Determinación de pérdidas de calor en la red de transporte de vapor del campo geotérmico de Cerro Prieto, BC, con base en el estado físico del aislamiento térmico de vaporductos

Rosember Ovando Castelar¹, Alfonso García Gutiérrez¹, Juan Ignacio Martínez Estrella¹, Ismael Canchola Félix², Paul Jacobo Galván², Carlos Miranda Herrera² y Othón Mora Pérez²

¹Instituto de Investigaciones Eléctricas, Av. Reforma 113, Col. Palmira, 62490, Cuernavaca, Mor. Correo: <u>rovando@iie.org.mx</u>. ²Comisión Federal de Electricidad, Gerencia de Proyectos Geotermoeléctricos, Residencia General de Cerro Prieto, Mexicali, BC.

Resumen

En el Campo Geotérmico de Cerro Prieto (CGCP), BC, el transporte de vapor desde los pozos hasta las plantas generadoras de electricidad se lleva a cabo mediante un extenso y complejo sistema de tuberías que típicamente se encuentran aisladas térmicamente con una capa de 2" de material aislante a base de lana mineral o fibra de vidrio, y una protección mecánica de aluminio o hierro galvanizado. Debido a la exposición a las condiciones meteorológicas a través del tiempo de operación del campo, el aislamiento ha experimentado cambios en su densidad y espesor y en ocasiones se ha perdido por completo, lo cual repercute en una mayor transferencia de calor de las tuberías hacia el medio ambiente. En este trabajo se analiza el impacto del estado físico del aislamiento térmico sobre las pérdidas de calor en las tuberías de la red de vaporductos del CGCP y se estima la magnitud de estas pérdidas mediante la aplicación de un método iterativo. Este método permitió determinar la temperatura de superficie con base en un balance de calor que considera los tres mecanismos básicos de transferencia de calor: conducción, convección y radiación térmica. Finalmente, con base en la determinación de longitudes y diámetros para cada estado de aislamiento de los vaporductos y en las condiciones de operación globales de la red, se cuantifican las pérdidas de calor a través de los aislantes para toda la red de transporte. Los resultados obtenidos permitieron evaluar la magnitud de estas pérdidas en comparación con la pérdida global de energía que ocurre durante el transporte de vapor desde los pozos hasta las plantas de generación eléctrica.

Palabras clave: Campo Geotérmico de Cerro Prieto, red de transporte de vapor, aislamiento térmico, pérdidas de calor.

Determination of heat losses in the Cerro Prieto, BC, geothermal field steam transportation network based on the thermal insulation condition of the steam pipelines

Abstract

In Cerro Prieto Geothermal Field (CPGF), the steam from producing wells is transported to power plants through a large and complex system of pipes thermally insulated with a 2" thick mineral wool or a fiber glass layer and an external aluminum or iron cover. The insulation material has been exposed to weather conditions during the field operation and has suffered density and thickness changes. In some cases the insulation has been lost completely, increasing heat transfer from the pipes to the environment. This paper analyzes the impact of the conditions of thermal insulation on heat losses in the CPGF steam-pipeline network. The heat losses are calculated by applying an iterative method to determine the surface temperature based on a heat balance calculated from the three basic mechanisms of heat transfer: conduction, convection,

and radiation. Finally, using length and diameter data corresponding to the condition of the thermal insulation of each pipeline—and field operation data, the overall heat losses are quantified for steam lines throughout the pipeline network in the field. The results allow us to evaluate the magnitude of the heat losses in comparison with the overall energy losses occurring during steam transport from wells to the power plants.

Keywords: Cerro Prieto Geothermal Field, steam-transportation network, thermal insulation, heat losses.

1. Introducción

El Campo Geotérmico de Cerro Prieto (CGCP), con una capacidad instalada de 720 MWe, es el campo de líquido dominante más grande del mundo. Se compone de cuatro sectores denominados progresivamente Cerro Prieto Uno (CPU), Cerro Prieto Dos (CPD), Cerro Prieto Tres (CPT) y Cerro Prieto Cuatro (CPC). En el campo operan un total de 13 plantas generadoras todas ellas de tipo condensante (Gutiérrez-Negrín *et al.*, 2010) las cuales son alimentadas con el vapor de 165 pozos productores a través de un complejo sistema de tuberías que incluye una red de alta presión (AP) y otra de baja presión (BP; excepto en CPU), que en su conjunto suman una longitud aproximada de 140 km. Estas tuberías se encuentran aisladas térmicamente con una capa de 2" de aislamiento a base de lana mineral o fibra de vidrio, y una protección exterior de aluminio o hierro.

Debido principalmente al impacto de las condiciones meteorológicas durante el tiempo de operación del campo, en algunas partes de la red el aislante térmico ha sufrido cambios respecto a su configuración original y actualmente presenta distintos grados de deterioro, incluyendo deformación geométrica, pérdida de la cubierta exterior o, incluso, la ausencia del aislamiento térmico. Esto repercute en un incremento de las pérdidas de calor desde las tuberías hacia el medio ambiente.

El transporte de vapor en redes de tuberías que conducen vapor geotérmico desde los pozos hasta las plantas generadoras involucra cambios dinámicos en sus propiedades térmicas y de transporte que impactan las condiciones terminales. El conocimiento de estos cambios puede ayudar a detectar anomalías en las variables de flujo, con el fin de corregir la operación del sistema de conducción del fluido. Las pérdidas de energía asociadas con el proceso de transporte de vapor a través de una red de ductos se deben principalmente a la fricción en tuberías y accesorios, a la transferencia de calor hacia el medio ambiente, y a la condensación de vapor y drenado de líquido a través de las purgas.

El conocimiento de las pérdidas de calor en las tuberías de la red asociadas a la condición del aislamiento, representa un aspecto importante en la evaluación de algunas áreas de oportunidad de mejora, puesto que permite determinar la magnitud relativa de estas pérdidas de energía, comparadas con otros mecanismos de pérdida, y con ello evaluar la conveniencia de mantener en buen estado el aislamiento de las tuberías en términos de costo-beneficio, por su impacto en la disminución de las pérdidas y en el incremento de la eficiencia del proceso de transporte.

Estudios relativos a la transferencia de calor en la red de vaporductos del CGCP, incluyen los trabajos de Peña (1986), y Peña y Campbell (1988), quienes desarrollaron un modelo de una ecuación basada en la expansión politrópica del vapor a medida que fluye en una tubería o una red de tuberías horizontales de diámetros grandes aisladas térmicamente. El modelo calcula la presión, la temperatura del fluido y aislante, la entalpía y humedad del vapor a lo largo de una tubería, dados el diámetro, espesor y tipo de aislante. Sin embargo, los ejemplos mostrados por estos autores incluyen tuberías relativamente cortas en relación con la longitud total de la red actual y del número de pozos integrados.

El modelo de Cruickshank *et al.* (1990) desarrollado para el CGCP es un modelo adiabático que no considera las pérdidas de calor. Otros trabajos (Schroeder, 1982) presentan estudios detallados para calcular la temperatura de la superficie de los aislantes térmicos y las pérdidas o ganancias de calor por un tubo, mientras que varían otros factores de flujo. Los modelos de Schroeder (1982) y Marconcini y Neri (1979), incluyen el transporte de calor por conducción, convección y radiación para el cálculo de las pérdidas de calor en vaporductos aislados térmicamente.

En este trabajo se analiza el impacto del estado físico del aislamiento térmico sobre las pérdidas de calor en las tuberías de la red de vaporductos del CGCP y se estima la magnitud de estas pérdidas mediante la aplicación de un método iterativo. Este método permitió determinar la temperatura de superficie con base en un balance de calor que considera los tres mecanismos básicos de transferencia de calor: conducción, convección y radiación térmica. Finalmente, con base en la determinación de longitudes y diámetros para cada estado de aislamiento de los vaporductos y en las condiciones de operación globales de la red, se cuantifican las pérdidas de calor a través de los aislantes para toda la red de transporte. Los resultados obtenidos permitieron evaluar la magnitud de estas pérdidas en comparación con la pérdida global de energía que ocurre durante el transporte de vapor desde los pozos hasta las plantas de generación eléctrica.

2. Descripción de las ecuaciones utilizadas en el cálculo de las pérdidas de calor

El cálculo de la pérdida de calor en una red de vaporductos, como es el caso del CGCP, involucra un tipo de problema en el que se presentan los tres mecanismos básicos de transferencia de calor: conducción, convección y radiación térmica.

A continuación se describen las correlaciones y ecuaciones básicas que se usaron para la determinación de los coeficientes de película tanto interno como externo para la transferencia de calor por convección, la conducción de calor a través de la pared del vaporducto y el aislante, el tratamiento de la radiación térmica y el cálculo del coeficiente global de transferencia de calor.

2.1 Transferencia de calor por convección

El coeficiente de película es una variable que depende, entre otros factores, de:

- a) El régimen de flujo del fluido
- b) Las propiedades termofísicas del fluido
- c) La geometría del sistema

La transferencia de calor por convección depende de manera significativa de la geometría de la frontera sólida con la que intercambia calor. Por lo tanto, es conveniente dividir el estudio de la convección de calor en los vaporductos del campo de Cerro Prieto en dos partes:

- a) La convección de calor entre el vapor y la pared interna del vaporducto
- b) La convección entre la pared externa del vaporducto y el aire ambiental

El cálculo del coeficiente convectivo de transferencia de calor se describe por separado para cada caso de estudio, en las siguientes secciones.

Coeficiente de película interno

El mecanismo de transferencia de calor por convección en el interior del vaporducto es convección forzada. Los factores que influyen en la determinación del coeficiente de película son:

- a) La variación de la distribución de velocidades en la dirección de avance del flujo (región de entrada o región de flujo totalmente desarrollado)
- b) El régimen de flujo del fluido (flujo laminar o flujo turbulento)
- c) La variación de las propiedades termofísicas del fluido
- d) La influencia de las condiciones de frontera en la temperatura del fluido (flujo de calor constante o temperatura de pared constante)
- e) Los efectos de la rugosidad superficial y la geometría del conducto

La transferencia de calor en tuberías con flujo laminar ha sido tratada teóricamente. Se han encontrado soluciones analíticas para la región de flujo desarrollado, con propiedades del fluido constantes y condiciones de flujo de calor y temperatura de pared constante. En estas soluciones, el número de Nusselt es constante e independiente de los valores del número de Reynolds y de Prandtl. Para este estudio, se seleccionó la solución analítica propuesta por Rohsenow y Choi (1961) para flujo laminar.

En régimen turbulento, existen mayores restricciones para el desarrollo de soluciones analíticas o numéricas. En este régimen de flujo es generalizado el uso de correlaciones empíricas basadas en el desarrollo de trabajo experimental. En estas correlaciones, el número de Nusselt es función de los números de Reynolds y Prandtl.

La gran variedad de condiciones de flujo aplicables a la transferencia de calor con flujo interno, ha dado origen a numerosos trabajos experimentales y, por lo tanto, al desarrollo de diferentes correlaciones empíricas que son válidas en el intervalo de condiciones impuestas al trabajo experimental que las sustenta. Las correlaciones de Petukhov-Popov (1970) y Gnielinsky (1976) constituyen los trabajos más completos para convección forzada con flujo interno. En ellas se incluyen factores de corrección por variación de temperatura, rugosidad en la pared y longitud de entrada para el desarrollo del flujo. Los errores esperados son ordinariamente pequeños y su intervalo de aplicación es más generalizado. La correlación de Gnielinsky (1976) extiende su intervalo de validez hasta la región de transición, sacrificando un poco de precisión. Ambas correlaciones presentan una estructura compleja, con mayores dificultades para su implementación en un programa de computadora.

Por lo tanto, para el cálculo del coeficiente de película interno se determinó usar la correlación de Gnielinsky (1976), que es válida tanto para la región de transición como para flujo turbulento. Sin embargo, para facilitar su implementación en el cálculo de la transferencia de calor, se asumieron algunas simplificaciones a la correlación original, de modo que la correlación de Gnielinsky simplificada que se propone para este cálculo está dada por:

$$N_{u_m} = \frac{(f/8)(R_e - 1000)P_r}{1 + 12.7(f/8)^{1/2}(P_r^{2/3} - 1)} \qquad \dots (1)$$

Coeficiente de película externo

Basado en las mediciones meteorológicas dominantes en el CGCP, el mecanismo de convección de calor para el aire que circunda la pared exterior de un vaporducto es principalmente convección forzada. En convección forzada con flujo externo el coeficiente de película se evalúa también mediante el uso de correlaciones semi-empíricas, que son función del número de Prandtl (Pr) y de Reynolds (Re_D), que a su vez dependen de las propiedades termofísicas del fluido y de la geometría del sistema.

La geometría de un vaporducto puede asumirse como un cilindro horizontal y largo con flujo cruzado. Esta importante geometría ha sido estudiada en forma extensiva y existen muchas correlaciones para evaluar la transferencia de calor. Churchill y Bernstein (1970) propusieron una correlación simple que cubre el intervalo completo de Re_D para el cual los datos están disponibles, así como también un amplio intervalo de Pr. El intervalo de validez para (2) son todos los valores de Re_D.Pr > 0.2.

$$Nu_{m} = 0.3 + \frac{0.62 \operatorname{Re}_{D}^{1/2} \operatorname{Pr}^{1/3}}{\left[1 + \left(0.4/\operatorname{Pr}\right)^{2/3}\right]^{1/4}} \left[1 + \left(\frac{\operatorname{Re}_{D}}{282,000}\right)^{5/8}\right]^{4/5} \quad \cdots (2)$$

Para propósitos de este cálculo se seleccionó la correlación de Churchill y Bernstein porque cubre un amplio intervalo de valores del Re_D y Pr, con una única expresión matemática. Las propiedades termofísicas del aire se evalúan a la temperatura de película (T_f), que representa la temperatura promedio entre la temperatura de superficie del cilindro (T_w) y la temperatura del fluido (T_∞).

2.2 Balance de calor en un vaporducto

Para evaluar la transferencia de calor desde la superficie exterior de un vaporducto hacia el aire ambiental que lo rodea, es preciso realizar un balance de calor en la superficie exterior de éste. En la Figura 1 se muestra un diagrama esquemático de los componentes típicos de un vaporducto. Puede apreciarse que en el caso de este sistema están presentes los tres mecanismos básicos de transferencia de calor: conducción, convección y radiación.

Fig. 1. Diagrama esquemático de un vaporducto.

Fig. 2. Balance de calor en un vaporducto.

Realizando un balance de calor en la superficie exterior del vaporducto (Fig. 2) se tiene que el calor por unidad de longitud que se conduce hacia la superficie exterior, se transfiere al aire ambiental a través de los mecanismos de convección y radiación, de acuerdo con (3).

$$\frac{q_{cd}}{L} = \frac{q_{cv}}{L} + \frac{q_r}{L} \qquad \cdots (3)$$

La transferencia de calor por conducción a través de la tubería y el aislante se puede evaluar aplicando el concepto de resistencia térmica equivalente. En coordenadas cilíndricas, la conducción de calor por unidad de longitud a través del vaporducto está dada por (4).

$$\frac{q_{cd}}{L} = \frac{T_{sat} - T_w}{\frac{1}{\pi D_i h_{mi}} + \frac{\ln \left(\frac{D_o}{D_i}\right)}{2\pi k_{mt}} + \frac{\ln \left(\frac{D_a}{D_o}\right)}{2\pi k_{ma}}} \qquad \dots (4)$$

La transferencia de calor por convección, por unidad de longitud, se evalúa aplicando la ley de enfriamiento de Newton, de acuerdo con (5).

$$\frac{q_{cv}}{L} = h_m \,\pi \, D_a \left(T_w - T_\infty \right) \qquad \cdots (5)$$

La pérdida de calor por radiación térmica desde un vaporducto hacia el aire del ambiente depende de la temperatura absoluta y de la naturaleza de la superficie exterior del vaporducto. Para evaluar la transferencia de calor por radiación, se asume que un vaporducto es un cuerpo gris que intercambia calor con el aire ambiental que lo rodea. Por lo tanto, el calor por unidad de longitud transferido al aire se evalúa mediante la ley de Stefan-Boltzmann aplicada a un cuerpo gris:

$$\frac{q_r}{L} = \varepsilon \,\sigma \,\pi \, D_a \left(T_w^4 - T_\infty^4 \right) \qquad \cdots (6)$$

Sustituyendo las ecuaciones (4), (5) y (6) en la ecuación (3) y expresándola como una función implícita de T_w , se obtiene una ecuación base para evaluar la temperatura de superficie del vaporducto en forma iterativa:

$$f(T_w) = \frac{T_{sat} - T_w}{\frac{1}{\pi D_i h_{mi}} + \frac{\ln \left(\frac{D_o}{D_i}\right)}{2\pi k_{mt}} + \frac{\ln \left(\frac{D_a}{D_o}\right)}{2\pi k_{ma}} - h_m \pi D_a \left(T_w - T_w\right) - \varepsilon \sigma \pi D_a \left(T_w^4 - T_w^4\right) = 0 \quad \dots (7)$$

Finalmente, la ecuación (7) se resuelve para la temperatura de superficie T_w aplicando el Método de Newton-Raphson. La forma general iterativa de primer orden de este método (Chapra y Canale, 1988) está dada por la siguiente ecuación:

$$T_{w_{n+1}} = T_{w_n} - \frac{f(T_{w_n})}{f(T_{w_n})} \quad \cdots (8)$$

2.3 Cálculo del coeficiente de transferencia de calor global

Para el cálculo del coeficiente global de transferencia de calor debe considerarse que la transferencia de calor del vaporducto hacia el aire del medio ambiente ocurre mediante los mecanismos combinados conducciónconvección. Ambos mecanismos son representados por el coeficiente global, como si se tratase de convección pura. En el caso del CGCP se presentan los tres mecanismos básicos de transferencia de calor. Por lo tanto, se debe calcular el coeficiente global con base en la igualación de la pérdida de calor del vaporducto con el caso de tener sólo convección pura. De acuerdo con la Figura 2, la pérdida de calor por unidad de longitud hacia el medio ambiente es la suma de la transferencia de calor por convección (q_{cv}/L) y radiación (q_r/L), que a su vez es igual a la suma de la conducción a través del sistema tubo-aislante y la convección interna (q_{cd}/L). Esto es:

$$\frac{q_{cd}}{L} = \frac{q_{cv}}{L} + \frac{q_r}{L} = U_{mi} \pi D_i \left(T_{sat} - T_{\infty} \right) \qquad \cdots (9)$$

Despejando de la ecuación (9) al coeficiente global basado en el área interna, y sustituyendo q_{cd}/L por su valor a partir de (4), se obtiene la siguiente ecuación:

$$U_{mi} = \frac{\frac{T_{sat} - T_{w}}{1}}{\frac{1}{\pi D_{i} h_{mi}} + \frac{\ln \left(\frac{D_{o}}{D_{i}}\right)}{2\pi k_{mt}} + \frac{\ln \left(\frac{D_{a}}{D_{o}}\right)}{2\pi k_{ma}}}{\pi D_{i} \left(T_{sat} - T_{w}\right)} \cdots (10)$$

En la ecuación (10) las conductividades térmicas (k_{mt} y k_{ma}) corresponden con los valores promedio de las conductividades térmicas de los materiales involucrados (tubería y aislante), las cuales se evalúan en el intervalo promedio de temperaturas de operación de la red de vaporductos.

La cuantificación de las pérdidas de calor está determinada de forma general, por la ecuación (11):

$$q = U_{mi} \pi D_i L (T_{sat} - T_{\infty}) \qquad \cdots (11)$$

El coeficiente global de transferencia de calor U_{mi} depende del estado físico del aislante, ya que su espesor puede ser menor al original, impactando también al área externa de transferencia de calor. Por tanto, para cuantificar las pérdidas de calor desde la red de tuberías al medio ambiente en el caso del CGCP, se requirió determinar la longitud y el diámetro de cada tramo de tubería de la red, y definir la condición actual de su respectivo aislamiento y el coeficiente global de transferencia de calor. A continuación se describe la metodología utilizada para la determinación de cada uno de estos parámetros.

3. Inventario del estado físico de los aislantes de tuberías

Para efectos del presente estudio la condición del aislamiento térmico se clasificó en cuatro niveles de calidad de acuerdo con su estado de conservación (A = Completo o Nuevo; B = Bueno sin lámina protectora; C = Regular o Deteriorado y D = Malo o tubería descubierta; ver Tabla 1).

Estado o condición del aislante	Clave	Color
Nuevo o completo	А	
Bueno o sin lamina	В	
Regular o deteriorado	С	
Ausente, destruido totalmente	D	

Las longitudes para cada estado de aislamiento

se obtuvieron a partir del levantamiento de un inventario en campo donde se clasificó la condición que guarda el aislante a través de toda la red de vaporductos de acuerdo con la Tabla1. La información sobre las diferentes secciones de aislamiento, así como la de los diámetros de tubería, se integró primeramente dentro

de una base de datos en MS Excel, y posteriormente se implementó dentro de un Sistema de Información Geográfica (SIG). Esta herramienta permitió en primera instancia la generación de mapas en formato electrónico de las redes de vaporductos (alta y baja presión) a partir de los cuales se cuantificaron de forma automatizada las longitudes correspondientes a cada condición del aislante térmico para cada diámetro de tubería (Martínez Estrella *et al.*, 2010). Los resultados del inventario se muestran más adelante (Tablas 2 a 4).

4. Determinación de la transferencia de calor hacia el medio ambiente

La determinación de la pérdida de calor de los vaporductos hacia el medio ambiente constituyó una tarea sumamente compleja, tomando en cuenta la gran variedad de diámetros de tubería, las diferentes condiciones de operación, los distintos tipos y estados físicos de los aislantes de la red de tuberías. Para facilitar esta tarea, se desarrolló un programa de aplicación basado en MS Excel donde se automatizaron los cálculos de la temperatura de superficie, el coeficiente global de transferencia de calor y la pérdida de calor hacia el medio ambiente, de acuerdo con las características que guarda la red de tuberías del CGCP (Figura 3).

	A	В	С	D	E	F	G	Н	1	J	K	L	
3	CPD,CPT,CPC		POZOS										
4				Baja P	resión								
5		p _{máx} [barg]	:	5.50		m _{máx} [ton/ł	nr]:	24.70					
6		p _{mín} [barg]	:	2.80		m _{min} [ton/h	ir]:	1.20					
7		p _m [barg]:		4.15		∆m [ton/hr]: 	5.88					
8													
9	Tubería comp	oletamente	aislada			<u>,</u>					з		
10					ITERA		Aluminio lá	mina comer	cial:	pulido -	0.05		
11]				oxidado -	0.11		
12							Hoja de me	etal galvaniza	ada:	nueva -	0.13		
13	V [m/s]	2.63		σ[W/m²-K⁴]		3				oxidada -	0.28		
14	T _∞ [°C]	23.81		5.669E-08		0.22							
15													
16	Vaparduatas	Polo Droslá	-				Tuborío do	acoro al car		1 A 52 C+ P	6 A 205 Cr	<u>_</u>	
11	Vaporducios I	baja Presid	40.00	40.00	44.40	40.40	Tubena de	acero al car	00 40	A-55 GI. D	0 A-205 GL	00 -+	
10	Dhom, Ced	8,20	10, 20	12, 20	14,10	16, 10	10, 10	20, 10	22, 10	24, 10	26, St	20, St	FIG. З.
19	Di [in] De fin]	0.120	10.200	12.200	13.000	15.500	17.000	79.500	21.000	23.500	25.500	27.000	Programa
20	De [iii] Da [in]	11 625	13 750	16 750	18.000	20.000	22 000	24.000	22.000	28,000	30,000	32,000	de
22	Peat [barg]	3.792	3,935	3.620	3.562	4.314	4.150	4,494	4.150	4.150	4.150	4.150	
23	T _{sat} [°C]	150.35	151.44	148.99	148.52	154.24	153.05	155.51	153.05	153.05	153.05	153.05	aplicacion
24	T _i [°C]	150.339	151.436	148.976	148.514	154.232	153.012	155.509	153.010	153.014	153.013	153.012	basado en
25	T _e [°C]	149.406	150.192	147.516	146.843	153.032	143.739	153.978	140.154	136.626	134.515	132.376	MS Exce
26	T _W [°C]	33.496	34.340	32.006	32.204	33.146	32.609	33.907	32.802	33.848	33.846	33.816	para e
27	T _f [°C]	28.652	29.074	27.907	28.006	28.477	28.208	28.857	28.305	28.828	28.827	28.812	oóloulo da
28	k _{mt}	49.228	49.205	49.268	49.282	49.136	49.265	49.109	49.309	49.353	49.379	49.406	
29	k _{ma}	0.049	0.050	0.049	0.049	0.050	0.049	0.050	0.048	0.055	0.055	0.054	la pérdida
30	h interna												de calor.

El programa de cálculo en MS Excel incluye cuatro hojas de cálculo, una por cada estado de aislamiento considerado (ver Tabla 1), en las que se determina el coeficiente global de transferencia de calor, las temperaturas de la superficie interior y exterior de la tubería, la temperatura en la interfaz tubería-aislante y la pérdida de calor por unidad de longitud desde la tubería hacia el aire ambiental.

5. Resultados

El cálculo de la pérdida de calor en los vaporductos del CGCP se realizó apoyado en el programa de aplicación basado en MS Excel, el cual, como ya se comentó, contiene hojas de cálculo para estimar el coeficiente global de transferencia de calor, las temperaturas superficial y de interfaz, y la pérdida de calor

por unidad de longitud hacia el medio ambiente, para cada uno de los cuatro estados de aislamiento analizados.

El procedimiento consistió en realizar simulaciones por separado considerando una clasificación jerárquica de las tuberías en vaporducto (individual) de pozo, subcolector y ramal. Para tener condiciones de operación más homogéneas en la evaluación de las pérdidas de calor, los cálculos se efectuaron por separado para los sectores CPU alta presión, CPD, CPT y CPC en alta y baja presión.

En el caso de los vaporductos individuales de pozo, las condiciones de operación (presión y flujo másico) utilizadas corresponden con el promedio por diámetro de tubería, de los datos obtenidos del reporte de producción de vapor para una fecha específica.

Para los ramales, la presión del ramal sigue una distribución lineal en función del diámetro de la tubería, partiendo de la presión promedio de los pozos y terminando con la presión promedio de llegada a la planta. Para CPU, donde prácticamente no existe diferencia entre la presión promedio de pozos y la presión promedio a la llegada en planta, se decidió considerar una presión constante para todos los diámetros de tubería y su valor se obtuvo a partir de un promedio entre la presión promedio de los pozos asociados y el promedio de la presión de llegada a plantas correspondientes. Para el flujo másico se consideró un valor promedio en todas las tuberías ramal, que se obtuvo de un promedio por ramal a partir de los datos de producción.

En cuanto a los subcolectores, se promedió la presión de pozos con la presión de ramales para cada diámetro de vaporducto. En el caso del flujo másico, se realizó una distribución lineal de caudal-masa como una función del diámetro, partiendo del caudal promedio por pozo y hasta alcanzar el caudal promedio por ramal.

En la Tabla 2 se muestran las condiciones de operación usadas en el cálculo de la pérdida de calor en vaporductos de CPU para las tres categorías en las que se clasificaron los vaporductos de la red, de acuerdo con su jerarquía y condición de operación.

Cerro Prieto Uno				6 Ramales		PLINEA SP	psig]	Fluio Va	por [Ton/h	P ₁	INFA SP [barg]
		Crane					00.60		12 472	-	6 96719
POZOS	D rep.	Dnom.	P _{LINEA SP} [psig]	Flujo Vapor [Ton/h]			99.60		12.473		0.80/18
M-30	15.25	16,STD	100	6.537							
E-15	15.25	16,STD	100	11.209			P	. [nsia]	Eluio Vapor (To	n/h	P [harg]
M-20	15.38	16,20	100	7.541			 LINEA S 	b [h2i8]		·/··	LINEA SP [Durg]
105	17.25	18,STD	100	8.024		16		100.00	8.	429	6.89476
107	17.25	18,STD	100	10.321		18		100.44	14.	153	6.92540
301	17.25	18,STD	97.5	17.219		20	96.67		96.67 11.475		6.66494
302	17.25	18,STD	105	10.813							
102	17.25	18,STD	100	23.412		1-1-1-1-1					D [hand]
103	17.25	18,STD	100	16.425	Pn	n(E/R) [psig]	PLINEA	psigj	Flujo Vapor [Ton	/h	P _{LINEA} [barg]
M-19A	17.38	18,20	100	18.668		100.00		99.80	31.1	82	6.88097
E-2	17.38	18,20	97.5	6.155		18		99.80	31.1	.82	6.88097
M-104	17.38	18,20	104	16.344		22		99.80	31.1	82	6.88097
605	19.25	20,STD	100	16.404		26		99.80	31.1	82	6.88097
144	19.25	20,STD	95	11.817		30		99.80	31.1	82	6.88097
E-18	19.25	20,STD	95	6.205		22		99.80	21.1	82	6 88097
			1494	187.094		32		00.00	31.1	02	6 88007

Tabla 2. Condiciones de operación usadas para cada vaporducto con base en los datos de producción.

A partir de los resultados obtenidos con el programa de aplicación basado en MS Excel, se calculó la pérdida de calor total multiplicando las longitudes correspondientes a cada condición del aislante térmico (para cada diámetro de tubería) por la pérdida de calor por unidad de longitud calculada con el programa basado en MS Excel.

En la Tabla 3 se muestran los resultados que se obtuvieron para la pérdida de calor total en los vaporductos de alta presión de CPU, mientras que las Tablas 4 y 5 muestran las pérdidas de calor para cada vaporducto de CPD, CPT y CPC según su estado de aislamiento, para alta y baja presión respectivamente.

Tino de ducto	Diámetro	Longitud A	Longitud B	Longitud C	Longitud D	E	Estado A	Estado B	Estado C	Estado D	
npo de dacto	nominal	[m]	[m]	[m]	[m]		[KWt]	[KWt]	[KWt]	[KWt]	Subtotales
	16.000	0.000	141.123	115.294	0.000		0.000	27.930	40.934	0.000	68.863
Vaparducto	18.000	48.004	1791.373	1051.488	164.571		10.435	395.531	419.225	579.595	1404.786
vaporuucio	20.000	454.430	406.085	0.000	0.000		106.546	96.779	0.000	0.000	203.324
	SubTotal	502.434	2338.581	1166.782	164.571		116.981	520.240	460.159	5 79.59 5	1676.974
	18.000	0.000	411.920	127.839	9.014		0.000	81.775	45.686	29.279	121.593
Subsolastar	20.000	0.000	94.573	0.000	0.000		0.000	20.794	0.000	0.000	22.945
Subcolector	24.000	0.000	399.765	272.441	15.985		0.000	96.988	119.937	63.119	200.774
	SubTotal	0.000	906.259	400.279	24.999		0.000	199.557	165.623	92.398	345.312
	18.000	0.000	0.000	0.000	4.000		0.000	0.000	0.000	15.399	15.399
	22.000	0.000	56.669	154.115	30.696		0.000	15.013	74.362	133.811	223.185
	26.000	0.000	214.779	573.932	27.000		0.000	73.602	355.521	129.178	558.301
Ramal	30.000	0.000	603.222	749.334	20.000		0.000	234.998	527.522	102.712	865.233
	32.000	0.000	1419.936	595.030	7.000		0.000	586.029	443.476	36.941	1066.446
	34.000	58.508	793.824	1664.947	1.000		24.866	345.921	1309.179	5.417	1685.383
	SubTotal	58.508	3088.430	3737.357	89.696		24.866	1255.564	2710.059	423.458	4413.947
	Total	560.942	6333.270	5304.418	279.266		141.847	1975.360	3335.841	1095.452	6436.233

Tabla 3. Pérdida de calor total para cada vaporducto de Alta Presión de CPU en función del diámetro y del estado de aislamiento.

		B 1()									
	Tipo de ducto	Diametro	Longitud A	Longitud B	Longitud C	Longitud D	Estado A	Estado B	Estado C	Estado D	
	-	nominal	[m]	[m]	լայ	[m]	[KWt]	[KWt]	[KWt]	[KWt]	Subtotales
		14.000	370.821	0.000	905.486	273.030	79.371	0.000	353.407	1052.696	1485.474
		16.000	1333.115	1824.247	2079.896	451.972	326.547	453.616	935.315	1998.842	3714.320
		18.000	990.565	1745.414	675.312	48.500	264.919	474.278	332.414	222.208	1293.819
	Vaporducto	20.000	12547.734	3856.777	1697.738	749.226	3711.445	1160.072	927.906	3757.970	9557.394
		22.000	0.000	0.000	306.673	0.000	0.000	0.000	175.113	0.000	175.113
		24.000	320.921	0.000	0.000	2.000	122.109	0.000	0.000	11.256	133.365
		SubTotal	15563.156	7426.438	5665.105	1524.727	4504.390	2087.967	2724.155	7042.972	16359.484
		14.000	0.000	244.536	0.000	0.000	0.000	53.490	0.000	0.000	53.490
		18.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		20.000	908.304	562.658	501.271	0.000	269.691	169.904	276.271	0.000	715.867
		22.000	0.000	518.848	0.912	12.000	0.000	169.598	0.546	70.849	240.992
	Subcolector	24.000	442.489	378.837	549.853	17.005	169.180	148.078	390.941	108.796	816.995
		28.000	225.942	462.704	188.431	0.000	98.969	207.542	154.231	0.000	460.742
		30.000	2098.917	12.808	0.000	0.000	977.431	6.112	0.000	0.000	983.543
		32.000	116.805	97.540	0.585	0.000	57.608	49.333	0.541	0.000	107.482
		36.000	0.000	785.649	0.000	0.000	0.000	441.689	0.000	0.000	441.689
		SubTotal	3792.457	3063.580	1241.052	29.005	1572.880	1245.745	822.531	179.645	3820.801
		18.000	53.514	542.722	0.000	8.000	14.521	149.645	0.000	41.197	205.363
		22.000	0.000	284.406	0.000	44.724	0.000	93.581	0.000	269.786	363.367
		24.000	159.685	512.354	188.397	81.437	60.888	199.725	133.662	525.400	919.676
		26.000	0.000	164.936	0.000	8.463	0.000	68.914	0.000	58.057	126.972
Tahla 4 Pérdida		28.000	23.790	2323.340	476.79087	90.322	10.351	1035.163	387.84176	655.565	2088.920
de celer tetel		30.000	24.671	0.000	0.000	0.000	11.387	0.000	0.000	0.000	11.387
		32.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
para cada vaporducto de Alta Presión de CPD, CPT y CPC en función del diámetro v	Ramal	34.000	0.000	157.888	93.747	0.589	0.000	83.204	90.461	4.934	178.599
		36.000	7669.791	5364.814	876.185	182.827	4135.016	2969.819	888.750	1596.629	9590.214
		38.000	0.000	247.670	526.348	318.158	0.000	143.618	559.589	2888.486	3591.693
		40.000	4110.236	164.242	17.966	9.567	2422.565	99.513	19.968	90.066	2632.112
		42.000	/342.491	47.061	198.505	0.000	4508.944	29.725	230.071	0.000	4768.739
		44.000	/13./55	/2.621	248.944	0.000	455.721	47.715	300.241	0.000	803.677
		46.000	3648.470	3577.891	120.563	34.774	2417.400	2440.753	151.005	360.219	5369.376
del estado de		48.000	534.806	0.000	0.000	28.024	367.077	0.000	0.000	298.541	665.618
		SubTotal	24281.208	13459.945	2747.447	806.885	14403.870	7361.376	2761.588	6788.880	31315.714
aisiamiento.		Total	43636.821	23949.964	9653.604	2360.618	20481.140	10695.088	6308.274	14011.497	51495.999

El calor perdido hacia el medio ambiente a causa del deterioro del aislamiento de los vaporductos del CGCP, se traduce eventualmente en la condensación de vapor en el interior de los vaporductos y una consecuente reducción del vapor enviado a las plantas de generación, resultando esto en una disminución de la potencia generada por las unidades. La tasa de vapor que se condensa en los vaporductos de la red se puede calcular a partir de la ecuación (12):

$$\dot{m}_{cond} = \frac{3.6 \ q}{h_{fg}} \qquad \cdots (12)$$

donde:

m_{cond} = Tasa de vapor condensado [ton/hr],

q = Pérdida de calor hacia el medio ambiente [kWt],

 h_{fg} = Entalpía de condensación [kJ/kg].

Tine de ducte	Diámetro	Longitud A	Longitud B	Longitud C	Longitud D	Estado A	Estado B	Estado C	Estado D		
npo de ducto	nominal	[m]	[m]	[m]	[m]	[KWt]	[KWt]	[KWt]	[KWt]	Subtotales	
	8.000	0.000	0.000	548.037	0.000	0.000	0.000	117.966	0.000	117.966	
	10.000	9017.095	1924.109	828.074	147.89466	1322.650	286.669	218.649	293.09496	2121.064	
	12.000	348.181	587.239	868.613	233.386	45.438	77.626	203.983	479.180	806.226	
Vaporducto	14.000	752.238	0.000	709.534	0.000	105.658	0.000	1798.474	0.000	1904.133	
	16.000	53.370	457.504	176.490	37.519	8.974	78.054	54.116	101.936	243.080	
	20.000	134.381	342.459	181.089	17.000	27.800	72.006	68.756	53.671	222.232	
	SubTotal	10305.264	3311.311	3311.838	435.799	1510.521	514.355	2461.944	927.881	5414.700	
	10.000	552.177	0.000	500.081	0.000	81.467	0.000	133.094	0.000	214.562	
	14.000	927.411	171.032	18.960121	44.624	134.383	25.123	5.0083962	117.331	281.846	
Subcolector	16.000	282.759	556.583	408.245	0.000	46.975	93.831	124.507	0.000	265.313	
Subconcetor	18.000	0.000	0.000	329.685	26.000	0.000	0.000	111.886	86.966	198.851	Tabla 5 Dárdida
	20.000	2147.446	129.688	64.213	0.000	429.614	26.374	23.809	0.000	479.798	
	SubTotal	3909.794	857.303	1321.185	70.624	692.440	145.328	398.305	204.297	1440.370	de calor total
	14.000	84.945	0.000	224.130	0.000	12.568	0.000	60.606	0.000	73.174	para cada
	16.000	0.000	312.174	423.027	88.112	0.000	51.606	126.687	269.472	447.766	vaporducto de
	18.000	60.071	971.881	359.200	72.945	10.629	174.663	117.375	238.016	540.684	Baia Prosión do
	20.000	0.000	165.222	179.505	34.768	0.000	31.915	63.221	119.626	214.762	
Ramal	22.000	787.960	3163.048	338.942	63.921	159.257	650.315	127.330	229.586	1166.488	СРД, СРТ У СРС
	24.000	5190.141	2223.745	976.405	144.942	1248.287	546.386	435.088	538.628	2768.388	en función del
	26.000	0.000	19.374	114.927	93.885	0.000	4.990	53.739	358.088	416.817	diámetro v del
	28.000	2703.296	5067.457	135.697	99.875	708.389	1358.573	66.087	388.270	2521.320	astada da
	SubTotal	8826.412	11922.901	2751.833	598.448	2139.129	2818.448	1050.134	2141.687	8149.398	
	Total	23041.470	16091.515	7384.856	1104.871	4342.090	3478.131	3910.382	3273.865	15004.469	aisiamiento

Por lo tanto, a partir de los resultados reportados en las Tablas 3 a 5 para la pérdida de calor en cada ducto y las condiciones de operación (presión) de la red en la fecha de referencia, se calculó la tasa de vapor condensado debido a las pérdidas de calor, de acuerdo con la clasificación de vaporductos descrita anteriormente, y que está basada en las condiciones de operación de la red. Finalmente, considerando los valores de consumo específico de vapor que le corresponden a cada una de las centrales generadoras del CGCP, se calculó la potencia eléctrica que se pierde debido a la transferencia de calor hacia el medio ambiente por el estado del aislamiento de los vaporductos de la red. Los resultados obtenidos se presentan en forma resumida en la Tabla 6.

Una comparación de estos resultados con una estimación de las pérdidas totales de energía que ocurren en el transporte de vapor en la red de vaporductos del CGCP

		Longitud [m]	%	q [MWt]	m [Ton/hr]	q [MWe]
	TOTAL CP:	139701.618	100.00	72.937	136.282	17.569
TOTAL	CPDTC AP:	79601.010	56.98	51.496	99.383	13.077
TOTA	L CPDTC BP:	47622.712	34.09	15.004	25.394	3.341
	TOTAL CPU:	12477.896	8.93	6.436	11.505	1.150

Tabla 6. Pérdida de calor total, tasa de condensación de vapor y pérdida de potencia estimada.

(García-Gutiérrez *et al.*, 2009), indica que las pérdidas de calor hacia el medio ambiente debidas al estado del aislamiento en la red de alta presión del CGCP representan aproximadamente el 46% de la pérdida total de energía, mientras que la pérdida en la red de baja presión representa alrededor del 28%.

6. Conclusiones

Se realizó la evaluación de la magnitud de las pérdidas de calor asociadas al estado físico del aislamiento térmico de las tuberías de la red de vaporductos del CGCP. El estudio se basó en un inventario del estado físico del aislamiento de las tuberías recopilado en campo y en un programa de aplicación basado en MS Excel para el cálculo de la transferencia de calor. Se tomaron en cuenta las condiciones de operación de la red para una fecha dada.

La condición del aislamiento térmico se clasificó en cuatro niveles de calidad de acuerdo con su estado de conservación: A = Completo o Nuevo; B = Bueno sin lámina protectora; C = Regular o Deteriorado y D = Malo o tubería descubierta. El inventario de longitudes y diámetros de tuberías para cada estado de aislamiento se obtuvo mediante la aplicación de un Sistema de Información Geográfica (SIG).

El programa de aplicación basado en MS Excel contiene hojas de cálculo para estimar la pérdida de calor por unidad de longitud para cada uno de los cuatro estados de aislamiento analizados.

Se realizaron simulaciones por separado considerando una clasificación jerárquica de las tuberías en vaporducto de pozo, subcolector y ramal, aplicando las condiciones de operación de la red para una fecha en específico.

Los resultados obtenidos indican que las pérdidas de calor estimadas para todos los ductos que conforman la red de transporte de vapor ascienden a 72.9 MWt (MW térmicos), distribuidos en 6.4 MWt para CPU, 51.5 MWt para la red de alta presión (AP) de CPD, CPT y CPC y 15.0 MWt para la red de baja presión (BP). Estas pérdidas dan lugar a la formación de 136.3 toneladas por hora (t/h) de condensado de las cuales 99.4 y 25.4 t/h son de las redes de AP y BP, respectivamente, de los campos de CPD, CPT, y 11.5 t/h son de CPU.

Estas pérdidas de calor y la formación de condensado resultante se traducen en una pérdida de potencia equivalente a 17.6 MWe o 2.44% de la potencia total instalada en el CGCP, que es de 720 MWe.

Una comparación de estos resultados con las pérdidas totales de energía que ocurren en el transporte de vapor en la red de vaporductos del CGCP, indica que las pérdidas de calor a través de los aislantes en la red de alta presión del CGCP representan aproximadamente el 46% de la pérdida total de energía, mientras que la pérdida en la red de baja presión representa alrededor del 28%. El resto de las pérdidas energía corresponden a pérdidas en accesorios de la red, pérdidas por fricción, y a la energía que se va con el agua caliente formada por condensación de vapor.

Estos resultados indican que un porcentaje significativo de las pérdidas de energía totales durante el transporte de vapor en el CGCP se originan por el mal estado de su aislamiento térmico y, en consecuencia, destacan la importancia de mantener en buen estado el aislamiento térmico de los vaporductos, no únicamente para preservar la seguridad del personal operativo sino como una buena práctica para disminuir la pérdida de energía hacia el medio ambiente.

Agradecimientos: Se agradece a las autoridades del CGCP de la Comisión Federal de Electricidad y del Instituto de Investigaciones Eléctricas por el apoyo y permiso para la realización de la presente publicación. Los resultados fueron obtenidos como parte del contrato CFE/I/SC/13391/2009 entre el Instituto de Investigaciones Eléctricas y la Comisión Federal de Electricidad.

Nomenclatura

Símbolos

- Cp Calor específico a presión constante (J/(kg-K))
- D Diámetro (m)
- f Factor de fricción (adimensional)
- h_m Coeficiente de película promedio (W/(m²-K))
- k_m Conductividad térmica promedio (W/(m-K))
- L Longitud de la tubería (m)
- Nu_m Número de Nusselt promedio (adimensional)
- Pr Número de Prandtl (adimensional)
- q Tasa de transferencia de calor (W)
- Re Número de Reynolds (adimensional)
- R Radio (m)
- T_e Temperatura de la superficie externa de la tubería (K)
- T_{sat} Temperatura de saturación del vapor (K)
- T_w Temperatura de la superficie externa del aislante (K)
- T_{∞} Temperatura global del fluido (K)
- U_m Coeficiente global (W/(m²-K))

Símbolos griegos

- ε Emisividad de la superficie (adimensional)
- ρ Densidad absoluta (kg/m³)
- σ Constante de Stefan-Boltzmann (W/(m²-K⁴))
- μ Viscosidad absoluta (N-s/m²)

Subíndices

- a Aislante
- cd Conducción de calor
- cv Convección de calor
- e Superficie exterior del aislamiento
- i Superficie interior de la tubería
- o Superficie exterior de la tubería
- r Radiación térmica
- t Tubería

Referencias

- Chapra, S.C. y R.P. Canale, 1988. *Métodos numéricos para ingenieros con aplicaciones en computadoras digitales*. Mc Graw Hill/Interamericana de México, S.A. de C.V., México, D.F.
- Churchill, S.W. and M.A. Bernstein, 1977. Correlating Equation for Forced Convection from Gases and Liquids to a Circular Cylinder in Cross Flow. J. Heat Transfer, 99, pp. 300-306.
- Cruickshank, C., E. Ordoñez, y G. Castillo, 1990. Modelo matemático de la red de vaporductos de la planta geotermoeléctrica de Cerro Prieto. UNAM, Informe del proyecto 9361. Inédito.

- García Gutiérrez, A., J.I. Martínez Estrella y R. Ovando Castelar, 2009. Evaluación y optimización de la eficiencia del ciclo geotérmico del Campo Geotérmico de Cerro Prieto: Parte 1 Sistema de producción y transporte de fluidos geotérmicos". Informe Final, Clave IIE/11/13743/I 02/F/DC, Instituto de Investigaciones Eléctricas, Cuernavaca, Mor., Diciembre 2009. Inédito.
- Gnielinsky, V., 1976. New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng., Vol. 16, No. 2, pp. 359-368.
- Gutiérrez-Negrín, L.C.A., R. Maya-González, and J.L. Quijano-León, 2010. Current Status of Geothermics in Mexico. *Proceedings World Geothermal Congress 2010*, Bali, Indonesia, 25-29 April 2010.
- Marconcini, R. and G. Neri, 1979. Numerical simulation of a steam pipeline network. *Geothermics*, Vol. 7, pp. 17-27.
- Martínez Estrella, J.I., A. García Gutiérrez, R. Ovando Castelar, C. Gutiérrez Lara, I. Canchola Félix y P-Jacobo Galván, 2010. Uso de un Sistema de Información Geográfica para inventariar el estado físico del aislamiento térmico de la red de vaporductos del campo geotérmico de Cerro Prieto, BC. *Memorias del XVIII Congreso Anual de la Asociación Geotérmica Mexicana*, octubre 15, Morelia, Mich.
- Peña, J.M., 1986. Energy losses in horizontal steam lines. *Geothermal Resources Council Transactions*, Vol. 10, pp. 347-252.
- Peña, J.M. y H. Campbell, 1988. Evaluación de las pérdidas de calor en líneas de vapor geotérmico. *Memorias del 3er Congreso Latinoamericano de Transferencia de Calor y Materia*, Guanajuato, Gto., 4-7 Julio, pp. 53-64.
- Pethukov, B.S., 1970. Heat transfer and friction in turbulent pipe flow with variable physical properties. *Adv. in Heat Transfer*, Vol. 6, pp. 503-564.

Rohsenow, W.M. and H.Y. Choi, 1961. Heat, Mass and Momentum Transfer. Prentice-Hall.

Schroeder, F.S., 1982. Calculating heat loss or gain by an insulated pipe. *Chemical Engineering*, January 25, pp. 111- 114.