
musicians build audio stream processors. In fact, 
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Faust is an implementation of the block-diagram 
algebra; that is, it can be thought as a structured 
block diagram language with a textual syntax. A 
Faust block-diagram denotes a signal processor 
transforming signals. This language provides 
primitives similar to C/C++ operators such 
as arithmetic, comparison, bitwise, constants, 
casting, tables, and interface elements.

2.6 The *tcc calculi

Vijay A. Saraswat, in Saraswat (1993), has 
proposed concurrent constraint programming 
(CCP) as a model for specifying concurrent 
systems in terms of constraints. An extension of 
this calculus is the TCC calculus (Saraswat et 
al., 1994), aimed at programming and modeling 
timed, reactive systems. Frank Valencia and 
Catusia Palamidessi proposed the temporal 
concurrent constraint programming calculus, ntcc, 
in (Palamidessi and Valencia, 2001; Valencia, 
2002). NTCC extends TCC with the notions 
of asynchrony and no determinism. Another 
extension of TCC, proposed in (Olarte et al., 2007; 
Olarte, 2009) by Carlos Olarte, Frank Valencia 
and Catusia Palamidessi is called UTCC. This 
calculus increases TCC expressivity allowing 
infinite behavior and mobility by introducing the 
abstraction notion. One of the main purposes of this 
model is to verify security protocols. Jorge Perez 
and Camilo Rueda proposed a timed concurrent 
constraint process calculus with probabilistic 
and non-deterministic choices as a description 
language in Perez and Rueda (2008). This calculus, 
called PNTCC, is a TCC calculus for analyzing 
reactive systems involving constraints, explicit 
time, probabilities and non-determinism. Finally, 
RTCC, an extension of NTCC to model real-time 
behavior, was proposed by Gerardo M. Sarria 
M. and Camilo Rueda in Sarria & Rueda (2008). 
This formalism extends NTCC in three directions: 
it introduces resources as a native notion of the 
calculus, it enriches the time notion by thinking 
time as a discrete sequence of minimal units, and 
it adds constructs to interrupt and delay processes. 
The semantics of the *tcc calculi described above 
and its application in music is well-explained in 
Olarte et al. (2011).

Camilo Rueda and Frank Valencia have proposed 
NTCC as a model for expressing temporal 
music processes and applications like rhythm 
patterns and controlled improvisation (Rueda and 
Valencia, 2001). In Rueda and Valencia (2002) 
some musical properties were formally proved 
using the linear temporal logic of NTCC. NTCC 
was also proposed to model an audio processing 
system. In Rueda and Valencia (2005) this calculus 
was used to describe a framework for audio 
processing able to model higher-level musical 
structures and to build formal proofs of properties 
for a given audio process. On the other hand, 
musical scores involving static and interactive 
events, which are bound by some logical 
properties (like Allen’s relations (Allen, 1983)), 
called interactive scores (Desainte-Catherine 
and Allombert, 2004), were represented by using 
NTCC (Allombert et al., 2006) and UTCC (Olarte 
and Rueda, 2009). A computational model for 
musical dissonances was proposed in Perchy and 
Sarria (2009), using the RTCC calculus. Finally, 
in Assayag and Dubnov (2004) a model based 
on the Factor Oracle algorithm (Allauzen et al., 
1999) was proposed for machine improvisation 
and related style simulation. Later, in Olarte and 
Rueda (2009), Perez and Rueda (2008) and Rueda 
et al. (2006), the factor Oracle was modeled using 
NTCC, PNTCC and UTCC to be used in learning, 
improvisation and performance situations.

3.  Results and discussion

Some considerations for each mentioned formal 
model are presented, remarking strengths and 
weaknesses (those characteristics that are 
important and have musical significance, and 
those crucial in musical environments, which are 
not part or are not native in those formalisms).
The λ-calculus was created several years ago; 
hence, one of the main advantages of this calculus 
is its maturity and robustness. It has a countless 
number of applications in different areas of 
knowledge. However, it lacks native notions as 
time and constraint. Without these elements, it 
is difficult to express different musical temporal 
aspects, calculations involved, representation 
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of objects, constraints in different applications, 
and partial information. Applications based on λ 
and λ& calculi do not have any base supplying 
insights to define new concepts as primitive 
temporal entities, either to express repetition 
and eventuality notions or to provide different 
models to organize objects in time (OpenMusic 
and Elody, for instance, provide some of these 
characteristics, but as an implementation out 
of the formal model capabilities). Furthermore, 
there is no formal notion of a constraint system 
in λ-calculus, which limits the possibilities of 
applying constraints, and prevents a formal 
statement of what exactly valid manipulations 
of temporal objects are, and what the visual 
representation of musically significant temporal 
constraints stands for (although OpenMusic has 
been enhanced with a constraint library called 
“Situation” (Rueda and Bonnet, 1998), but this is 
not native in the formalism). Additionally, notions 
as interaction and concurrency, quite typical in 
music, are not a priority in λ-calculus. This limits 
the possibility of expressing parallel composition 
of processes, synchronization of musical pieces, 
musicians’ dynamics, etc.

An advantage of using CSP in modeling 
applications in different areas of knowledge is 
that it is conceptually simple, yet provides an 
appropriate solution to common synchronization 
problems. However, as in λ-calculus, time and 
constraints are not native notions. Time can be 
modeled by taking into account a discrete variable, 
which never decreases its value and changes 
its value in an infinite recursion. Nevertheless, 
there is no control on change rate, this means, 
time is logic. The same kind of time model was 
observed in the NTCC calculus: it is not possible 
to associate this logic time exactly to physical 
time; all depends on several other conditions. On 
the other hand, the behavior of CSP processes 
depends on its environment. Therefore, it is 
difficult to assert global properties. Then, there is 
an absence in terms of the precise specification in 
system properties, which is natural in a constraint-
oriented language.

Avispa research group managed to integrate 
concurrent objects and constraints using PiCO. 
This calculus permits representing partially-
defined complex objects as musical structures in 
a compact way, and describing harmony relations 
easily. Nevertheless, since there is no explicit 
notion of time in PiCO, some musical problems 
involving time and synchronization are difficult 
to express. Moreover, since there is no formal 
logic associated with the calculus, reasoning 
about musical processes behavior is hard to 
accomplish. Given the convenience of graphical 
representations as Block-Diagrams, in Tavera 
(2008), an extension of Pico, called GraPico, was 
proposed as a visual representation of the calculus.
An abstract view of musical behavior is possibly 
the main advantage of the MWSCCS calculus. The 
intuitive “programming language” feeling and the 
mathematical foundations of process calculi allow 
building and analyzing compositions written in 
MWSCCS. Since this calculus is based on CCS, 
it has rich semantics, an easy way to handle 
concurrent activities and the ability to formally 
model specific domain systems. CCS, CSP, and 
ACP (Bergstra and Klop, 1984) were the first 
proposed in calculus process field; nevertheless, 
all of them have similar disadvantages to those 
previously mentioned as absence time and 
constraint notions.

The Block-Diagram Algebra is a visual language, 
which is more intuitive, takes the user to a 
higher level of abstraction, and makes program 
analysis easier. This calculus in an appropriate 
formalism for visual languages because of 
the graph representation of a block-diagram, 
its denotational semantics, which describes a 
program meaning by denoting what is computed 
(the mathematical object), and its suitability 
for formal manipulations: λ calculus, partial 
evaluation, compilation.

The NTCC, UTCC and PNTCC calculi have proved 
to be convenient for modeling music problems 
and proving properties in a musical environment. 
Their well-defined semantics and logic permit 
easily expressing and proving temporal properties. 
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Notwithstanding, they may not be adequate for 
solving complex musical improvisation problems 
due to real time requirements in these systems. On 
the other hand, the RTCC calculus handles this 
limitation with precise notions of time, resources 
and useful operators. Unfortunately, RTCC does 
not have a well-structured associated logic; that 
is, it is difficult to prove properties in models 
written in this calculus.

4. Conclusions

Recently, a significant increase of formal 
models has arisen, particularly computational 
calculi proposed in many fields. Music is not 
the exception. With formal theories composers 
and musicians can use tools based on rigorous 
principles, rules, equations, theorems, models, 
and languages to solve specific musical problems, 
to build musical theories, to synchronize devices 
in music interaction settings, to build musical 
programming languages, to prove musical 
properties, to construct complex musical material, 
and many others. In this paper, some important 
calculi used in music, and formalisms used in 
practical musical situations were presented. 
Nevertheless, many of these formalisms were not 
originally intended for being used in music; thus, 
their applicability in many musical environments 
is difficult to deal with. Some mentioned models 
lack explicit notions which are crucial in music such 
as processes, time, constraints, and concurrency; 
however they have been widely studied. Temporal 
concurrent constraint calculi like NTCC and 
RTCC, designed to model interactive systems, 
fit better in music applications where processes 
interact in complex ways. Notwithstanding, their 
limitations concerning the abstract notion of time 
or the absence of an associated logic to prove 
properties were shown.

Many music programming languages and musical 
software use the expressivity and usefulness 
of formal models (see Loy and Abbott (1985) 
to know about the former): logics, for instance, 
were used as music models in Gibbins (1976) and 
as a music theory tool in Alan Marsden’s MTT 

(Marsden, 1997). Petri Nets have been applied to 
model music as a concurrent activity in Haus and 
Sametti (1991).

Besides, music theory has used formal models. 
One of the first theoretical writings outlining 
a mathematically rigorous music theory was 
proposed by Joseph Schillinger in Schillinger 
(1941) and Schillinger (1948). Geraint 
Wiggins in Wiggins (2009) reviewed various 
computational representations of musical 
systems. Geometrical spaces have been used 
to represent chords in Tymoczko et al. (2006). 
A fractal music development was presented in 
Wright (1995). Hierarchical structures have been 
used to represent musical objects in Desainte-
Catherine (1996). Trace theory has been applied 
to music in Chemillier and Timis (1988). A 
deductive object-oriented approach to formalize 
jazz piano knowledge was proposed in Hirata 
(1995). Algebraic structures were introduced in 
Chemillier (1989) approaching a formalization of 
musical structures. A formal definition of sound 
was proposed in Kaper (1999). Finally, a category-
oriented framework was presented in Mazzola 
and Andreatta (2007) to describe the relationship 
between musical and mathematical activities.
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