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Resumen

Este artículo presenta un método para analizar pruebas de variación de presión con rasgos diferentes de los más comunes 
que denotan geometrías de flujo lineal, radial o esférico, y que son indicadores de flujo de tipo fractal en el yacimiento.

El método utiliza una solución a la respuesta de presión con flujo de tipo fractal en el dominio de Laplace e incluye los 
efectos de daño y almacenamiento por medio de un procedimiento usado para la descripción del flujo en geometrías 
compuestas. Este enfoque es más sencillo que los presentados en artículos anteriores a éste.

La determinación de las propiedades fractales en aplicaciones a casos de campo da por resultado valores plausibles; para 
la comparación con valores reales es necesario conocer la distribución de las fracturas en el yacimiento.
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Analysis of well-tests in fractal-fractured reservoirs

Abstract

This paper presents a method to analyze well tests with traits that deviate from the usual log derivative pressure plots 
-manifest in linear, radial or spherical geometries- and point to the presence of fractal flow geometries in a reservoir.

The method uses a fractal geometry pressure response solution in the Laplace domain and includes skin and wellbore fill 
up effects in a scheme used previously for flow in composite geometries. The approach is simpler than previous schemes.

Determination of fractal properties from applications to field cases result in plausible values; but comparison with actual 
values requires maps of the fractures distribution.
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Introduction

The main characteristic of transient flow in fractal media 
is that the pressure time-log derivatives (see Tiab and 
Kumar, 1980) do not present the values ½, 0 or -½ typical 
of corresponding linear, cylindrical or spherical flow 
geometries.  The intermediate values in pressure transients 
correspond to fractional exponents in the diffusion equation 
that represent the “fractality” of the media.

Porous media show a disordered structure in pore and 
rock spatial distributions; then, why non-classical slopes 
show in only a small fraction of well tests? Studies of 

unconsolidated soils conclude that only 20% of the soil 
samples present such fractality, (Gimenez, Perfect e al. 
1997), (an equivalent study in oil or water reservoir rocks 
has not been found by the authors). On the other hand, 
an abundance of fractal regions results in a normal or 
Gaussian transient flow behavior because of the central 
limit theorem:  the sum of several probabilistic distributions 
of any type amounts to a normal distribution (see Vlahos, 
Isliker et al. 2008). That is, no matter how complex the 
porous medium the transient fluid flow is equivalent to a 
normal pressure evolution –with its corresponding regular 
value of flow-geometry slope in the log-time derivative 
plot; paradoxically, a high degree of heterogeneity results 
in an overall homogeneous, regular, flow.

(1)

The regular normal or Gaussian solutions apply when β=1, α=d-1. d=dimension. The aforementioned authors assumed 
β=1, α=ds-1, where ds represents the fractal medium characterized by ds=2df  /dw; df is the static exponent; dw the 
dynamic exponent.

The practical aspects of skin and wellbore storage through use of auxiliary equations dependent on radial and time derivatives,

(2)

(3)

 

(Agarwal, Hussainy et al. 1970), were incorporated by Chang and Yortsos (1990) to obtain, in the Laplace domain, 

(4)

Where  ζ and √τ = Laplace parameter.  Zhao and Zhang (2011), 
assumed skin and storage as implicit in the integration 
constants and obtained a result similar to eqn. (4).

The Chang and Yortsos (1990) approach has been criticized 
as inaccurate (Sahimi 1995, Camacho, Fuentes et al. 2008) 
due to its failure to describe interference tests (with high r 
and t values) originated by the exclusion of the time-fractal 

derivative.  Besides, it is highly improbable for any fractal 
medium to present fractal-space characteristics (number 
of nodes –also called “mass”- dependence on a fractional 
negative power df of r) but no fractal-time, dynamic 
behavior. The later is the outcome of a random walk in the 
medium with the involved geometry described by its static 
exponent; (see Vlahos, Isliker et al. 2008).

Analysis of well tests in reservoirs with fractal porous media was initiated by the work of O´Shaugnessy and Procaccia (1985), 
they present a diffusion equation with regular time derivative and a space derivative term that stems from scaling arguments.
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In several media the ratio of dynamic to static exponents 
is close to 3/2 (Alexander and Orbach, 1982) although 

deviations from that ratio have been reported. In this work 
we assume that ratio as valid.

(5)

Where ν=1-ds /2. Notice that when β=1 and ds=dimension, 
equation (5) is the usual instantaneous line source solution.

The MGN improvement results in the ability to describe 
interference tests (de Swaan, Camacho-V et al. 2013).  
The approach is still an approximation to the fully time-
space fractal formulation that originates in probabilistic 

considerations, (see Montroll and Weiss (1965), Compte 
(1996) and Vlahos, Isliker et al. (2008)). Notice that 
probability of the position in space of one particle can be 
transformed to density when multiplied by the number of 
particles in a system; density is transformed directly into 
pressure for low compressibility fluids. 

(6)

where γ =1/dw.

In eqns. (4) and (6) modified Bessel functions K of order 
different from ν arise as derivatives dp/dr to account for flow.

In the present paper the formulation with fractional time, the 
MGN approximate solution is assumed as representative of 
the pressure behavior in the reservoir but includes skin and 
storage in a practical as well as convenient way previously 
used to describe flow patterns in composite reservoirs, (see 
de Swaan 1998). 

Theory 

The formulation is made in the Laplace domain with 
parameter τ. The symmetric transform is made numerically, 
(Stehfest 1970).

Figure 1. Horizontal well, w; valve, X; 
transition zone, T; and fractures, f.

An improvement in the fractal diffusion formulation was presented by Metzler, Glockle et al. (1994), from now on 
“MGN”. Their diffusion equation includes a fractal-time derivative, with exponent β = 1/dw, but preserves the scaling 
approach of O´Shaugnessy and Procaccia (1985) in the space term. For a unit impulse at r=0 the MGN solution is,

The MGN eqn. (5) was extended to include skin and storage by Park, Choe et al. (2001) by using the auxiliary equations (2) 
and (3), it resulted in the equation,
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The compound flow trajectory, from reservoir to wellhead, shown schematically in Figure 1, is assumed as composed of the 
following connected zones:

1)	 The wellbore that includes storage and skin. Although the detailed pressure in the tubing as a linear medium can be 
included, due to its high transmissivity it is assumed as a tank with instantaneous pressure changes along its length. 
Connected fractures to the wellbore are not present along the well length. The pressure at the well head is the 
pressure at the extreme of the well minus the pressure drop due to skin; at the same time, the velocity at the head 
is the unitary rate of flow at the bottom plus the storage effects in the tubing volume which depend on the rate of 
change dp/dt in the well, (Agarwal, Hussainy et al, 1970).

(7)

Between neighboring zones multipliers of velocity of the form A1 /A2 are necessary to account for velocity changes due to 
different surface areas transverse to flow. Each velocity change is proportional to the ratio of areas. 

2)	 Flow into an intermediate –non fractal- zone with some regular geometry. This point stems from the existence of a 
limited-connection zone between well and fractal reservoir region. Similarly, it has been experimentally observed 
that induced fractures made in outcrops, far from connecting fully with the fractures, show a transition zone between 
the well and the fracture proper, (Suarez-Rivera, Behrmann et al. 2013). In the present work, that intermediate zone 
between well and fractured reservoir is represented as a vertical cylinder; radius rT. It is represented by a matrix T 
that in general may have the properties of a regular -non fractal- geometry zone (de Swaan, 1998). In the cylinder it 
only affects the change of velocity proportional to the ratio of areas of transition zone and well.

(8)

3)	 The right term vector includes the pressure and velocity vector in the fractal reservoir, which depends on the fractal 
geometry; pf is described by the MGN solution, equation (5) and the transformed velocity vf  is indeterminate as yet. 
That solution is for a unit delta impulse at the origin. It is then integrated in time in the Laplace domain (factor 1/τ) 
and convolved with the flow velocity at the fractures face with transform vf   pf  .

The final formulation involves the sequential product of matrices representing each stage in the flow path, (see de Swaan 
1998). Both p and also v (or q) are unknowns at each boundary between stages in the flow path.  In contrast with the results 
of previous formulations presented in the introduction, it is not necessary to formulate v in terms of dp/dr but it is handled 
as an unknown. 

(9)

  ̃   ̃

  ̃   ̃
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vf  is a function of vw the velocity at the well head. pf is the 
MGN solution and pw is obtained from both variables in 
the system of two equations represented by the matrix 
product and vectors.

Results 

Comparison of type curves obtained from the resulting 
equations and after applying the Stehfest (1970) 

transform result in curves shown in Figure 2. In two 
dimensions and for cases: a) normal df=2, dw=2; and 
b) fractal, df=1.7, dw=2.55. (Compare with the ones 
presented by Zhao and Zhang (2011) in their Figure 1 
where dw=2; β=1 for all cases.) The graphs are shown just 
for comparison purposes. (The type-curves method is 
obsolete given that any personal computer can not only 
generate functions but also automatically match them to 
observations in minimal times).

Figure 1. Pressure response and derivative, normal 2D and fractal df=1.7; C=1000, s=2.

Application to actual field cases.- The theory was applied 
to well tests from horizontal wells with closure at the 
producing depth as depicted in Figure 1. The reservoir is 
a fractured shallow limestone. Production is present only 
when the wells connect with fractured zones and there is no 
apparent production from the matrix-rock to the wellbore.

The horizontal wells intersect producing fractured zones 
at an average of 106 m, that distance was input as the 
horizontal well length to a single fractured zone.

The curves were fitted using the Minpack (1999) software.

  ̃   ̃   ̃
  ̃
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In Figure 2, a sudden change in the m=1 zone is probably a measurement error.

Figure 2. Well A09, observed and matched graphs of log pressure and derivative vs log time.

Figure 3. Well A23, observed and matched graphs of log pressure and derivative vs log time.
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Table 1 contains the data used in the matches. There are 
no maps of actual fracture distributions in the field and no 

comparison is possible between matched and field fractal 
exponents.

Table 1

well f µ Pa.s q m3/d dw df n k s C rT

A09 0.09 2.8 53 2.18 1.45 0.428571 1.44E-10 -1.5E+5 5E-4 2.4E-6
A23 0.07 1.8 155 2.09 1.393 0.47368 6.78E-18 -2700 9.4E-5 1.4E-6

The compressibility value used is 6.0E-9 m3/Pa. Net pay 
is 85 m in both cases. The transition zone is fitted with 
very low values of radius, rT, in both cases; that makes the 
pressure response in the fractured reservoir to be close to a 
line source –null radius- in contact with the well.

Conclusions

A method is presented to obtain fractal reservoir properties 
from well-tests. The method is simpler to apply than former 
models presented in the literature on that subject.

Application of the theory to field cases shows its feasibility; 
but comparison of the fractal-properties values obtained 
through matches with actual field values requires maps of 
the distribution of fractures in the tested formations.

Nomenclature

A     surface area m2

C      storage coefficient m3/Pa
d       dimension
ds     spectral exponent
h       thickness,  m
kv   modified Bessel function of order ν
m     slope in log-log plot of pressure log-t derivative
p       pressure, Pa (psi in figs. 2 and 3)
pwD      dimensionless pressure at the well radius
q       flow rate, m3/sec , (m3/day)
r        radial distance, m
s       skin, Pa/m3/s
t        time, sec (hr in Figs. 2 and 3)
x       coordinate, m
α       fractal dimension exponent

β       dynamic exponent (=)
γ       1/dw
ηo       average hydraulic diffusivity, (m2/sec)α/β

μ       viscosity Pa.sec
τ       time-Laplace transform parameter

Subscripts and superscripts

f        fractal static dimension
w       Brownian or random-walk 
s        spectral dimension
ũ      time-Laplace transform of u
T       transition zone
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