A mechanistic view of mitochondrial death decision pores



Document title: A mechanistic view of mitochondrial death decision pores
Journal: Brazilian journal of medical and biological research
Database: PERIÓDICA
System number: 000351216
ISSN: 0100-879X
Authors: 1
1
1
1
2
Institutions: 1Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Sao Paulo. Brasil
2Universidade de Sao Paulo, Instituto de Medicina Tropical, Sao Paulo. Brasil
Year:
Season: Ago
Volumen: 40
Number: 8
Pages: 1011-1024
Country: Brasil
Language: Inglés
Document type: Artículo
Approach: Experimental, aplicado
English abstract Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane
Disciplines: Biología
Keyword: Biología celular,
Mitocondria,
Permeabilidad de membrana,
Citocromo C,
Poros,
Especies reactivas de oxígeno,
Caspasas
Keyword: Biology,
Cell biology,
Mitochondria,
Membrane permeability,
Cytochrome C,
Pores,
Oxygen reactive species,
Caspases
Full text: Texto completo (Ver HTML)